3Com Switch 4210G Family
Command Reference Guide

Switch 4210G 24-Port
Switch 4210G 48-Port
Switch 4210G NT 24-Port
Switch 4210G NT 48-Port
Switch 4210G PWR 24-Port
Switch 4210G PWR 48-Port

Product Version:
Release 2202
Manual Version:
6W100-20100205
www.3com.com

3Com Corporation
350 Campus Drive, Marlborough,
MA, USA 01752 3064
About This Manual

Organization

3Com Switch 4210G Family Command Reference Guide is organized as follows:

<table>
<thead>
<tr>
<th>Volume</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>00-Command Index</td>
<td>Command Index</td>
</tr>
<tr>
<td>01-Access Volume</td>
<td>Ethernet Port</td>
</tr>
<tr>
<td></td>
<td>LLDP</td>
</tr>
<tr>
<td></td>
<td>GVRP</td>
</tr>
<tr>
<td>02-IP Services Volume</td>
<td>IP Addressing</td>
</tr>
<tr>
<td></td>
<td>DHCP Relay Agent</td>
</tr>
<tr>
<td></td>
<td>DNS</td>
</tr>
<tr>
<td></td>
<td>sFlow</td>
</tr>
<tr>
<td>03-IP Routing Volume</td>
<td>IP Routing Table</td>
</tr>
<tr>
<td>04-Multicast Volume</td>
<td>IGMP Snooping</td>
</tr>
<tr>
<td></td>
<td>Traffic Mirroring</td>
</tr>
<tr>
<td>06-Security Volume</td>
<td>AAA</td>
</tr>
<tr>
<td></td>
<td>EAD Fast Deployment</td>
</tr>
<tr>
<td></td>
<td>IP Source Guard</td>
</tr>
<tr>
<td></td>
<td>Public Key</td>
</tr>
<tr>
<td>07-High Availability Volume</td>
<td>Smart Link</td>
</tr>
<tr>
<td></td>
<td>Ethernet OAM</td>
</tr>
<tr>
<td>08-System Volume</td>
<td>Logging into an Ethernet Switch</td>
</tr>
<tr>
<td></td>
<td>File System Management</td>
</tr>
<tr>
<td></td>
<td>HTTPS</td>
</tr>
<tr>
<td></td>
<td>MAC Address Table Management</td>
</tr>
<tr>
<td></td>
<td>Hotfix</td>
</tr>
<tr>
<td>08-System Volume</td>
<td>IRF</td>
</tr>
</tbody>
</table>
Conventions

The manual uses the following conventions:

Command conventions

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boldface</td>
<td>The keywords of a command line are in Boldface.</td>
</tr>
<tr>
<td>italic</td>
<td>Command arguments are in italic.</td>
</tr>
<tr>
<td>[]</td>
<td>Items (keywords or arguments) in square brackets [] are optional.</td>
</tr>
<tr>
<td>{ x</td>
<td>y</td>
</tr>
<tr>
<td>[x</td>
<td>y</td>
</tr>
<tr>
<td>{ x</td>
<td>y</td>
</tr>
<tr>
<td>[x</td>
<td>y</td>
</tr>
<tr>
<td>&<1-n></td>
<td>The argument(s) before the ampersand (&) sign can be entered 1 to n times.</td>
</tr>
<tr>
<td>#</td>
<td>A line starting with the # sign is comments.</td>
</tr>
</tbody>
</table>

GUI conventions

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><></td>
<td>Button names are inside angle brackets. For example, click <OK>.</td>
</tr>
<tr>
<td>[]</td>
<td>Window names, menu items, data table and field names are inside square brackets. For example, pop up the [New User] window.</td>
</tr>
<tr>
<td>/</td>
<td>Multi-level menus are separated by forward slashes. For example, [File/Create/Folder].</td>
</tr>
</tbody>
</table>

Symbols

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Means reader be extremely careful. Improper operation may cause bodily injury.</td>
</tr>
<tr>
<td></td>
<td>Means reader be careful. Improper operation may cause data loss or damage to equipment.</td>
</tr>
<tr>
<td></td>
<td>Means a complementary description.</td>
</tr>
</tbody>
</table>
Related Documentation

In addition to this manual, each 3com Switch 4210G documentation set includes the following:

<table>
<thead>
<tr>
<th>Manual</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3Com Switch 4210G Family Configuration Guide-Release 2202</td>
<td>Describe how to configure your 4210G Switch using the supported protocols and CLI commands.</td>
</tr>
<tr>
<td>3Com Switch 4210G Family Getting Started Guide</td>
<td>This guide provides all the information you need to install and use the 3Com Switch 4210G Family.</td>
</tr>
</tbody>
</table>

Obtaining Documentation

You can access the most up-to-date 3Com product documentation on the World Wide Web at this URL: http://www.3com.com.
Appendix A Command Index

The command index includes all the commands in the *Command Manual*, which are arranged alphabetically.

A	access-limit	06-Security Volume	1-1
	access-limit enable	06-Security Volume	1-1
	accounting	05-QoS Volume	1-6
	accounting command	06-Security Volume	1-2
	accounting default	06-Security Volume	1-3
	accounting lan-access	06-Security Volume	1-4
	accounting login	06-Security Volume	1-5
	accounting optional	06-Security Volume	1-6
	acl	06-Security Volume	14-5
	acl	08-System Volume	2-1
	acl copy	06-Security Volume	14-6
	acl ipv6	06-Security Volume	14-20
	acl ipv6 copy	06-Security Volume	14-21
	acl ipv6 logging frequency	06-Security Volume	14-32
	acl ipv6 name	06-Security Volume	14-22
	acl logging frequency	06-Security Volume	14-32
	acl name	06-Security Volume	14-7
	activation-key	08-System Volume	1-1
	active region-configuration	01-Access Volume	3-1
	add-member	08-System Volume	20-14
	administrator-address	08-System Volume	20-15
	advantage-factor	08-System Volume	18-1
	apply poe-profile	08-System Volume	23-1
	apply poe-profile interface	08-System Volume	23-2
archive configuration
archive configuration interval
archive configuration location
archive configuration max
arp anti-attack active-ack enable
arp anti-attack source-mac
arp anti-attack source-mac aging-time
arp anti-attack source-mac exclude-mac
arp anti-attack source-mac threshold
arp anti-attack valid-ack enable
arp check enable
arp detection enable
arp detection mode
arp detection static-bind
arp detection trust
arp detection validate
arp max-learning-num
arp rate-limit
arp resolving-route enable
arp source-suppression enable
arp source-suppression limit
arp static
arp timer aging
ascii
attribute
authentication default
authentication lan-access
authentication login
authentication-mode
authorization command
authorization default
<table>
<thead>
<tr>
<th>Command</th>
<th>Volume</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>authorization lan-access</td>
<td>06-Security Volume</td>
<td>1-11</td>
</tr>
<tr>
<td>authorization login</td>
<td>06-Security Volume</td>
<td>1-12</td>
</tr>
<tr>
<td>authorization-attribute</td>
<td>06-Security Volume</td>
<td>1-13</td>
</tr>
<tr>
<td>auto-build</td>
<td>08-System Volume</td>
<td>20-16</td>
</tr>
<tr>
<td>auto-execute command</td>
<td>08-System Volume</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>backup startup-configuration</td>
<td>08-System Volume</td>
<td>5-19</td>
</tr>
<tr>
<td>binary</td>
<td>08-System Volume</td>
<td>6-7</td>
</tr>
<tr>
<td>bind-attribute</td>
<td>06-Security Volume</td>
<td>1-15</td>
</tr>
<tr>
<td>black-list add-mac</td>
<td>08-System Volume</td>
<td>20-17</td>
</tr>
<tr>
<td>black-list delete-mac</td>
<td>08-System Volume</td>
<td>20-18</td>
</tr>
<tr>
<td>boot-loader file</td>
<td>08-System Volume</td>
<td>4-1</td>
</tr>
<tr>
<td>bootrom</td>
<td>08-System Volume</td>
<td>4-2</td>
</tr>
<tr>
<td>bootrom-update security-check enable</td>
<td>08-System Volume</td>
<td>4-4</td>
</tr>
<tr>
<td>bpdu-drop any</td>
<td>01-Access Volume</td>
<td>3-2</td>
</tr>
<tr>
<td>bpdu-tunnel dot1q</td>
<td>01-Access Volume</td>
<td>10-1</td>
</tr>
<tr>
<td>bpdu-tunnel tunnel-dmac</td>
<td>01-Access Volume</td>
<td>10-2</td>
</tr>
<tr>
<td>broadcast-suppression</td>
<td>01-Access Volume</td>
<td>1-1</td>
</tr>
<tr>
<td>build</td>
<td>08-System Volume</td>
<td>20-18</td>
</tr>
<tr>
<td>bye</td>
<td>06-Security Volume</td>
<td>10-16</td>
</tr>
<tr>
<td>bye</td>
<td>08-System Volume</td>
<td>6-7</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>ca identifier</td>
<td>06-Security Volume</td>
<td>11-2</td>
</tr>
<tr>
<td>car</td>
<td>05-QoS Volume</td>
<td>1-6</td>
</tr>
<tr>
<td>cd</td>
<td>06-Security Volume</td>
<td>10-16</td>
</tr>
<tr>
<td>cd</td>
<td>08-System Volume</td>
<td>5-1</td>
</tr>
<tr>
<td>cd</td>
<td>08-System Volume</td>
<td>6-8</td>
</tr>
<tr>
<td>cdup</td>
<td>06-Security Volume</td>
<td>10-17</td>
</tr>
<tr>
<td>cdup</td>
<td>08-System Volume</td>
<td>6-8</td>
</tr>
<tr>
<td>certificate request entity</td>
<td>06-Security Volume</td>
<td>11-3</td>
</tr>
</tbody>
</table>
cluster-mac 08-System Volume 20-22
cluster-mac syn-interval 08-System Volume 20-23
cluster-snmp-agent community 08-System Volume 20-24
cluster-snmp-agent group v3 08-System Volume 20-25
cluster-snmp-agent mib-view included 08-System Volume 20-26
cluster-snmp-agent usm-user v3 08-System Volume 20-26
codec-type 08-System Volume 18-1
command accounting 08-System Volume 1-4
command authorization 08-System Volume 1-5
command-alias enable 08-System Volume 3-5
command-alias mapping 08-System Volume 3-5
command-privilege level 08-System Volume 3-6
common-name 06-Security Volume 11-6
configuration replace file 08-System Volume 5-20
control-vlan 07-High Availability Volume 3-1
copy 08-System Volume 5-2
copyright-info enable 08-System Volume 3-8
country 06-Security Volume 11-7
crl check 06-Security Volume 11-7
crl update-period 06-Security Volume 11-8
crl url 06-Security Volume 11-8
cut connection 06-Security Volume 1-16

databits 08-System Volume 1-5
data-fill 08-System Volume 18-2
data-flow-format (HWTACACS scheme view) 06-Security Volume 3-1
data-flow-format (RADIUS scheme view) 06-Security Volume 2-1
data-size 08-System Volume 18-3
debugging 08-System Volume 6-10
debugging 08-System Volume 15-8
delete 06-Security Volume 10-18
delete 08-System Volume 5-3
delete 08-System Volume 6-11
delete ipv6 static-routes all 03-IP Routing Volume 3-1
delete static-routes all 03-IP Routing Volume 2-1
delete-member 08-System Volume 20-28
description 01-Access Volume 1-2
description 01-Access Volume 1-1
description 01-Access Volume 5-1
description (any NQA test type view) 08-System Volume 18-4
description (for IPv4) 06-Security Volume 14-8
description (for IPv6) 06-Security Volume 14-22
destination ip 08-System Volume 18-5
destination port 08-System Volume 18-5
dhcp relay address-check 02-IP Services Volume 5-1
dhcp relay information circuit-id format-type 02-IP Services Volume 5-2
dhcp relay information circuit-id string 02-IP Services Volume 5-2
dhcp relay information enable 02-IP Services Volume 5-3
dhcp relay information format 02-IP Services Volume 5-4
dhcp relay information remote-id format-type 02-IP Services Volume 5-5
dhcp relay information remote-id string 02-IP Services Volume 5-6
dhcp relay information strategy 02-IP Services Volume 5-7
dhcp relay release ip 02-IP Services Volume 5-7
dhcp relay security static 02-IP Services Volume 5-8
dhcp relay security tracker 02-IP Services Volume 5-9
dhcp relay server-detect 02-IP Services Volume 5-10
dhcp relay server-group 02-IP Services Volume 5-10
dhcp relay server-select 02-IP Services Volume 5-11
dhcp select relay 02-IP Services Volume 5-12
dhcp-snooping 02-IP Services Volume 7-1
dhcp-snooping information circuit-id format-type 02-IP Services Volume 7-2
dhcp-snooping information circuit-id string 02-IP Services Volume 7-2
<table>
<thead>
<tr>
<th>Command</th>
<th>Volume</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>dhcp-snooping information enable</td>
<td>02-IP Services Volume</td>
<td>7-3</td>
</tr>
<tr>
<td>dhcp-snooping information format</td>
<td>02-IP Services Volume</td>
<td>7-4</td>
</tr>
<tr>
<td>dhcp-snooping information remote-id format-type</td>
<td>02-IP Services Volume</td>
<td>7-5</td>
</tr>
<tr>
<td>dhcp-snooping information remote-id string</td>
<td>02-IP Services Volume</td>
<td>7-6</td>
</tr>
<tr>
<td>dhcp-snooping information strategy</td>
<td>02-IP Services Volume</td>
<td>7-7</td>
</tr>
<tr>
<td>dhcp-snooping trust</td>
<td>02-IP Services Volume</td>
<td>7-7</td>
</tr>
<tr>
<td>dir</td>
<td>06-Security Volume</td>
<td>10-18</td>
</tr>
<tr>
<td>dir</td>
<td>08-System Volume</td>
<td>5-4</td>
</tr>
<tr>
<td>dir</td>
<td>08-System Volume</td>
<td>6-11</td>
</tr>
<tr>
<td>disconnect</td>
<td>08-System Volume</td>
<td>6-13</td>
</tr>
<tr>
<td>display acl</td>
<td>06-Security Volume</td>
<td>14-9</td>
</tr>
<tr>
<td>display acl ipv6</td>
<td>06-Security Volume</td>
<td>14-23</td>
</tr>
<tr>
<td>display acl resource</td>
<td>06-Security Volume</td>
<td>14-1</td>
</tr>
<tr>
<td>display archive configuration</td>
<td>08-System Volume</td>
<td>5-20</td>
</tr>
<tr>
<td>display arp</td>
<td>02-IP Services Volume</td>
<td>2-3</td>
</tr>
<tr>
<td>display arp anti-attack source-mac</td>
<td>02-IP Services Volume</td>
<td>4-7</td>
</tr>
<tr>
<td>display arp detection</td>
<td>02-IP Services Volume</td>
<td>4-13</td>
</tr>
<tr>
<td>display arp detection statistics</td>
<td>02-IP Services Volume</td>
<td>4-13</td>
</tr>
<tr>
<td>display arp ip-address</td>
<td>02-IP Services Volume</td>
<td>2-5</td>
</tr>
<tr>
<td>display arp source-suppression</td>
<td>02-IP Services Volume</td>
<td>4-2</td>
</tr>
<tr>
<td>display arp timer-suppression</td>
<td>02-IP Services Volume</td>
<td>2-6</td>
</tr>
<tr>
<td>display boot-loader</td>
<td>08-System Volume</td>
<td>4-4</td>
</tr>
<tr>
<td>display bootp client</td>
<td>02-IP Services Volume</td>
<td>8-1</td>
</tr>
<tr>
<td>display brief interface</td>
<td>01-Access Volume</td>
<td>1-3</td>
</tr>
<tr>
<td>display cfd linktrace-reply</td>
<td>07-High Availability Volume</td>
<td>6-12</td>
</tr>
<tr>
<td>display cfd linktrace-reply auto-detection</td>
<td>07-High Availability Volume</td>
<td>6-13</td>
</tr>
<tr>
<td>display cfd ma</td>
<td>07-High Availability Volume</td>
<td>6-14</td>
</tr>
<tr>
<td>display cfd md</td>
<td>07-High Availability Volume</td>
<td>6-15</td>
</tr>
<tr>
<td>display cfd mep</td>
<td>07-High Availability Volume</td>
<td>6-16</td>
</tr>
<tr>
<td>display cfd mp</td>
<td>07-High Availability Volume</td>
<td>6-19</td>
</tr>
<tr>
<td>display cfd remote-mep</td>
<td>07-High Availability Volume</td>
<td>6-20</td>
</tr>
<tr>
<td>Command</td>
<td>Volume</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>----------------------------</td>
<td>------</td>
</tr>
<tr>
<td>display cfd service-instance</td>
<td>07-High Availability</td>
<td>6-21</td>
</tr>
<tr>
<td>display cfd status</td>
<td>07-High Availability</td>
<td>6-22</td>
</tr>
<tr>
<td>display channel</td>
<td>08-System</td>
<td>16-1</td>
</tr>
<tr>
<td>display clipboard</td>
<td>08-System</td>
<td>3-9</td>
</tr>
<tr>
<td>display clock</td>
<td>08-System</td>
<td>3-9</td>
</tr>
<tr>
<td>display cluster</td>
<td>08-System</td>
<td>20-28</td>
</tr>
<tr>
<td>display cluster base-topology</td>
<td>08-System</td>
<td>20-30</td>
</tr>
<tr>
<td>display cluster black-list</td>
<td>08-System</td>
<td>20-32</td>
</tr>
<tr>
<td>display cluster candidates</td>
<td>08-System</td>
<td>20-32</td>
</tr>
<tr>
<td>display cluster current-topology</td>
<td>08-System</td>
<td>20-34</td>
</tr>
<tr>
<td>display cluster members</td>
<td>08-System</td>
<td>20-36</td>
</tr>
<tr>
<td>display command-alias</td>
<td>08-System</td>
<td>3-10</td>
</tr>
<tr>
<td>display connection</td>
<td>06-Security</td>
<td>1-17</td>
</tr>
<tr>
<td>display cpu-usage</td>
<td>08-System</td>
<td>4-5</td>
</tr>
<tr>
<td>display cpu-usage history</td>
<td>08-System</td>
<td>4-7</td>
</tr>
<tr>
<td>display current-configuration</td>
<td>08-System</td>
<td>3-10</td>
</tr>
<tr>
<td>display debugging</td>
<td>08-System</td>
<td>15-9</td>
</tr>
<tr>
<td>display default-configuration</td>
<td>08-System</td>
<td>3-12</td>
</tr>
<tr>
<td>display device</td>
<td>08-System</td>
<td>4-10</td>
</tr>
<tr>
<td>display device manuinfo</td>
<td>08-System</td>
<td>4-11</td>
</tr>
<tr>
<td>display dhcp client</td>
<td>02-IP Services</td>
<td>6-1</td>
</tr>
<tr>
<td>display dhcp relay</td>
<td>02-IP Services</td>
<td>5-13</td>
</tr>
<tr>
<td>display dhcp relay information</td>
<td>02-IP Services</td>
<td>5-13</td>
</tr>
<tr>
<td>display dhcp relay security</td>
<td>02-IP Services</td>
<td>5-14</td>
</tr>
<tr>
<td>display dhcp relay security statistics</td>
<td>02-IP Services</td>
<td>5-15</td>
</tr>
<tr>
<td>display dhcp relay security tracker</td>
<td>02-IP Services</td>
<td>5-16</td>
</tr>
<tr>
<td>display dhcp relay server-group</td>
<td>02-IP Services</td>
<td>5-16</td>
</tr>
<tr>
<td>display dhcp relay statistics</td>
<td>02-IP Services</td>
<td>5-17</td>
</tr>
<tr>
<td>display dhcp-snooping</td>
<td>02-IP Services</td>
<td>7-8</td>
</tr>
<tr>
<td>display dhcp-snooping information</td>
<td>02-IP Services</td>
<td>7-9</td>
</tr>
<tr>
<td>display dhcp-snooping packet statistics</td>
<td>02-IP Services</td>
<td>7-10</td>
</tr>
</tbody>
</table>
display icmp statistics 02-IP Services Volume 10-4
display igmp-snooping group 04-IP Multicast Volume 1-1
display igmp-snooping statistics 04-IP Multicast Volume 1-2
display info-center 08-System Volume 16-2
display interface 01-Access Volume 1-6
display interface vlan-interface 01-Access Volume 5-2
display ip check source 06-Security Volume 9-1
display ip host 02-IP Services Volume 9-4
display ip http 08-System Volume 8-1
display ip https 08-System Volume 9-1
display ip interface 02-IP Services Volume 1-1
display ip interface brief 02-IP Services Volume 1-3
display ip routing-table 03-IP Routing Volume 1-1
display ip routing-table acl 03-IP Routing Volume 1-4
display ip routing-table ip-address 03-IP Routing Volume 1-7
display ip routing-table ip-prefix 03-IP Routing Volume 1-9
display ip routing-table protocol 03-IP Routing Volume 1-10
display ip routing-table statistics 03-IP Routing Volume 1-11
display ip socket 02-IP Services Volume 10-5
display ip statistics 02-IP Services Volume 10-8
display ipc channel 08-System Volume 22-1
display ipc link 08-System Volume 22-2
display ipc multicast-group 08-System Volume 22-3
display ipc node 08-System Volume 22-4
display ipc packet 08-System Volume 22-4
display ipc performance 08-System Volume 22-5
display ipc queue 08-System Volume 22-7
display ip-subnet-vlan interface 01-Access Volume 5-27
display ip-subnet-vlan vlan 01-Access Volume 5-28
display ipv6 fib 02-IP Services Volume 12-3
display ipv6 host 02-IP Services Volume 12-4
display ipv6 interface 02-IP Services Volume 12-5
display ipv6 neighbors 02-IP Services Volume 12-9
display ipv6 neighbors count 02-IP Services Volume 12-10
display ipv6 pathmtu 02-IP Services Volume 12-11
display ipv6 routing-table 03-IP Routing Volume 1-12
display ipv6 routing-table acl 03-IP Routing Volume 1-13
display ipv6 routing-table ipv6-address 03-IP Routing Volume 1-14
display ipv6 routing-table ipv6-address1 ipv6-address2 03-IP Routing Volume 1-15
display ipv6 routing-table ipv6-prefix 03-IP Routing Volume 1-16
display ipv6 routing-table protocol 03-IP Routing Volume 1-17
display ipv6 routing-table statistics 03-IP Routing Volume 1-18
display ipv6 routing-table verbose 03-IP Routing Volume 1-18
display ipv6 socket 02-IP Services Volume 12-12
display ipv6 statistics 02-IP Services Volume 12-14
display irf 08-System Volume 21-1
display irf configuration 08-System Volume 21-2
display irf topology 08-System Volume 21-3
display isolate-user-vlan 01-Access Volume 6-1
display lacp system-id 01-Access Volume 1-2
display link-aggregation load-sharing mode 01-Access Volume 1-2
display link-aggregation member-port 01-Access Volume 1-4
display link-aggregation summary 01-Access Volume 1-6
display link-aggregation verbose 01-Access Volume 1-8
display lldp local-information 01-Access Volume 4-1
display lldp neighbor-information 01-Access Volume 4-5
display lldp statistics 01-Access Volume 4-11
display lldp status 01-Access Volume 4-12
display lldp tlv-config 01-Access Volume 4-14
display local-proxy-arp 02-IP Services Volume 3-1
display local-user 06-Security Volume 1-20
display logbuffer 08-System Volume 16-4
<table>
<thead>
<tr>
<th>Command</th>
<th>Volume</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>display logbuffer summary</td>
<td>08-System</td>
<td>16-6</td>
</tr>
<tr>
<td>display loopback-detection</td>
<td>01-Access</td>
<td>1-10</td>
</tr>
<tr>
<td>display mac-address</td>
<td>08-System</td>
<td>13-1</td>
</tr>
<tr>
<td>display mac-address aging-time</td>
<td>08-System</td>
<td>13-2</td>
</tr>
<tr>
<td>display mac-authentication</td>
<td>06-Security</td>
<td>7-1</td>
</tr>
<tr>
<td>display mac-vlan</td>
<td>01-Access</td>
<td>5-18</td>
</tr>
<tr>
<td>display mac-vlan interface</td>
<td>01-Access</td>
<td>5-19</td>
</tr>
<tr>
<td>display memory</td>
<td>08-System</td>
<td>4-13</td>
</tr>
<tr>
<td>display mib-style</td>
<td>08-System</td>
<td>11-1</td>
</tr>
<tr>
<td>display mirroring-group</td>
<td>01-Access</td>
<td>11-1</td>
</tr>
<tr>
<td>display mld-snooping group</td>
<td>04-IP Multicast</td>
<td>3-1</td>
</tr>
<tr>
<td>display mld-snooping statistics</td>
<td>04-IP Multicast</td>
<td>3-2</td>
</tr>
<tr>
<td>display monitor-link group</td>
<td>07-High Availability</td>
<td>2-1</td>
</tr>
<tr>
<td>display multicast-vlan</td>
<td>04-IP Multicast</td>
<td>2-1</td>
</tr>
<tr>
<td>display multicast-vlan ipv6</td>
<td>04-IP Multicast</td>
<td>4-1</td>
</tr>
<tr>
<td>display ndp</td>
<td>08-System</td>
<td>20-1</td>
</tr>
<tr>
<td>display nqa history</td>
<td>08-System</td>
<td>18-6</td>
</tr>
<tr>
<td>display nqa result</td>
<td>08-System</td>
<td>18-7</td>
</tr>
<tr>
<td>display nqa server status</td>
<td>08-System</td>
<td>18-39</td>
</tr>
<tr>
<td>display nqa statistics</td>
<td>08-System</td>
<td>18-11</td>
</tr>
<tr>
<td>display ntdp</td>
<td>08-System</td>
<td>20-7</td>
</tr>
<tr>
<td>display ntdp device-list</td>
<td>08-System</td>
<td>20-8</td>
</tr>
<tr>
<td>display ntdp single-device mac-address</td>
<td>08-System</td>
<td>20-10</td>
</tr>
<tr>
<td>display ntp-service sessions</td>
<td>08-System</td>
<td>19-1</td>
</tr>
<tr>
<td>display ntp-service status</td>
<td>08-System</td>
<td>19-3</td>
</tr>
<tr>
<td>display ntp-service trace</td>
<td>08-System</td>
<td>19-4</td>
</tr>
<tr>
<td>display oam</td>
<td>07-High Availability</td>
<td>5-1</td>
</tr>
<tr>
<td>display oam configuration</td>
<td>07-High Availability</td>
<td>5-4</td>
</tr>
<tr>
<td>display oam critical-event</td>
<td>07-High Availability</td>
<td>5-6</td>
</tr>
<tr>
<td>display oam link-event</td>
<td>07-High Availability</td>
<td>5-7</td>
</tr>
<tr>
<td>display packet-drop interface</td>
<td>01-Access</td>
<td>1-11</td>
</tr>
</tbody>
</table>
display packet-drop summary 01-Access Volume 1-11
display patch information 08-System Volume 17-1
display pki certificate 06-Security Volume 11-9
display pki certificate access-control-policy 06-Security Volume 11-11
display pki certificate attribute-group 06-Security Volume 11-12
display pki crl domain 06-Security Volume 11-12
display poe device 08-System Volume 23-2
display poe interface 08-System Volume 23-3
display poe interface power 08-System Volume 23-6
display poe pse 08-System Volume 23-8
display poe pse interface 08-System Volume 23-9
display poe pse interface power 08-System Volume 23-10
display poe-profile 08-System Volume 23-11
display poe-profile interface 08-System Volume 23-14
display port 01-Access Volume 5-9
display port combo 01-Access Volume 1-12
display port-group manual 01-Access Volume 1-13
display port-isolate group 01-Access Volume 2-1
display port-security 06-Security Volume 8-1
display port-security mac-address block 06-Security Volume 8-3
display port-security mac-address security 06-Security Volume 8-4
display power 08-System Volume 4-14
display protocol-vlan interface 01-Access Volume 5-22
display protocol-vlan vlan 01-Access Volume 5-23
display proxy-arp 02-IP Services Volume 3-1
display public-key local public 06-Security Volume 13-1
display public-key peer 06-Security Volume 13-2
display qos gts interface 05-QoS Volume 3-1
display qos lr interface 05-QoS Volume 3-2
display qos map-table 05-QoS Volume 2-1
display qos policy 05-QoS Volume 1-15
<table>
<thead>
<tr>
<th>Command</th>
<th>Volume</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>display qos policy global</td>
<td>05-QoS</td>
<td>1-16</td>
</tr>
<tr>
<td>display qos policy interface</td>
<td>05-QoS</td>
<td>1-18</td>
</tr>
<tr>
<td>display qos sp interface</td>
<td>05-QoS</td>
<td>4-1</td>
</tr>
<tr>
<td>display qos trust interface</td>
<td>05-QoS</td>
<td>2-4</td>
</tr>
<tr>
<td>display qos vlan-policy</td>
<td>05-QoS</td>
<td>1-19</td>
</tr>
<tr>
<td>display qos wfq interface</td>
<td>05-QoS</td>
<td>4-1</td>
</tr>
<tr>
<td>display qos wrr interface</td>
<td>05-QoS</td>
<td>4-2</td>
</tr>
<tr>
<td>display radius scheme</td>
<td>06-Security</td>
<td>2-2</td>
</tr>
<tr>
<td>display radius statistics</td>
<td>06-Security</td>
<td>2-4</td>
</tr>
<tr>
<td>display reboot-type</td>
<td>08-System</td>
<td>4-15</td>
</tr>
<tr>
<td>display rmon alarm</td>
<td>08-System</td>
<td>12-1</td>
</tr>
<tr>
<td>display rmon event</td>
<td>08-System</td>
<td>12-2</td>
</tr>
<tr>
<td>display rmon eventlog</td>
<td>08-System</td>
<td>12-3</td>
</tr>
<tr>
<td>display rmon history</td>
<td>08-System</td>
<td>12-4</td>
</tr>
<tr>
<td>display rmon prialarm</td>
<td>08-System</td>
<td>12-7</td>
</tr>
<tr>
<td>display rmon statistics</td>
<td>08-System</td>
<td>12-8</td>
</tr>
<tr>
<td>display rps</td>
<td>08-System</td>
<td>4-16</td>
</tr>
<tr>
<td>display rrpp brief</td>
<td>07-High Availability</td>
<td>3-2</td>
</tr>
<tr>
<td>display rrpp ring-group</td>
<td>07-High Availability</td>
<td>3-3</td>
</tr>
<tr>
<td>display rrpp statistics</td>
<td>07-High Availability</td>
<td>3-4</td>
</tr>
<tr>
<td>display rrpp verbose</td>
<td>07-High Availability</td>
<td>3-7</td>
</tr>
<tr>
<td>display saved-configuration</td>
<td>08-System</td>
<td>5-21</td>
</tr>
<tr>
<td>display schedule job</td>
<td>08-System</td>
<td>4-16</td>
</tr>
<tr>
<td>display schedule reboot</td>
<td>08-System</td>
<td>4-17</td>
</tr>
<tr>
<td>display sflow</td>
<td>02-IP Services</td>
<td>13-1</td>
</tr>
<tr>
<td>display sftp client source</td>
<td>06-Security</td>
<td>10-19</td>
</tr>
<tr>
<td>display smart-link flush</td>
<td>07-High Availability</td>
<td>1-1</td>
</tr>
<tr>
<td>display smart-link group</td>
<td>07-High Availability</td>
<td>1-2</td>
</tr>
<tr>
<td>display snmp-agent community</td>
<td>08-System</td>
<td>10-1</td>
</tr>
<tr>
<td>display snmp-agent group</td>
<td>08-System</td>
<td>10-2</td>
</tr>
<tr>
<td>display snmp-agent local-engineid</td>
<td>08-System</td>
<td>10-3</td>
</tr>
</tbody>
</table>
display snmp-agent mib-view 08-System Volume 10-4
display snmp-agent statistics 08-System Volume 10-5
display snmp-agent sys-info 08-System Volume 10-7
display snmp-agent trap queue 08-System Volume 10-8
display snmp-agent trap-list 08-System Volume 10-8
display snmp-agent usm-user 08-System Volume 10-9
display ssh client source 06-Security Volume 10-8
display ssh server 06-Security Volume 10-1
display ssh server-info 06-Security Volume 10-9
display ssh user-information 06-Security Volume 10-2
display ssl client-policy 06-Security Volume 12-3
display ssl server-policy 06-Security Volume 12-4
display startup 08-System Volume 5-23
display stop-accounting-buffer 06-Security Volume 2-7
display stop-accounting-buffer 06-Security Volume 3-4
display storm-constrain 01-Access Volume 1-14
display stp 01-Access Volume 3-3
display stp abnormal-port 01-Access Volume 3-8
display stp down-port 01-Access Volume 3-9
display stp history 01-Access Volume 3-10
display stp region-configuration 01-Access Volume 3-11
display stp root 01-Access Volume 3-12
display stp tc 01-Access Volume 3-13
display switchover state 08-System Volume 21-5
display system-failure 08-System Volume 4-17
display tcp ipv6 statistics 02-IP Services Volume 12-17
display tcp ipv6 status 02-IP Services Volume 12-20
display tcp statistics 02-IP Services Volume 10-10
display tcp status 02-IP Services Volume 10-12
display telnet client configuration 08-System Volume 1-6
display tftp client configuration 08-System Volume 7-1
<table>
<thead>
<tr>
<th>Command</th>
<th>Volume</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>display this</td>
<td>08-System</td>
<td>3-15</td>
</tr>
<tr>
<td>display time-range</td>
<td>06-Security</td>
<td>14-2</td>
</tr>
<tr>
<td>display track</td>
<td>07-High Availability</td>
<td>7-1</td>
</tr>
<tr>
<td>display traffic behavior</td>
<td>05-QoS</td>
<td>1-8</td>
</tr>
<tr>
<td>display traffic classifier</td>
<td>05-QoS</td>
<td>1-1</td>
</tr>
<tr>
<td>display transceiver</td>
<td>08-System</td>
<td>4-22</td>
</tr>
<tr>
<td>display transceiver alarm</td>
<td>08-System</td>
<td>4-18</td>
</tr>
<tr>
<td>display transceiver diagnosis</td>
<td>08-System</td>
<td>4-21</td>
</tr>
<tr>
<td>display transceiver manuinfo</td>
<td>08-System</td>
<td>4-23</td>
</tr>
<tr>
<td>display trapbuffer</td>
<td>08-System</td>
<td>16-7</td>
</tr>
<tr>
<td>display udp ipv6 statistics</td>
<td>02-IP Services</td>
<td>12-21</td>
</tr>
<tr>
<td>display udp statistics</td>
<td>02-IP Services</td>
<td>10-13</td>
</tr>
<tr>
<td>display udp-helper server</td>
<td>02-IP Services</td>
<td>11-1</td>
</tr>
<tr>
<td>display user-bind</td>
<td>06-Security</td>
<td>9-2</td>
</tr>
<tr>
<td>display user-group</td>
<td>06-Security</td>
<td>1-22</td>
</tr>
<tr>
<td>display user-interface</td>
<td>08-System</td>
<td>1-7</td>
</tr>
<tr>
<td>display user-profile</td>
<td>05-QoS</td>
<td>6-1</td>
</tr>
<tr>
<td>display users</td>
<td>08-System</td>
<td>1-8</td>
</tr>
<tr>
<td>display version</td>
<td>08-System</td>
<td>3-16</td>
</tr>
<tr>
<td>display vlan</td>
<td>01-Access</td>
<td>5-3</td>
</tr>
<tr>
<td>display voice vlan oui</td>
<td>01-Access</td>
<td>7-1</td>
</tr>
<tr>
<td>display voice vlan state</td>
<td>01-Access</td>
<td>7-2</td>
</tr>
<tr>
<td>display web users</td>
<td>08-System</td>
<td>1-9</td>
</tr>
<tr>
<td>dldp authentication-mode</td>
<td>07-High Availability</td>
<td>4-4</td>
</tr>
<tr>
<td>dldp delaydown-timer</td>
<td>07-High Availability</td>
<td>4-5</td>
</tr>
<tr>
<td>dldp enable</td>
<td>07-High Availability</td>
<td>4-5</td>
</tr>
<tr>
<td>dldp interval</td>
<td>07-High Availability</td>
<td>4-6</td>
</tr>
<tr>
<td>dldp reset</td>
<td>07-High Availability</td>
<td>4-7</td>
</tr>
<tr>
<td>dldp unidirectional-shutdown</td>
<td>07-High Availability</td>
<td>4-8</td>
</tr>
<tr>
<td>dldp work-mode</td>
<td>07-High Availability</td>
<td>4-8</td>
</tr>
<tr>
<td>dns domain</td>
<td>02-IP Services</td>
<td>9-4</td>
</tr>
<tr>
<td>Command</td>
<td>Volume</td>
<td>Page</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>------</td>
</tr>
<tr>
<td>dns proxy enable</td>
<td>02-IP Services</td>
<td>9-5</td>
</tr>
<tr>
<td>dns resolve</td>
<td>02-IP Services</td>
<td>9-6</td>
</tr>
<tr>
<td>dns server</td>
<td>02-IP Services</td>
<td>9-6</td>
</tr>
<tr>
<td>dns server ipv6</td>
<td>02-IP Services</td>
<td>12-22</td>
</tr>
<tr>
<td>domain</td>
<td>06-Security</td>
<td>1-23</td>
</tr>
<tr>
<td>domain default enable</td>
<td>06-Security</td>
<td>1-23</td>
</tr>
<tr>
<td>domain ring</td>
<td>07-High Availability</td>
<td>3-10</td>
</tr>
<tr>
<td>dot1x</td>
<td>06-Security</td>
<td>4-4</td>
</tr>
<tr>
<td>dot1x authentication-method</td>
<td>06-Security</td>
<td>4-5</td>
</tr>
<tr>
<td>dot1x free-ip</td>
<td>06-Security</td>
<td>5-1</td>
</tr>
<tr>
<td>dot1x guest-vlan</td>
<td>06-Security</td>
<td>4-6</td>
</tr>
<tr>
<td>dot1x handshake</td>
<td>06-Security</td>
<td>4-8</td>
</tr>
<tr>
<td>dot1x mandatory-domain</td>
<td>06-Security</td>
<td>4-8</td>
</tr>
<tr>
<td>dot1x max-user</td>
<td>06-Security</td>
<td>4-9</td>
</tr>
<tr>
<td>dot1x multicast-trigger</td>
<td>06-Security</td>
<td>4-10</td>
</tr>
<tr>
<td>dot1x port-control</td>
<td>06-Security</td>
<td>4-11</td>
</tr>
<tr>
<td>dot1x port-method</td>
<td>06-Security</td>
<td>4-12</td>
</tr>
<tr>
<td>dot1x quiet-period</td>
<td>06-Security</td>
<td>4-13</td>
</tr>
<tr>
<td>dot1x re-authenticate</td>
<td>06-Security</td>
<td>4-14</td>
</tr>
<tr>
<td>dot1x retry</td>
<td>06-Security</td>
<td>4-14</td>
</tr>
<tr>
<td>dot1x timer</td>
<td>06-Security</td>
<td>4-15</td>
</tr>
<tr>
<td>dot1x timer ead-timeout</td>
<td>06-Security</td>
<td>5-2</td>
</tr>
<tr>
<td>dot1x url</td>
<td>06-Security</td>
<td>5-2</td>
</tr>
<tr>
<td>duplex</td>
<td>01-Access</td>
<td>1-15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Volume</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable log updown</td>
<td>08-System</td>
<td>16-8</td>
</tr>
<tr>
<td>enable snmp trap updown</td>
<td>01-Access</td>
<td>1-10</td>
</tr>
<tr>
<td>enable snmp trap updown</td>
<td>08-System</td>
<td>10-10</td>
</tr>
<tr>
<td>escape-key</td>
<td>08-System</td>
<td>1-10</td>
</tr>
<tr>
<td>execute</td>
<td>08-System</td>
<td>5-5</td>
</tr>
<tr>
<td>exit</td>
<td>06-Security</td>
<td>10-20</td>
</tr>
</tbody>
</table>
expiration-date 06-Security Volume 1-24

F

fast-leave (IGMP-Snooping view) 04-IP Multicast Volume 1-3
fast-leave (MLD-Snooping view) 04-IP Multicast Volume 3-3
file prompt 08-System Volume 5-6
filename 08-System Volume 18-16
filter 05-QoS Volume 1-9
fixdisk 08-System Volume 5-7
flow-control 01-Access Volume 1-16
flow-control 08-System Volume 1-11
flow-interval 01-Access Volume 1-17
flush enable 07-High Availability Volume 1-3
format 08-System Volume 5-7
fqdn 06-Security Volume 11-14
free ftp user 08-System Volume 6-3
free user-interface 08-System Volume 1-12
free web-users 08-System Volume 2-2
frequency 08-System Volume 18-16
ftp 08-System Volume 6-14
ftp client source 08-System Volume 6-15
ftp ipv6 08-System Volume 6-16
ftp server acl 08-System Volume 6-3
ftp server enable 08-System Volume 6-4
ftp timeout 08-System Volume 6-4
ftp update 08-System Volume 6-5
ftp-server 08-System Volume 20-38

G

garp timer hold 01-Access Volume 8-6
garp timer join 01-Access Volume 8-6
garp timer leave 01-Access Volume 8-7
garp timer leaveall 01-Access Volume 8-8
get 06-Security Volume 10-20
get 08-System Volume 6-17
gratuitous-arp-learning enable 02-IP Services Volume 2-7
gratuitous-arp-sending enable 02-IP Services Volume 2-7
group 06-Security Volume 1-25
group-member 01-Access Volume 1-17
group-policy (IGMP-Snooping view) 04-IP Multicast Volume 1-4
group-policy (MLD-Snooping view) 04-IP Multicast Volume 3-4
gvrp 01-Access Volume 8-9
gvrp registration 01-Access Volume 8-9

H
habp enable 06-Security Volume 6-3
habp server vlan 06-Security Volume 6-4
habp timer 06-Security Volume 6-4
handshake timeout 06-Security Volume 12-5
header 08-System Volume 3-16
help 06-Security Volume 10-21
history-command max-size 08-System Volume 1-13
history-records 08-System Volume 18-17
holdtime 08-System Volume 20-39
host-aging-time (IGMP-Snooping view) 04-IP Multicast Volume 1-5
host-aging-time (MLD-Snooping view) 04-IP Multicast Volume 3-5
hotkey 08-System Volume 3-18
http-version 08-System Volume 18-18
hwtacacs nas-ip 06-Security Volume 3-4
hwtacacs scheme 06-Security Volume 3-5

I
idle-cut enable 06-Security Volume 1-25
idle-timeout 08-System Volume 1-13
<table>
<thead>
<tr>
<th>Item</th>
<th>Volume</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>if-match</td>
<td>05-QoS</td>
<td>1-2</td>
</tr>
<tr>
<td>igmp-snooping</td>
<td>04-IP</td>
<td>1-6</td>
</tr>
<tr>
<td>igmp-snooping drop-unknown</td>
<td>04-IP</td>
<td>1-6</td>
</tr>
<tr>
<td>igmp-snooping enable</td>
<td>04-IP</td>
<td>1-7</td>
</tr>
<tr>
<td>igmp-snooping fast-leave</td>
<td>04-IP</td>
<td>1-8</td>
</tr>
<tr>
<td>igmp-snooping general-query source-ip</td>
<td>04-IP</td>
<td>1-9</td>
</tr>
<tr>
<td>igmp-snooping group-limit</td>
<td>04-IP</td>
<td>1-9</td>
</tr>
<tr>
<td>igmp-snooping group-policy</td>
<td>04-IP</td>
<td>1-10</td>
</tr>
<tr>
<td>igmp-snooping host-aging-time</td>
<td>04-IP</td>
<td>1-11</td>
</tr>
<tr>
<td>igmp-snooping host-join</td>
<td>04-IP</td>
<td>1-12</td>
</tr>
<tr>
<td>igmp-snooping last-member-query-interval</td>
<td>04-IP</td>
<td>1-13</td>
</tr>
<tr>
<td>igmp-snooping max-response-time</td>
<td>04-IP</td>
<td>1-14</td>
</tr>
<tr>
<td>igmp-snooping overflow-replace</td>
<td>04-IP</td>
<td>1-15</td>
</tr>
<tr>
<td>igmp-snooping querier</td>
<td>04-IP</td>
<td>1-15</td>
</tr>
<tr>
<td>igmp-snooping query-interval</td>
<td>04-IP</td>
<td>1-16</td>
</tr>
<tr>
<td>igmp-snooping router-aging-time</td>
<td>04-IP</td>
<td>1-17</td>
</tr>
<tr>
<td>igmp-snooping source-deny</td>
<td>04-IP</td>
<td>1-17</td>
</tr>
<tr>
<td>igmp-snooping special-query source-ip</td>
<td>04-IP</td>
<td>1-18</td>
</tr>
<tr>
<td>igmp-snooping static-group</td>
<td>04-IP</td>
<td>1-19</td>
</tr>
<tr>
<td>igmp-snooping static-router-port</td>
<td>04-IP</td>
<td>1-20</td>
</tr>
<tr>
<td>igmp-snooping version</td>
<td>04-IP</td>
<td>1-21</td>
</tr>
<tr>
<td>import</td>
<td>05-QoS</td>
<td>2-2</td>
</tr>
<tr>
<td>info-center channel name</td>
<td>08-System</td>
<td>16-9</td>
</tr>
<tr>
<td>info-center console channel</td>
<td>08-System</td>
<td>16-9</td>
</tr>
<tr>
<td>info-center enable</td>
<td>08-System</td>
<td>16-10</td>
</tr>
<tr>
<td>info-center logbuffer</td>
<td>08-System</td>
<td>16-11</td>
</tr>
<tr>
<td>info-center loghost</td>
<td>08-System</td>
<td>16-11</td>
</tr>
<tr>
<td>info-center loghost source</td>
<td>08-System</td>
<td>16-12</td>
</tr>
<tr>
<td>info-center monitor channel</td>
<td>08-System</td>
<td>16-13</td>
</tr>
<tr>
<td>info-center snmp channel</td>
<td>08-System</td>
<td>16-14</td>
</tr>
<tr>
<td>info-center source</td>
<td>08-System</td>
<td>16-15</td>
</tr>
<tr>
<td>Configuration</td>
<td>Volume</td>
<td>Page</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>info-center synchronous</td>
<td>08</td>
<td>16-17</td>
</tr>
<tr>
<td>info-center timestamp</td>
<td>08</td>
<td>16-19</td>
</tr>
<tr>
<td>info-center timestamp loghost</td>
<td>08</td>
<td>16-20</td>
</tr>
<tr>
<td>info-center trapbuffer</td>
<td>08</td>
<td>16-21</td>
</tr>
<tr>
<td>instance</td>
<td>01</td>
<td>3-14</td>
</tr>
<tr>
<td>interface</td>
<td>01</td>
<td>1-18</td>
</tr>
<tr>
<td>interface bridge-aggregation</td>
<td>01</td>
<td>1-10</td>
</tr>
<tr>
<td>interface vlan-interface</td>
<td>01</td>
<td>5-4</td>
</tr>
<tr>
<td>ip (PKI entity view)</td>
<td>06</td>
<td>11-14</td>
</tr>
<tr>
<td>ip address</td>
<td>01</td>
<td>5-5</td>
</tr>
<tr>
<td>ip address bootp-alloc</td>
<td>02</td>
<td>1-4</td>
</tr>
<tr>
<td>ip address dhcp-alloc</td>
<td>02</td>
<td>8-2</td>
</tr>
<tr>
<td>ip address</td>
<td>02</td>
<td>6-3</td>
</tr>
<tr>
<td>ip check source</td>
<td>06</td>
<td>9-3</td>
</tr>
<tr>
<td>ip forward-broadcast (interface view)</td>
<td>02</td>
<td>10-14</td>
</tr>
<tr>
<td>ip forward-broadcast (system view)</td>
<td>02</td>
<td>10-15</td>
</tr>
<tr>
<td>ip host</td>
<td>02</td>
<td>9-7</td>
</tr>
<tr>
<td>ip http acl</td>
<td>08</td>
<td>8-2</td>
</tr>
<tr>
<td>ip http enable</td>
<td>08</td>
<td>8-2</td>
</tr>
<tr>
<td>ip http port</td>
<td>08</td>
<td>8-3</td>
</tr>
<tr>
<td>ip https acl</td>
<td>08</td>
<td>9-2</td>
</tr>
<tr>
<td>ip https certificate access-control-policy</td>
<td>08</td>
<td>9-2</td>
</tr>
<tr>
<td>ip https enable</td>
<td>08</td>
<td>9-3</td>
</tr>
<tr>
<td>ip https port</td>
<td>08</td>
<td>9-4</td>
</tr>
<tr>
<td>ip https ssi-server-policy</td>
<td>08</td>
<td>9-4</td>
</tr>
<tr>
<td>ip redirects enable</td>
<td>02</td>
<td>10-15</td>
</tr>
<tr>
<td>ip route-static</td>
<td>03</td>
<td>2-2</td>
</tr>
<tr>
<td>ip route-static default-preference</td>
<td>03</td>
<td>2-3</td>
</tr>
<tr>
<td>ip ttl-expires enable</td>
<td>02</td>
<td>10-16</td>
</tr>
<tr>
<td>ip unreachable enables</td>
<td>02</td>
<td>10-16</td>
</tr>
<tr>
<td>ipc performance enable</td>
<td>08</td>
<td>22-8</td>
</tr>
</tbody>
</table>
irf member renumber 08-System Volume 21-11
irf switch-to 08-System Volume 21-12
isolate-user-vlan 01-Access Volume 6-2
isolate-user-vlan enable 01-Access Volume 6-4

J
jumboframe enable 01-Access Volume 1-18

K
key (HWTACACS scheme view) 06-Security Volume 3-6
key (RADIUS scheme view) 06-Security Volume 2-8

L
lacp port-priority 01-Access Volume 1-11
lacp system-priority 01-Access Volume 1-12
last-listener-query-interval (MLD-Snooping view) 04-IP Multicast Volume 3-6
last-member-query-interval (IGMP-Snooping view) 04-IP Multicast Volume 1-21
lcd 08-System Volume 6-18
ldap-server 06-Security Volume 11-15
link-aggregation load-sharing mode (aggregate interface view) 01-Access Volume 1-13
link-aggregation load-sharing mode (system view) 01-Access Volume 1-12
link-aggregation mode 01-Access Volume 1-14
link-delay 01-Access Volume 1-19
lldp admin-status 01-Access Volume 4-16
lldp check-change-interval 01-Access Volume 4-16
lldp compliance admin-status cdp 01-Access Volume 4-17
lldp compliance cdp 01-Access Volume 4-18
lldp enable 01-Access Volume 4-18
lldp encapsulation snap 01-Access Volume 4-19
lldp fast-count 01-Access Volume 4-20
lldp hold-multiplier 01-Access Volume 4-20
lldp management-address-format string 01-Access Volume 4-21
lldp management-address-tlv 01-Access Volume 4-22
lldp notification remote-change enable 01-Access Volume 4-22
lldp timer notification-interval 01-Access Volume 4-23
lldp timer reinit-delay 01-Access Volume 4-24
lldp timer tx-delay 01-Access Volume 4-24
lldp timer tx-interval 01-Access Volume 4-25
lldp tlv-enable 01-Access Volume 4-25
locality 06-Security Volume 11-16
local-proxy-arp enable 02-IP Services Volume 3-2
local-user 06-Security Volume 1-26
local-user password-display-mode 06-Security Volume 1-27
lock 08-System Volume 1-14
logging-host 08-System Volume 20-40
loopback 01-Access Volume 1-20
loopback-detection control enable 01-Access Volume 1-21
loopback-detection enable 01-Access Volume 1-21
loopback-detection interval-time 01-Access Volume 1-22
loopback-detection per-vlan enable 01-Access Volume 1-23
ls 06-Security Volume 10-21
ls 08-System Volume 6-18
mac-address (Interface view) 08-System Volume 13-3
mac-address (system view) 08-System Volume 13-4
mac-address information enable (Ethernet interface view) 08-System Volume 14-1
mac-address information enable (system view) 08-System Volume 14-2
mac-address information interval 08-System Volume 14-2
mac-address information mode 08-System Volume 14-3
mac-address information queue-length 08-System Volume 14-4
mac-address mac-learning disable 08-System Volume 13-5
mac-address max-mac-count (Interface view) 08-System Volume 13-6
mac-address timer 08-System Volume 13-7
mac-authentication 06-Security Volume 7-3
mac-authentication domain 06-Security Volume 7-4
mac-authentication timer 06-Security Volume 7-4
mac-authentication user-name-format 06-Security Volume 7-5
mac-vlan enable 01-Access Volume 5-20
mac-vlan mac-address 01-Access Volume 5-20
management-vlan 08-System Volume 20-41
management-vlan synchronization enable 08-System Volume 20-42
max-response-time (IGMP-Snooping view) 04-IP Multicast Volume 1-22
max-response-time (MLD-Snooping view) 04-IP Multicast Volume 3-7
mdi 01-Access Volume 1-24
mib-style 08-System Volume 11-1
mirroring-group 01-Access Volume 11-2
mirroring-group mirroring-port 01-Access Volume 11-3
mirroring-group monitor-egress 01-Access Volume 11-4
mirroring-group monitor-port 01-Access Volume 11-5
mirroring-group remote-probe vlan 01-Access Volume 11-6
mirroring-port 01-Access Volume 11-7
mirror-to 05-QoS Volume 5-1
mkdir 06-Security Volume 10-22
mkdir 08-System Volume 5-8
mkdir 08-System Volume 6-20
mld-snooping 04-IP Multicast Volume 3-7
mld-snooping enable 04-IP Multicast Volume 3-8
mld-snooping fast-leave 04-IP Multicast Volume 3-9
mld-snooping general-query source-ip 04-IP Multicast Volume 3-9
mld-snooping group-limit 04-IP Multicast Volume 3-10
mld-snooping group-policy 04-IP Multicast Volume 3-11
mld-snooping host-aging-time 04-IP Multicast Volume 3-12
mld-snooping host-join 04-IP Multicast Volume 3-13
mld-snooping last-listener-query-interval 04-IP Multicast Volume 3-14
mld-snooping max-response-time 04-IP Multicast Volume 3-15
mld-snooping overflow-replace 04-IP Multicast Volume 3-15
mld-snooping querier 04-IP Multicast Volume 3-16
mld-snooping query-interval 04-IP Multicast Volume 3-17
mld-snooping router-aging-time 04-IP Multicast Volume 3-18
mld-snooping source-deny 04-IP Multicast Volume 3-18
mld-snooping special-query source-ip 04-IP Multicast Volume 3-19
mld-snooping static-group 04-IP Multicast Volume 3-20
mld-snooping static-router-port 04-IP Multicast Volume 3-21
mld-snooping version 04-IP Multicast Volume 3-22
monitor-link group 07-High Availability Volume 2-2
monitor-port 01-Access Volume 11-8
more 08-System Volume 5-9
move 08-System Volume 5-10
multicast-suppression 01-Access Volume 1-25
multicast-vlan 04-IP Multicast Volume 2-2
multicast-vlan ipv6 04-IP Multicast Volume 4-2

N
name 01-Access Volume 5-6
nas-ip (HWTACACS scheme view) 06-Security Volume 3-6
nas-ip (RADIUS scheme view) 06-Security Volume 2-8
ndp enable 08-System Volume 20-4
ndp timer aging 08-System Volume 20-5
ndp timer hello 08-System Volume 20-6
nest 01-Access Volume 9-1
next-hop 08-System Volume 18-18
nm-interface vlan-interface 08-System Volume 20-43
nqa 08-System Volume 18-19
nqa agent enable 08-System Volume 18-19
nqa agent max-concurrent 08-System Volume 18-20
nqa schedule 08-System Volume 18-21
nqa server enable 08-System Volume 18-39
nqa server tcp-connect 08-System Volume 18-40
nqa server udp-echo 08-System Volume 18-41
ntdp enable 08-System Volume 20-11
ntdp explore 08-System Volume 20-11
ntdp hop 08-System Volume 20-12
ntdp timer 08-System Volume 20-13
ntdp timer hop-delay 08-System Volume 20-13
ntdp timer port-delay 08-System Volume 20-14
ntp-service access 08-System Volume 19-5
ntp-service authentication enable 08-System Volume 19-6
ntp-service authentication-keyid 08-System Volume 19-7
ntp-service broadcast-client 08-System Volume 19-8
ntp-service broadcast-server 08-System Volume 19-8
ntp-service in-interface disable 08-System Volume 19-9
ntp-service max-dynamic-sessions 08-System Volume 19-9
ntp-service multicast-client 08-System Volume 19-10
ntp-service multicast-server 08-System Volume 19-11
ntp-service reliable authentication-keyid 08-System Volume 19-12
ntp-service source-interface 08-System Volume 19-12
ntp-service unicast-peer 08-System Volume 19-13
ntp-service unicast-server 08-System Volume 19-14

oam enable 07-High Availability Volume 5-9
oam errored-frame period 07-High Availability Volume 5-10
oam errored-frame threshold 07-High Availability Volume 5-10
oam errored-frame-period period 07-High Availability Volume 5-11
oam errored-frame-period threshold 07-High Availability Volume 5-12
<table>
<thead>
<tr>
<th>Term</th>
<th>Reference</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>oam errored-frame-seconds period</td>
<td>07-High Availability Volume</td>
<td>5-12</td>
</tr>
<tr>
<td>oam errored-frame-seconds threshold</td>
<td>07-High Availability Volume</td>
<td>5-13</td>
</tr>
<tr>
<td>oam errored-symbol period</td>
<td>07-High Availability Volume</td>
<td>5-13</td>
</tr>
<tr>
<td>oam errored-symbol threshold</td>
<td>07-High Availability Volume</td>
<td>5-14</td>
</tr>
<tr>
<td>oam loopback</td>
<td>07-High Availability Volume</td>
<td>5-15</td>
</tr>
<tr>
<td>oam mode</td>
<td>07-High Availability Volume</td>
<td>5-15</td>
</tr>
<tr>
<td>open</td>
<td>08-System Volume</td>
<td>6-20</td>
</tr>
<tr>
<td>open ipv6</td>
<td>08-System Volume</td>
<td>6-21</td>
</tr>
<tr>
<td>operation (FTP test type view)</td>
<td>08-System Volume</td>
<td>18-22</td>
</tr>
<tr>
<td>operation (HTTP test type view)</td>
<td>08-System Volume</td>
<td>18-22</td>
</tr>
<tr>
<td>operation interface</td>
<td>08-System Volume</td>
<td>18-23</td>
</tr>
<tr>
<td>organization</td>
<td>06-Security Volume</td>
<td>11-16</td>
</tr>
<tr>
<td>organization-unit</td>
<td>06-Security Volume</td>
<td>11-17</td>
</tr>
<tr>
<td>overflow-replace (IGMP-Snooping view)</td>
<td>04-IP Multicast Volume</td>
<td>1-23</td>
</tr>
<tr>
<td>overflow-replace (MLD-Snooping view)</td>
<td>04-IP Multicast Volume</td>
<td>3-22</td>
</tr>
<tr>
<td>packet-filter</td>
<td>06-Security Volume</td>
<td>14-33</td>
</tr>
<tr>
<td>packet-filter ipv6</td>
<td>06-Security Volume</td>
<td>14-34</td>
</tr>
<tr>
<td>parity</td>
<td>08-System Volume</td>
<td>1-15</td>
</tr>
<tr>
<td>passive</td>
<td>08-System Volume</td>
<td>6-22</td>
</tr>
<tr>
<td>password</td>
<td>06-Security Volume</td>
<td>1-28</td>
</tr>
<tr>
<td>password (FTP test type view)</td>
<td>08-System Volume</td>
<td>18-24</td>
</tr>
<tr>
<td>patch active</td>
<td>08-System Volume</td>
<td>17-2</td>
</tr>
<tr>
<td>patch deactivate</td>
<td>08-System Volume</td>
<td>17-2</td>
</tr>
<tr>
<td>patch delete</td>
<td>08-System Volume</td>
<td>17-3</td>
</tr>
<tr>
<td>patch install</td>
<td>08-System Volume</td>
<td>17-4</td>
</tr>
<tr>
<td>patch load</td>
<td>08-System Volume</td>
<td>17-5</td>
</tr>
<tr>
<td>patch location</td>
<td>08-System Volume</td>
<td>17-5</td>
</tr>
<tr>
<td>patch run</td>
<td>08-System Volume</td>
<td>17-6</td>
</tr>
<tr>
<td>peer-public-key end</td>
<td>06-Security Volume</td>
<td>13-3</td>
</tr>
<tr>
<td>ping</td>
<td>08-System Volume</td>
<td>15-1</td>
</tr>
<tr>
<td>Command</td>
<td>Volume</td>
<td>Page</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----------------</td>
<td>------</td>
</tr>
<tr>
<td>ping ipv6</td>
<td>08-System</td>
<td>15-4</td>
</tr>
<tr>
<td>pki certificate access-control-policy</td>
<td>06-Security</td>
<td>11-17</td>
</tr>
<tr>
<td>pki certificate attribute-group</td>
<td>06-Security</td>
<td>11-18</td>
</tr>
<tr>
<td>pki delete-certificate</td>
<td>06-Security</td>
<td>11-19</td>
</tr>
<tr>
<td>pki domain</td>
<td>06-Security</td>
<td>11-19</td>
</tr>
<tr>
<td>pki entity</td>
<td>06-Security</td>
<td>11-20</td>
</tr>
<tr>
<td>pki import-certificate</td>
<td>06-Security</td>
<td>11-21</td>
</tr>
<tr>
<td>pki request-certificate domain</td>
<td>06-Security</td>
<td>11-21</td>
</tr>
<tr>
<td>pki retrieval-certificate</td>
<td>06-Security</td>
<td>11-22</td>
</tr>
<tr>
<td>pki retrieval-crl domain</td>
<td>06-Security</td>
<td>11-23</td>
</tr>
<tr>
<td>pki validate-certificate</td>
<td>06-Security</td>
<td>11-23</td>
</tr>
<tr>
<td>pki-domain</td>
<td>06-Security</td>
<td>12-6</td>
</tr>
<tr>
<td>poe disconnect</td>
<td>08-System</td>
<td>23-15</td>
</tr>
<tr>
<td>poe enable</td>
<td>08-System</td>
<td>23-15</td>
</tr>
<tr>
<td>poe legacy enable</td>
<td>08-System</td>
<td>23-16</td>
</tr>
<tr>
<td>poe max-power</td>
<td>08-System</td>
<td>23-17</td>
</tr>
<tr>
<td>poe mode</td>
<td>08-System</td>
<td>23-17</td>
</tr>
<tr>
<td>poe pd-description</td>
<td>08-System</td>
<td>23-18</td>
</tr>
<tr>
<td>poe pd-policy priority</td>
<td>08-System</td>
<td>23-19</td>
</tr>
<tr>
<td>poe priority</td>
<td>08-System</td>
<td>23-19</td>
</tr>
<tr>
<td>poe update</td>
<td>08-System</td>
<td>23-20</td>
</tr>
<tr>
<td>poe utilization-threshold</td>
<td>08-System</td>
<td>23-21</td>
</tr>
<tr>
<td>poe-profile</td>
<td>08-System</td>
<td>23-22</td>
</tr>
<tr>
<td>port</td>
<td>01-Access</td>
<td>5-10</td>
</tr>
<tr>
<td>port</td>
<td>07-High Availability</td>
<td>1-3</td>
</tr>
<tr>
<td>port</td>
<td>07-High Availability</td>
<td>2-2</td>
</tr>
<tr>
<td>port (IPv6 multicast VLAN view)</td>
<td>04-IP Multicast</td>
<td>4-3</td>
</tr>
<tr>
<td>port (multicast VLAN view)</td>
<td>04-IP Multicast</td>
<td>2-2</td>
</tr>
<tr>
<td>port access vlan</td>
<td>01-Access</td>
<td>5-10</td>
</tr>
<tr>
<td>port hybrid ip-subnet-vlan vlan</td>
<td>01-Access</td>
<td>5-30</td>
</tr>
<tr>
<td>port hybrid protocol-vlan</td>
<td>01-Access</td>
<td>5-24</td>
</tr>
<tr>
<td>Command</td>
<td>Volume</td>
<td>Page</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-----------------</td>
<td>------</td>
</tr>
<tr>
<td>port hybrid pvid vlan</td>
<td>01-Access Volume</td>
<td>5-11</td>
</tr>
<tr>
<td>port hybrid vlan</td>
<td>01-Access Volume</td>
<td>5-12</td>
</tr>
<tr>
<td>port link-aggregation group</td>
<td>01-Access Volume</td>
<td>1-15</td>
</tr>
<tr>
<td>port link-type</td>
<td>01-Access Volume</td>
<td>5-14</td>
</tr>
<tr>
<td>port monitor-link group</td>
<td>07-High Availability Volume</td>
<td>2-3</td>
</tr>
<tr>
<td>port multicast-vlan</td>
<td>04-IP Multicast Volume</td>
<td>2-3</td>
</tr>
<tr>
<td>port multicast-vlan ipv6</td>
<td>04-IP Multicast Volume</td>
<td>4-3</td>
</tr>
<tr>
<td>port smart-link group</td>
<td>07-High Availability Volume</td>
<td>1-4</td>
</tr>
<tr>
<td>port trunk permit group</td>
<td>01-Access Volume</td>
<td>5-15</td>
</tr>
<tr>
<td>port trunk pvid vlan</td>
<td>01-Access Volume</td>
<td>5-17</td>
</tr>
<tr>
<td>port-group manual</td>
<td>01-Access Volume</td>
<td>1-26</td>
</tr>
<tr>
<td>port-isolate enable</td>
<td>01-Access Volume</td>
<td>2-2</td>
</tr>
<tr>
<td>port-security authorization ignore</td>
<td>06-Security Volume</td>
<td>8-6</td>
</tr>
<tr>
<td>port-security enable</td>
<td>06-Security Volume</td>
<td>8-6</td>
</tr>
<tr>
<td>port-security intrusion-mode</td>
<td>06-Security Volume</td>
<td>8-7</td>
</tr>
<tr>
<td>port-security mac-address security</td>
<td>06-Security Volume</td>
<td>8-8</td>
</tr>
<tr>
<td>port-security max-mac-count</td>
<td>06-Security Volume</td>
<td>8-9</td>
</tr>
<tr>
<td>port-security ntk-mode</td>
<td>06-Security Volume</td>
<td>8-10</td>
</tr>
<tr>
<td>port-security oui</td>
<td>06-Security Volume</td>
<td>8-11</td>
</tr>
<tr>
<td>port-security port-mode</td>
<td>06-Security Volume</td>
<td>8-12</td>
</tr>
<tr>
<td>port-security timer disableport</td>
<td>06-Security Volume</td>
<td>8-13</td>
</tr>
<tr>
<td>port-security trap</td>
<td>06-Security Volume</td>
<td>8-14</td>
</tr>
<tr>
<td>preemption delay</td>
<td>07-High Availability Volume</td>
<td>1-5</td>
</tr>
<tr>
<td>preemption mode</td>
<td>07-High Availability Volume</td>
<td>1-6</td>
</tr>
<tr>
<td>prefer-cipher</td>
<td>06-Security Volume</td>
<td>12-6</td>
</tr>
<tr>
<td>primary accounting (HWTACACS scheme view)</td>
<td>06-Security Volume</td>
<td>3-7</td>
</tr>
<tr>
<td>primary accounting (RADIUS scheme view)</td>
<td>06-Security Volume</td>
<td>2-9</td>
</tr>
<tr>
<td>primary authentication (HWTACACS scheme view)</td>
<td>06-Security Volume</td>
<td>3-8</td>
</tr>
<tr>
<td>primary authentication (RADIUS scheme view)</td>
<td>06-Security Volume</td>
<td>2-10</td>
</tr>
<tr>
<td>primary authorization</td>
<td>06-Security Volume</td>
<td>3-9</td>
</tr>
</tbody>
</table>
probe count 08-System Volume 18-24
probe packet-interval 08-System Volume 18-25
probe packet-number 08-System Volume 18-26
probe packet-timeout 08-System Volume 18-26
probe timeout 08-System Volume 18-27
protected-vlan 07-HighAvailability Volume 1-7
protected-vlan 07-High Availability Volume 3-11
protocol inbound 08-System Volume 3-16
protocol-vlan 01-Access Volume 5-25
proxy-arp enable 02-IP Services Volume 3-2
public-key local create 06-Security Volume 13-5
public-key local destroy 06-Security Volume 13-6
public-key local export dsa 06-Security Volume 13-7
public-key local export rsa 06-Security Volume 13-8
public-key peer 06-Security Volume 13-9
public-key peer import sshkey 06-Security Volume 13-10
public-key-code begin 06-Security Volume 13-4
public-key-code end 06-Security Volume 13-4
put 06-Security Volume 10-22
put 08-System Volume 6-23
pwd 06-Security Volume 10-23
pwd 08-System Volume 5-10
pwd 08-System Volume 6-23
Q
qinq enable 01-Access Volume 9-3
qinq ethernet-type 01-Access Volume 9-4
qinq vid 01-Access Volume 9-5
qos apply policy 05-QoS Volume 1-21
qos apply policy global 05-QoS Volume 1-21
qos bandwidth queue 05-QoS Volume 4-4
qos gts 05-QoS Volume 3-2
<table>
<thead>
<tr>
<th>Command</th>
<th>Volume</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>qos lr outbound</td>
<td>05-QoS Volume</td>
<td>3-3</td>
</tr>
<tr>
<td>qos map-table</td>
<td>05-QoS Volume</td>
<td>2-2</td>
</tr>
<tr>
<td>qos policy</td>
<td>05-QoS Volume</td>
<td>1-22</td>
</tr>
<tr>
<td>qos priority</td>
<td>05-QoS Volume</td>
<td>2-3</td>
</tr>
<tr>
<td>qos sp</td>
<td>05-QoS Volume</td>
<td>4-4</td>
</tr>
<tr>
<td>qos trust</td>
<td>05-QoS Volume</td>
<td>2-5</td>
</tr>
<tr>
<td>qos vlan-policy</td>
<td>05-QoS Volume</td>
<td>1-23</td>
</tr>
<tr>
<td>qos wfq</td>
<td>05-QoS Volume</td>
<td>1-23</td>
</tr>
<tr>
<td>qos wfq weight</td>
<td>05-QoS Volume</td>
<td>4-6</td>
</tr>
<tr>
<td>qos wrr</td>
<td>05-QoS Volume</td>
<td>4-6</td>
</tr>
<tr>
<td>qos wrr group</td>
<td>05-QoS Volume</td>
<td>4-7</td>
</tr>
<tr>
<td>quit</td>
<td>06-Security Volume</td>
<td>10-24</td>
</tr>
<tr>
<td>quit</td>
<td>08-System Volume</td>
<td>3-20</td>
</tr>
<tr>
<td>quit</td>
<td>08-System Volume</td>
<td>6-24</td>
</tr>
<tr>
<td>radius client</td>
<td>06-Security Volume</td>
<td>2-11</td>
</tr>
<tr>
<td>radius nas-ip</td>
<td>06-Security Volume</td>
<td>2-12</td>
</tr>
<tr>
<td>radius scheme</td>
<td>06-Security Volume</td>
<td>2-13</td>
</tr>
<tr>
<td>radius trap</td>
<td>06-Security Volume</td>
<td>2-14</td>
</tr>
<tr>
<td>raw-vlan-id inbound</td>
<td>01-Access Volume</td>
<td>9-2</td>
</tr>
<tr>
<td>reaction</td>
<td>08-System Volume</td>
<td>18-28</td>
</tr>
<tr>
<td>reaction trap</td>
<td>08-System Volume</td>
<td>18-29</td>
</tr>
<tr>
<td>reboot</td>
<td>08-System Volume</td>
<td>4-24</td>
</tr>
<tr>
<td>reboot member</td>
<td>08-System Volume</td>
<td>20-43</td>
</tr>
<tr>
<td>redirect</td>
<td>05-QoS Volume</td>
<td>1-9</td>
</tr>
<tr>
<td>region-name</td>
<td>01-Access Volume</td>
<td>3-15</td>
</tr>
<tr>
<td>remark dot1p</td>
<td>05-QoS Volume</td>
<td>1-10</td>
</tr>
<tr>
<td>remark drop-precedence</td>
<td>05-QoS Volume</td>
<td>1-11</td>
</tr>
<tr>
<td>remark dscp</td>
<td>05-QoS Volume</td>
<td>1-11</td>
</tr>
<tr>
<td>remark ip-precedence</td>
<td>05-QoS Volume</td>
<td>1-13</td>
</tr>
<tr>
<td>remark local-precedence</td>
<td>05-QoS Volume</td>
<td>1-13</td>
</tr>
</tbody>
</table>
remotehelp 08-System Volume 6-24
remove 06-Security Volume 10-24
rename 06-Security Volume 10-25
rename 08-System Volume 5-11
report-aggregation (IGMP-Snooping view) 04-IP Multicast Volume 1-23
report-aggregation (MLD-Snooping view) 04-IP Multicast Volume 3-23
reset acl counter 06-Security Volume 14-10
reset acl ipv6 counter 06-Security Volume 14-24
reset arp 02-IP Services Volume 2-6
reset arp detection statistics 02-IP Services Volume 4-14
reset counters interface 01-Access Volume 1-27
reset counters interface 01-Access Volume 1-16
reset dhcp relay statistics 02-IP Services Volume 5-19
reset dhcp-snooping 02-IP Services Volume 7-11
reset dhcp-snooping packet statistics 02-IP Services Volume 7-12
reset dldp statistics 07-High Availability Volume 4-9
reset dns dynamic-host 02-IP Services Volume 9-7
reset dns ipv6 dynamic-host 02-IP Services Volume 12-39
reset dot1x statistics 06-Security Volume 4-16
reset garp statistics 01-Access Volume 8-10
reset hwtacacs statistics 06-Security Volume 3-10
reset igmp-snooping group 04-IP Multicast Volume 1-24
reset igmp-snooping statistics 04-IP Multicast Volume 1-25
reset ip routing-table statistics protocol 03-IP Routing Volume 1-20
reset ip statistics 02-IP Services Volume 10-17
reset ipc performance 08-System Volume 22-9
reset ipv6 neighbors 02-IP Services Volume 12-39
reset ipv6 pathmtu 02-IP Services Volume 12-40
reset ipv6 routing-table statistics 03-IP Routing Volume 1-20
reset ipv6 statistics 02-IP Services Volume 12-41
reset lacp statistics 01-Access Volume 1-16
<table>
<thead>
<tr>
<th>Command</th>
<th>Volume</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>reset logbuffer</td>
<td>08-System Volume</td>
<td>16-21</td>
</tr>
<tr>
<td>reset mac-authentication statistics</td>
<td>06-Security Volume</td>
<td>7-7</td>
</tr>
<tr>
<td>reset mid-snooping group</td>
<td>04-IP Multicast Volume</td>
<td>3-24</td>
</tr>
<tr>
<td>reset mid-snooping statistics</td>
<td>04-IP Multicast Volume</td>
<td>3-24</td>
</tr>
<tr>
<td>reset ndp statistics</td>
<td>08-System Volume</td>
<td>20-6</td>
</tr>
<tr>
<td>reset oam</td>
<td>07-High Availability Volume</td>
<td>5-16</td>
</tr>
<tr>
<td>reset packet-drop interface</td>
<td>01-Access Volume</td>
<td>1-27</td>
</tr>
<tr>
<td>reset qos policy global</td>
<td>05-QoS Volume</td>
<td>1-23</td>
</tr>
<tr>
<td>reset qos vlan-policy</td>
<td>05-QoS Volume</td>
<td>1-24</td>
</tr>
<tr>
<td>reset radius statistics</td>
<td>06-Security Volume</td>
<td>2-14</td>
</tr>
<tr>
<td>reset recycle-bin</td>
<td>08-System Volume</td>
<td>5-11</td>
</tr>
<tr>
<td>reset rrpp statistics</td>
<td>07-High Availability Volume</td>
<td>3-12</td>
</tr>
<tr>
<td>reset saved-configuration</td>
<td>08-System Volume</td>
<td>5-24</td>
</tr>
<tr>
<td>reset smart-link statistics</td>
<td>07-High Availability Volume</td>
<td>1-8</td>
</tr>
<tr>
<td>reset stop-accounting-buffer</td>
<td>06-Security Volume</td>
<td>2-15</td>
</tr>
<tr>
<td>reset stop-accounting-buffer</td>
<td>06-Security Volume</td>
<td>3-10</td>
</tr>
<tr>
<td>reset stp</td>
<td>01-Access Volume</td>
<td>3-16</td>
</tr>
<tr>
<td>reset tcp ipv6 statistics</td>
<td>02-IP Services Volume</td>
<td>12-41</td>
</tr>
<tr>
<td>reset tcp statistics</td>
<td>02-IP Services Volume</td>
<td>10-17</td>
</tr>
<tr>
<td>reset trapbuffer</td>
<td>08-System Volume</td>
<td>16-22</td>
</tr>
<tr>
<td>reset udp ipv6 statistics</td>
<td>02-IP Services Volume</td>
<td>12-42</td>
</tr>
<tr>
<td>reset udp statistics</td>
<td>02-IP Services Volume</td>
<td>10-18</td>
</tr>
<tr>
<td>reset udp-helper packet</td>
<td>02-IP Services Volume</td>
<td>11-1</td>
</tr>
<tr>
<td>reset unused porttag</td>
<td>08-System Volume</td>
<td>4-25</td>
</tr>
<tr>
<td>restore startup-configuration</td>
<td>08-System Volume</td>
<td>5-25</td>
</tr>
<tr>
<td>retry</td>
<td>06-Security Volume</td>
<td>2-16</td>
</tr>
<tr>
<td>retry realtime-accounting</td>
<td>06-Security Volume</td>
<td>2-17</td>
</tr>
<tr>
<td>retry stop-accounting (HWTACACS scheme view)</td>
<td>06-Security Volume</td>
<td>3-11</td>
</tr>
<tr>
<td>retry stop-accounting (RADIUS scheme view)</td>
<td>06-Security Volume</td>
<td>2-18</td>
</tr>
<tr>
<td>return</td>
<td>08-System Volume</td>
<td>3-20</td>
</tr>
<tr>
<td>revision-level</td>
<td>01-Access Volume</td>
<td>3-16</td>
</tr>
</tbody>
</table>
ring 07-High Availability Volume 3-12
ring enable 07-High Availability Volume 3-15
rmdir 06-Security Volume 10-25
rmdir 08-System Volume 5-14
rmdir 08-System Volume 6-27
rmon alarm 08-System Volume 12-10
rmon event 08-System Volume 12-12
rmon history 08-System Volume 12-13
rmon prialarm 08-System Volume 12-14
rmon statistics 08-System Volume 12-17
root-certificate fingerprint 06-Security Volume 11-24
route-option bypass-route 08-System Volume 18-30
router-aging-time (IGMP-Snooping view) 04-IP Multicast Volume 1-25
router-aging-time (MLD-Snooping view) 04-IP Multicast Volume 3-25
rrpp domain 07-High Availability Volume 3-15
rrpp enable 07-High Availability Volume 3-16
rrpp ring-group 07-High Availability Volume 3-17
rule (access control policy view) 06-Security Volume 11-25
rule (advanced IPv4 ACL view) 06-Security Volume 14-12
rule (advanced IPv6 ACL view) 06-Security Volume 14-26
rule (basic IPv4 ACL view) 06-Security Volume 14-10
rule (basic IPv6 ACL view) 06-Security Volume 14-25
rule (Ethernet frame header ACL view) 06-Security Volume 14-16
rule comment (for IPv4) 06-Security Volume 14-18
rule comment (for IPv6) 06-Security Volume 14-30

S
save 08-System Volume 5-26
schedule job 08-System Volume 4-26
schedule reboot at 08-System Volume 4-27
schedule reboot delay 08-System Volume 4-29
screen-length 08-System Volume 1-16
<table>
<thead>
<tr>
<th>Command</th>
<th>Volume</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>screen-length disable</td>
<td>08-System</td>
<td>3-21</td>
</tr>
<tr>
<td>secondary accounting (HWTACACS scheme view)</td>
<td>06-Security</td>
<td>3-12</td>
</tr>
<tr>
<td>secondary accounting (RADIUS scheme view)</td>
<td>06-Security</td>
<td>2-18</td>
</tr>
<tr>
<td>secondary authentication (HWTACACS scheme view)</td>
<td>06-Security</td>
<td>3-12</td>
</tr>
<tr>
<td>secondary authentication (RADIUS scheme view)</td>
<td>06-Security</td>
<td>2-19</td>
</tr>
<tr>
<td>secondary authorization</td>
<td>06-Security</td>
<td>3-13</td>
</tr>
<tr>
<td>security-policy-server</td>
<td>06-Security</td>
<td>2-20</td>
</tr>
<tr>
<td>self-service-url enable</td>
<td>06-Security</td>
<td>1-29</td>
</tr>
<tr>
<td>send</td>
<td>08-System</td>
<td>1-17</td>
</tr>
<tr>
<td>server-type</td>
<td>06-Security</td>
<td>2-21</td>
</tr>
<tr>
<td>service-type</td>
<td>06-Security</td>
<td>1-30</td>
</tr>
<tr>
<td>session</td>
<td>06-Security</td>
<td>12-7</td>
</tr>
<tr>
<td>set authentication password</td>
<td>08-System</td>
<td>1-18</td>
</tr>
<tr>
<td>sflow agent ip</td>
<td>02-IP</td>
<td>13-2</td>
</tr>
<tr>
<td>sflow collector ip</td>
<td>02-IP</td>
<td>13-3</td>
</tr>
<tr>
<td>sflow enable</td>
<td>02-IP</td>
<td>13-3</td>
</tr>
<tr>
<td>sflow interval</td>
<td>02-IP</td>
<td>13-4</td>
</tr>
<tr>
<td>sflow sampling-mode</td>
<td>02-IP</td>
<td>13-5</td>
</tr>
<tr>
<td>sflow sampling-rate</td>
<td>02-IP</td>
<td>13-6</td>
</tr>
<tr>
<td>sftp</td>
<td>06-Security</td>
<td>10-26</td>
</tr>
<tr>
<td>sftp client ipv6 source</td>
<td>06-Security</td>
<td>10-27</td>
</tr>
<tr>
<td>sftp client source</td>
<td>06-Security</td>
<td>10-27</td>
</tr>
<tr>
<td>sftp ipv6</td>
<td>06-Security</td>
<td>10-28</td>
</tr>
<tr>
<td>sftp server enable</td>
<td>06-Security</td>
<td>10-15</td>
</tr>
<tr>
<td>sftp server idle-timeout</td>
<td>06-Security</td>
<td>10-15</td>
</tr>
<tr>
<td>shell</td>
<td>08-System</td>
<td>1-19</td>
</tr>
<tr>
<td>shutdown</td>
<td>01-Access</td>
<td>1-28</td>
</tr>
<tr>
<td>shutdown</td>
<td>01-Access</td>
<td>1-17</td>
</tr>
<tr>
<td>shutdown</td>
<td>01-Access</td>
<td>5-7</td>
</tr>
</tbody>
</table>
shutdown-interval 08-System Volume 4-30
slave auto-update config 08-System Volume 5-28
smart-link flush enable 07-High Availability Volume 1-8
smart-link group 07-High Availability Volume 1-9
snmp-agent 08-System Volume 10-11
snmp-agent calculate-password 08-System Volume 10-12
snmp-agent community 08-System Volume 10-13
snmp-agent group 08-System Volume 10-15
snmp-agent local-engineid 08-System Volume 10-16
snmp-agent log 08-System Volume 10-17
snmp-agent mib-view 08-System Volume 10-17
snmp-agent packet max-size 08-System Volume 10-18
snmp-agent sys-info 08-System Volume 10-19
snmp-agent target-host 08-System Volume 10-20
snmp-agent trap enable 08-System Volume 10-22
snmp-agent trap if-mib link extended 08-System Volume 10-23
snmp-agent trap life 08-System Volume 10-24
snmp-agent trap queue-size 08-System Volume 10-24
snmp-agent trap source 08-System Volume 10-25
snmp-agent usm-user { v1 | v2c } 08-System Volume 10-26
snmp-agent usm-user v3 08-System Volume 10-27
snmp-host 08-System Volume 20-44
source interface 08-System Volume 18-30
source ip 08-System Volume 18-31
source port 08-System Volume 18-32
source-deny (IGMP-Snooping view) 04-IP Multicast Volume 1-26
source-deny (MLD-Snooping view) 04-IP Multicast Volume 3-26
speed 01-Access Volume 1-29
speed 08-System Volume 1-20
speed auto 01-Access Volume 1-30
ssh client authentication server 06-Security Volume 10-10
ssh client first-time enable
ssh client ipv6 source
ssh client source
ssh server authentication-retries
ssh server authentication-timeout
ssh server compatible-ssh1x enable
ssh server enable
ssh server rekey-interval
ssh user
ssl client-policy
ssl server-policy
startup bootrom-access enable
startup saved-configuration
state
state
state
statistics hold-time
statistics interval
statistics max-group
step (for IPv4)
step (for IPv6)
stop-accounting-buffer enable (HWTACACS scheme view)
stop-accounting-buffer enable (RADIUS scheme view)
stopbits
storm-constrain
storm-constrain control
storm-constrain enable log
storm-constrain enable trap
super
super password
sysname
sysname
system-failure
system-view
tcp ipv6 timer fin-timeout
tcp ipv6 timer syn-timeout
tcp ipv6 window
tcp timer fin-timeout
tcp timer syn-timeout
tcp window
telnet
telnet client source
telnet ipv6
telnet server enable
terminal debugging
terminal logging
terminal monitor
terminal trapping
terminal type
tftp
tftp client source
tftp ipv6
tftp-server
tftp-server acl	imer
timer quiet (HWTACACS scheme view)
timer quiet (RADIUS scheme view)
timer realtime-accounting (HWTACACS scheme view) 06-Security Volume 3-15

timer realtime-accounting (RADIUS scheme view) 06-Security Volume 2-24

timer response-timeout (HWTACACS scheme view) 06-Security Volume 3-16

timer response-timeout (RADIUS scheme view) 06-Security Volume 2-25

time-range 06-Security Volume 14-3

topology accept 08-System Volume 20-46

topology restore-from 08-System Volume 20-47

topology save-to 08-System Volume 20-47

tos 08-System Volume 18-35

tracert 08-System Volume 15-6

tracert ipv6 08-System Volume 15-7

track nqa 07-High Availability Volume 7-2

traffic behavior 05-QoS Volume 1-14

traffic classifier 05-QoS Volume 1-5

ttl 08-System Volume 18-35

type 08-System Volume 18-36

U

udp-helper enable 02-IP Services Volume 11-2

udp-helper port 02-IP Services Volume 11-2

udp-helper server 02-IP Services Volume 11-3

undelete 08-System Volume 5-14

unicast-suppression 01-Access Volume 1-35

url 08-System Volume 18-37

user 08-System Volume 6-27

user privilege level 08-System Volume 1-26

user-bind 06-Security Volume 9-4

user-group 06-Security Volume 1-31

user-interface 08-System Volume 1-26

username (FTP test type view) 08-System Volume 18-37
user-name-format (HWTACACS scheme view) 06-Security Volume 3-17
user-name-format (RADIUS scheme view) 06-Security Volume 2-26
user-profile 05-QoS Volume 6-2
user-profile enable 05-QoS Volume 6-2

V

verbose 08-System Volume 6-28
version 06-Security Volume 12-9
virtual-cable-test 01-Access Volume 1-37
vlan 01-Access Volume 5-7
vlan precedence 01-Access Volume 5-21
vlan-mapping modulo 01-Access Volume 3-40
voice vlan aging 01-Access Volume 7-3
voice vlan enable 01-Access Volume 7-4
voice vlan mac-address 01-Access Volume 7-4
voice vlan mode auto 01-Access Volume 7-6
voice vlan security enable 01-Access Volume 7-6
vpn-instance (ICMP echo test type view) 08-System Volume 18-38

W

X

Y

Z
Table of Contents

1 Ethernet Port Configuration Commands .. 1-1
 Ethernet Port Configuration Commands .. 1-1
 broadcast-suppression ... 1-1
 description ... 1-2
 display brief interface ... 1-3
 display interface ... 1-6
 display loopback-detection ... 1-10
 display packet-drop interface ... 1-11
 display packet-drop summary ... 1-11
 display port combo .. 1-12
 display port-group manual ... 1-13
 display storm-constrain .. 1-14
 duplex .. 1-15
 flow-control .. 1-16
 flow-interval ... 1-17
 group-member ... 1-17
 interface ... 1-18
 jumboframe enable ... 1-18
 link-delay ... 1-19
 loopback ... 1-20
 loopback-detection control enable ... 1-21
 loopback-detection enable .. 1-21
 loopback-detection interval-time .. 1-22
 loopback-detection per-vlan enable .. 1-23
 mdi ... 1-24
 multicast-suppression .. 1-25
 port-group manual ... 1-26
 reset counters interface ... 1-27
 reset packet-drop interface ... 1-27
 shutdown ... 1-28
 speed ... 1-29
 speed auto .. 1-30
 storm-constrain ... 1-31
 storm-constrain control ... 1-32
 storm-constrain enable log ... 1-33
 storm-constrain enable trap ... 1-34
 storm-constrain interval ... 1-34
 unicast-suppression ... 1-35
 virtual-cable-test .. 1-37

1 Link Aggregation Configuration Commands ... 1-1
 Link Aggregation Configuration Commands ... 1-1
 description ... 1-1
 display lACP system-id .. 1-2
display link-aggregation load-sharing mode ... 1-2
display link-aggregation member-port ... 1-4
display link-aggregation summary ... 1-6
display link-aggregation verbose .. 1-8
enable snmp trap updown ... 1-10
interface bridge-aggregation ... 1-10
lacp port-priority ... 1-11
lacp system-priority ... 1-12
link-aggregation load-sharing mode (system view) ... 1-12
link-aggregation load-sharing mode (aggregate interface view) 1-13
link-aggregation mode .. 1-14
port link-aggregation group .. 1-15
reset counters interface ... 1-16
reset lacp statistics ... 1-16
shutdown .. 1-17

2 Port Isolation Configuration Commands ... 2-1
Port Isolation Configuration Commands ... 2-1
display port-isolate group ... 2-2
port-isolate enable ... 2-2

3 MSTP Configuration Commands ... 3-1
MSTP Configuration Commands .. 3-1
active region-configuration .. 3-1
bpdu-drop any .. 3-2
check region-configuration .. 3-2
display stp.. 3-3
display stp abnormal-port ... 3-8
display stp down-port .. 3-9
display stp history .. 3-10
display stp region-configuration ... 3-11
display stp root ... 3-12
display stp tc ... 3-13
instance .. 3-14
region-name ... 3-15
reset stp .. 3-16
revision-level .. 3-16
stp bpdu-protection .. 3-17
stp bridge-diameter ... 3-18
stp compliance ... 3-19
stp config-digest-snooping .. 3-19
stp cost ... 3-20
stp edged-port ... 3-21
stp enable .. 3-22
stp loop-protection .. 3-23
stp max-hops .. 3-24
stp mcheck .. 3-25
stp mode .. 3-25
stp no-agreement-check ... 3-26
VLAN Configuration Commands

- description
- display interface vlan-interface
- display vlan
- interface vlan-interface
- ip address

LLDP Configuration Commands

- lldp tlv-enable
- lldp timer tx-interval
- lldp timer tx-delay
- lldp timer reinit-delay
- lldp timer notification-interval
- lldp management-address-tlv
- lldp management-address-format-string
- lldp hold-multiplier
- lldp encapsulation snap
- lldp enable
- lldp admin-status
- lldp check-change-interval
- lldp compliance admin-status cdp
- lldp compliance cdp
- lldp local-information
- lldp status
- lldp tlv-config
- lldp statistics

STP Configuration Commands

- stp pathcost-standard
- stp point-to-point
- stp port priority
- stp port-log
- stp priority
- stp region-configuration
- stp root primary
- stp root secondary
- stp root-protection
- stp tc-protection
- stp tc-protection threshold
- stp timer forward-delay
- stp timer hello
- stp timer max-age
- stp timer-factor
- stp transmit-limit
- vlan-mapping modulo

4 LLDP Configuration Commands

- LLDP Configuration Commands
 - display lldp local-information
 - display lldp neighbor-information
 - display lldp statistics
 - display lldp status
 - display lldp tlv-config
 - lldp admin-status
 - lldp check-change-interval
 - lldp compliance admin-status cdp
 - lldp compliance cdp
 - lldp enable
 - lldp encapsulation snap
 - lldp fast-count
 - lldp hold-multiplier
 - lldp management-address-format-string
 - lldp management-address-tlv
 - lldp notification remote-change enable
 - lldp timer notification-interval
 - lldp timer reinit-delay
 - lldp timer tx-delay
 - lldp timer tx-interval
 - lldp tlv-enable

5 VLAN Configuration Commands

- VLAN Configuration Commands
 - description
 - display interface vlan-interface
 - display vlan
 - interface vlan-interface
 - ip address
display gvrp state ... 8-3
display gvrp statistics .. 8-4
display gvrp status .. 8-5
display gvrp vlan-operation interface 8-5
garp timer hold .. 8-6
garp timer join ... 8-6
garp timer leave ... 8-7
garp timer leaveall .. 8-8
gvp ... 8-9
reset garp statistics .. 8-10

9 QinQ Configuration Commands ... 9-1
 QinQ Configuration Commands .. 9-1
 nest ... 9-1
 raw-vlan-id inbound ... 9-2
 qinq enable ... 9-3
 qinq ethernet-type .. 9-4
 qinq vid .. 9-5

10 BPDU Tunneling Configuration Commands 10-1
 BPDU Tunneling Configuration Commands 10-1
 bpdu-tunnel dot1q .. 10-1
 bpdu-tunnel tunnel-dmac .. 10-2

11 Port Mirroring Configuration Commands 11-1
 Port Mirroring Configuration Commands 11-1
 display mirroring-group ... 11-1
 mirroring-group ... 11-2
 mirroring-group mirroring-port ... 11-3
 mirroring-group monitor-egress .. 11-4
 mirroring-group monitor-port ... 11-5
 mirroring-group remote-probe vlan 11-6
 mirroring-port ... 11-7
 monitor-port ... 11-8
Ethernet Port Configuration Commands

broadcast-suppression

Syntax

```
broadcast-suppression { ratio | pps max-pps }
undo broadcast-suppression
```

View

Ethernet port view, port group view

Default Level

2: System level

Parameters

- **ratio**: Maximum percentage of broadcast traffic to the total transmission capability of an Ethernet port. The smaller the ratio, the less broadcast traffic is allowed to pass through the interface. This argument ranges from 1 to 100.

- **pps max-pps**: Specifies the maximum number of broadcast packets that can be forwarded on an Ethernet port per second (in pps, representing packets per second).
 - For a Gigabit port, the value range is 1 to 1488100.
 - For a 10-Gigabit port, the value range is 1 to 14881000.

Note that:

- When a suppression granularity larger than 1 is specified on the device, the value of the **pps** keyword should be no smaller than and an integral multiple of the granularity. The broadcast suppression threshold value configured through this keyword on an Ethernet port may not be the one that actually takes effect. To display the actual broadcast suppression threshold value on an Ethernet port, you can use the **display interface** command.

- When no suppression granularity is specified or the suppression granularity is set to 1, the value of the **pps** keyword should be no smaller than 1, and the broadcast suppression threshold value is the one that actually takes effect on the Ethernet port.

Description

Use the **broadcast-suppression** command to set a broadcast traffic threshold on one or multiple Ethernet ports.

Use the **undo broadcast-suppression** command to restore the default.

By default, all broadcast traffic is allowed to pass through an Ethernet port, that is, broadcast traffic is not suppressed.
If you execute this command in Ethernet port view, the configuration takes effect only on the current interface. If you execute this command in port-group view, the configuration takes effect on all the ports in the port group.

When broadcast traffic exceeds the broadcast traffic threshold, the system begins to discard broadcast packets until the broadcast traffic drops below the threshold to ensure operation of network services.

Note

- If you set different suppression ratios in Ethernet port view or port-group view for multiple times, the latest configuration takes effect.
- Do not use the broadcast-suppression command along with the storm-constrain command. Otherwise, the broadcast storm suppression ratio configured may get invalid.

Examples

`# For Ethernet port GigabitEthernet 1/0/1, allow broadcast traffic equivalent to 20% of the total transmission capability of GigabitEthernet 1/0/1 to pass.`

```plaintext
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] broadcast-suppression 20
```

`# For all the ports of the manual port group named group1, allow broadcast traffic equivalent to 20% of the total transmission capability of each port to pass and suppress excessive broadcast packets.`

```plaintext
<Sysname> system-view
[Sysname] port-group manual group1
[Sysname-port-group-manual-group1] group-member GigabitEthernet 1/0/2
[Sysname-port-group-manual-group1] group-member GigabitEthernet 1/0/3
[Sysname-port-group-manual-group1] broadcast-suppression 20
```

description

Syntax

```
description text
undo description
```

View

Ethernet port view

Default Level

2: System level

Parameters

`text`: Description of an Ethernet port, a string of 1 to 80 characters. Currently, the device supports the following types of characters or symbols: standard English characters (numbers and case-sensitive
letters), special English characters, spaces, and other characters or symbols that conform to the Unicode standard.

Note

- A port description can be the mixture of English characters and other Unicode characters. The mixed description cannot exceed the specified length.
- To use a type of Unicode characters or symbols in a port description, you need to install the corresponding Input Method Editor (IME) and log in to the device through remote login software that supports this character type.
- Each Unicode character or symbol (non-English characters) takes the space of two regular characters. When the length of a description string reaches or exceeds the maximum line width on the terminal software, the software starts a new line, possibly breaking a Unicode character into two. As a result, garbled characters may be displayed at the end of a line.

Description

Use the description command to set the description string of the current interface.

Use the undo description command to restore the default.

By default, the description of an interface is the interface name followed by the “interface” string, GigabitEthernet1/0/1 Interface for example.

Related commands: display interface.

Examples

Configure the description string of interface GigabitEthernet 1/0/1 as lanswitch-interface.

<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] description lanswitch-interface

display brief interface

Syntax

display brief interface [interface-type [interface-number]] [[{ begin | exclude | include } regular-expression]

View

Any view

Default Level

1: Monitor level

Parameters

interface-type: Type of a specified interface.
interface-number: Number of a specified interface.
Uses a regular expression to filter output information. For detailed description on regular expression, refer to Basic System Configuration in the System Volume.

begin: Displays the line that matches the regular expression and all the subsequent lines.

exclude: Displays the lines that do not match the regular expression.

include: Displays the lines that match the regular expression.

regular-expression: Regular expression, a string of 1 to 256 characters. Note that this argument is case-sensitive.

Description

Use the `display brief interface` command to display brief interface information.

- If neither interface type nor interface number is specified, all interface information will be displayed.
- If only interface type is specified, then only information of this particular type of interface will be displayed.
- If both interface type and interface number are specified, then only information of the specified interface will be displayed.

Related commands: `interface`.

Examples

Display the brief information of interfaces.

```bash
<Sysname> display brief interface
```

The brief information of interface(s) under route mode:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Link</th>
<th>Protocol-link</th>
<th>Protocol type</th>
<th>Main IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop1</td>
<td>UP</td>
<td>UP(spoofing)</td>
<td>LOOP</td>
<td>2.2.2.1</td>
</tr>
<tr>
<td>NULL0</td>
<td>UP</td>
<td>UP(spoofing)</td>
<td>NULL</td>
<td>--</td>
</tr>
<tr>
<td>Vlan1</td>
<td>UP</td>
<td>UP</td>
<td>ETHERNET</td>
<td>192.168.0.153</td>
</tr>
<tr>
<td>Vlan10</td>
<td>DOWN</td>
<td>DOWN</td>
<td>ETHERNET</td>
<td>1.1.1.1</td>
</tr>
<tr>
<td>Vlan100</td>
<td>ADM</td>
<td>DOWN</td>
<td>ETHERNET</td>
<td>--</td>
</tr>
</tbody>
</table>

The brief information of interface(s) under bridge mode:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Link</th>
<th>Speed</th>
<th>Duplex</th>
<th>Link-type</th>
<th>FVID</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAGG1</td>
<td>DOWN</td>
<td>auto</td>
<td>auto</td>
<td>access</td>
<td>1</td>
</tr>
<tr>
<td>GE1/0/1</td>
<td>DOWN</td>
<td>auto</td>
<td>auto</td>
<td>access</td>
<td>1</td>
</tr>
<tr>
<td>GE1/0/2</td>
<td>DOWN</td>
<td>auto</td>
<td>auto</td>
<td>access</td>
<td>1</td>
</tr>
<tr>
<td>GE1/0/3</td>
<td>DOWN</td>
<td>auto</td>
<td>auto</td>
<td>access</td>
<td>1</td>
</tr>
<tr>
<td>GE1/0/4</td>
<td>UP</td>
<td>1G(a)</td>
<td>full(a)</td>
<td>access</td>
<td>1</td>
</tr>
<tr>
<td>GE1/0/5</td>
<td>DOWN</td>
<td>auto</td>
<td>auto</td>
<td>access</td>
<td>1</td>
</tr>
<tr>
<td>GE1/0/6</td>
<td>DOWN</td>
<td>auto</td>
<td>auto</td>
<td>access</td>
<td>1</td>
</tr>
<tr>
<td>GE1/0/7</td>
<td>DOWN</td>
<td>auto</td>
<td>auto</td>
<td>access</td>
<td>1</td>
</tr>
<tr>
<td>GE1/0/8</td>
<td>DOWN</td>
<td>auto</td>
<td>auto</td>
<td>access</td>
<td>1</td>
</tr>
<tr>
<td>GE1/0/9</td>
<td>DOWN</td>
<td>auto</td>
<td>auto</td>
<td>access</td>
<td>1</td>
</tr>
<tr>
<td>GE1/0/10</td>
<td>DOWN</td>
<td>auto</td>
<td>auto</td>
<td>access</td>
<td>1</td>
</tr>
<tr>
<td>GE1/0/11</td>
<td>DOWN</td>
<td>auto</td>
<td>auto</td>
<td>trunk</td>
<td>1</td>
</tr>
<tr>
<td>GE1/0/12</td>
<td>DOWN</td>
<td>auto</td>
<td>auto</td>
<td>trunk</td>
<td>1</td>
</tr>
</tbody>
</table>

Display the information of interfaces beginning with the string “spoof”.

```bash
<Sysname> display brief interface | begin spoof
```
The brief information of interface(s) under route mode:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Link</th>
<th>Protocol-link</th>
<th>Protocol type</th>
<th>Main IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop0</td>
<td>UP</td>
<td>UP(spoofing)</td>
<td>LOOP</td>
<td>5.5.5.5</td>
</tr>
<tr>
<td>NULL0</td>
<td>UP</td>
<td>UP(spoofing)</td>
<td>NULL</td>
<td>--</td>
</tr>
<tr>
<td>Vlan999</td>
<td>UP</td>
<td>UP</td>
<td>ETHERNET</td>
<td>10.1.1.1</td>
</tr>
</tbody>
</table>

Display the brief information of all UP interfaces.

```bash
<Sysname> display brief interface | include UP
```

The brief information of interface(s) under route mode:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Link</th>
<th>Protocol-link</th>
<th>Protocol type</th>
<th>Main IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop0</td>
<td>UP</td>
<td>UP(spoofing)</td>
<td>LOOP</td>
<td>5.5.5.5</td>
</tr>
<tr>
<td>NULL0</td>
<td>UP</td>
<td>UP(spoofing)</td>
<td>NULL</td>
<td>--</td>
</tr>
<tr>
<td>Vlan999</td>
<td>UP</td>
<td>UP</td>
<td>ETHERNET</td>
<td>10.1.1.1</td>
</tr>
</tbody>
</table>

The brief information of interface(s) under bridge mode:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Link</th>
<th>Speed</th>
<th>Duplex</th>
<th>Link-type</th>
<th>PVID</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE1/0/7</td>
<td>UP</td>
<td>100M(a)</td>
<td>full(a)</td>
<td>trunk</td>
<td>303</td>
</tr>
<tr>
<td>GE1/0/9</td>
<td>UP</td>
<td>100M(a)</td>
<td>full(a)</td>
<td>access</td>
<td>999</td>
</tr>
</tbody>
</table>

Display the brief information of all interfaces excluding Ethernet ports.

```bash
<Sysname> display brief interface | exclude GE
```

The brief information of interface(s) under route mode:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Link</th>
<th>Protocol-link</th>
<th>Protocol type</th>
<th>Main IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop1</td>
<td>UP</td>
<td>UP(spoofing)</td>
<td>LOOP</td>
<td>2.2.2.1</td>
</tr>
<tr>
<td>NULL0</td>
<td>UP</td>
<td>UP(spoofing)</td>
<td>NULL</td>
<td>--</td>
</tr>
<tr>
<td>Vlan1</td>
<td>UP</td>
<td>UP</td>
<td>ETHERNET</td>
<td>192.168.0.153</td>
</tr>
<tr>
<td>Vlan10</td>
<td>DOWN</td>
<td>DOWN</td>
<td>ETHERNET</td>
<td>1.1.1.1</td>
</tr>
<tr>
<td>Vlan100</td>
<td>ADM</td>
<td>DOWN</td>
<td>ETHERNET</td>
<td>--</td>
</tr>
</tbody>
</table>

The brief information of interface(s) under bridge mode:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Link</th>
<th>Speed</th>
<th>Duplex</th>
<th>Link-type</th>
<th>PVID</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAGG1</td>
<td>DOWN</td>
<td>auto</td>
<td>auto</td>
<td>auto</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1-1 display brief interface command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The brief information of interface(s) under route mode:</td>
<td>Brief information of interface(s) in route mode</td>
</tr>
<tr>
<td>Interface</td>
<td>Abbreviated interface name</td>
</tr>
<tr>
<td>Link</td>
<td>Interface physical link state, which can be up or down</td>
</tr>
<tr>
<td>Protocol-link</td>
<td>Interface protocol link state, which can be up or down</td>
</tr>
<tr>
<td>Protocol type</td>
<td>Interface protocol type</td>
</tr>
<tr>
<td>The brief information of interface(s) under bridge mode:</td>
<td>Brief information of interface(s) in bridge mode</td>
</tr>
<tr>
<td>Speed</td>
<td>Interface rate, in bps</td>
</tr>
</tbody>
</table>
display interface

Syntax

```
display interface [ interface-type [ interface-number ] ]
```

View

Any view

Default Level

1: Monitor level

Parameters

- `interface-type`: Type of a specified interface.
- `interface-number`: Number of a specified interface.

Description

Use the `display interface` command to display the current state of a specified interface and related information.

- If neither interface type nor interface number is specified, all interface information will be displayed.
- If only interface type is specified, then only information of this particular type of interface will be displayed.
- If both interface type and interface number are specified, then only information of the specified interface will be displayed.

Related commands: `interface`.

Examples

```bash
# Display the current state of interface GigabitEthernet 1/0/1 and related information.
<Sysname> display interface GigabitEthernet 1/0/1
GigabitEthernet1/0/1 current state: DOWN
IP Packet Frame Type: PKTFMT_ETHNT_2, Hardware Address: 000f-e200-8048
Description: GigabitEthernet1/0/1 Interface
Loopback is not set
Media type is twisted pair, port hardware type is 100_BASE_TX
Unknown-speed mode, unknown-duplex mode
Link speed type is autonegotiation, link duplex type is autonegotiation
Flow-control is not enabled
The Maximum Frame Length is 9216
Broadcast MAX-ratio: 100%
Unicast MAX-ratio: 100%
```
Multicast MAX-ratio: 100%
Allow jumbo frame to pass
PVID: 100
Mdi type: auto
Link delay is 0(sec)
Port link-type: access
 Tagged VLAN ID : none
 Untagged VLAN ID : 100
Port priority: 0
Peak value of input: 96132560 bytes/sec, at 2007-10-26 07:05:06
Peak value of output: 0 bytes/sec, at 2000-04-26 12:00:12
Last 300 seconds input: 6 packets/sec 678 bytes/sec 20%
Last 300 seconds output: 1 packets/sec 179 bytes/sec 17%
Input (total): 61745144 packets, 1215221250 bytes
 0 unicast, 47519150 broadcast, 12121681 multicast
Input (normal): 61745144 packets, - bytes
 205227373 unicast, 47519150 broadcast, 12121681 multicast
Input: 0 input errors, 0 runts, 0 giants, 0 throttles
 0 CRC, 0 frame, - overruns, 0 aborts
 - ignored, - parity errors
Output (total): 1395522 packets, 183608303 bytes
 0 unicast, 13 broadcast, 1273860 multicast, 0 pauses
Output (normal): 1395522 packets, - bytes
 0 unicast, 13 broadcast, 1273860 multicast, 0 pauses
Output: 0 output errors, - underruns, - buffer failures
 0 aborts, 0 deferred, 0 collisions, 0 late collisions
 0 lost carrier, - no carrier

Table 1-2 display interface command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GigabitEthernet1/0/1 current state</td>
<td>Current physical link state of the Ethernet port</td>
</tr>
<tr>
<td>IP Packet Frame Type</td>
<td>Frame type of the Ethernet port</td>
</tr>
<tr>
<td>Description</td>
<td>Description of the interface</td>
</tr>
<tr>
<td>Unknown-speed mode</td>
<td>Unknown-speed mode, in which mode speed is negotiated between the current host and the peer.</td>
</tr>
<tr>
<td>unknown-duplex mode</td>
<td>Unknown-duplex mode, in which mode speed is negotiated between the current host and the peer.</td>
</tr>
<tr>
<td>The Maximum Frame Length</td>
<td>The maximum frame length allowed on an interface</td>
</tr>
<tr>
<td>Broadcast MAX-ratio</td>
<td>Broadcast storm suppression ratio (the maximum ratio of allowed number of broadcast packets to overall traffic through an interface)</td>
</tr>
<tr>
<td>Unicast MAX-ratio</td>
<td>Unicast storm suppression ratio (the maximum ratio of allowed number of unknown unicast packets to overall traffic over an interface)</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Multicast MAX-ratio</td>
<td>Multicast storm suppression ratio (the maximum ratio of allowed number of multicast packets to overall traffic through an interface)</td>
</tr>
<tr>
<td>PVID</td>
<td>Default VLAN ID</td>
</tr>
<tr>
<td>Mdi type</td>
<td>Cable type</td>
</tr>
<tr>
<td>Link delay</td>
<td>The suppression time of physical-link-state changes</td>
</tr>
<tr>
<td>Port link-type</td>
<td>Interface link type, which could be access, trunk, and hybrid.</td>
</tr>
<tr>
<td>Tagged VLAN ID</td>
<td>VLANs whose packets are sent through the port with VLAN tag kept</td>
</tr>
<tr>
<td>Untagged VLAN ID</td>
<td>VLANs whose packets are sent through the port with VLAN tag stripped off</td>
</tr>
<tr>
<td>Peak value of input</td>
<td>Peak value of inbound traffic, in bytes/sec.</td>
</tr>
<tr>
<td>Peak value of output</td>
<td>Peak value of outbound traffic, in bytes/sec.</td>
</tr>
<tr>
<td>Last 300 seconds input:</td>
<td>Average rate of input and output traffic in the last 300 seconds, in pps and Bps</td>
</tr>
<tr>
<td>Last 300 seconds output:</td>
<td></td>
</tr>
</tbody>
</table>
| Input (total): | Packet statistics on the inbound direction of the interface, including the statistics of normal packets, and abnormal packets, in packets and bytes
<p>| 61745144 packets, 12152212250 bytes | Number of unicast packets, broadcast packets, and multicast packets on the inbound direction of the interface. |
| 0 unicasts, 47519150 broadcastss, 12121681 multicasts | |
| Input (normal): | Normal packet statistics on the inbound direction of the interface, including the statistics of normal packets in packets and bytes |
| 61745144 packets, - bytes | Number of unicast packets, broadcast packets, and multicast packets on the inbound direction of the interface. |
| 205227373 unicasts, 47519150 broadcasts, 12121681 multicasts | |
| input errors | Input packets with errors |
| runts | Frames received that were shorter than 64 bytes, yet in correct formats, and contained valid CRCs |
| giants | Frames received that were longer than the maximum frame length supported on the interface: |
| | • For an Ethernet interface that permits jumbo frames, giants refer to frames that are longer than 9212 bytes (without VLAN tags) or 9216 bytes (with VLAN tags). |
| | • For an Ethernet interface that forbids jumbo frames, giants refer to frames that are longer than 1522 bytes (without VLAN tags) or 1526 bytes (with VLAN tags) |
| throttles | The number of times the receiver on the interface was disabled, possibly because of buffer or CPU overload |
| CRC | Total number of packets received that had a normal length, but contained checksum errors |
| frame | Total number of frames that contained checksum errors and a non-integer number of bytes |
| - overruns | Number of times the receive rate of the interface exceeded the capacity of the input queue, causing packets to be discarded |</p>
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aborts</td>
<td>Total number of illegal packets received, including:</td>
</tr>
<tr>
<td></td>
<td>• Fragment frames: Frames that were shorter than 64 bytes (with an integral or non-integral length) and contained checksum errors</td>
</tr>
<tr>
<td></td>
<td>• Jabber frames: Frames that were longer than the maximum frame length supported on the Ethernet interface and contained checksum errors (the frame lengths in bytes may or may not be integers). For an Ethernet interface that permits jumbo frames, jabber frames refer to frames that are longer than 9212 bytes (without VLAN tags) or 9216 bytes (with VLAN tags) and contain checksum errors; for an Ethernet interface that forbids jumbo frames, jabber frames refer to frames that are longer than 1522 bytes (without VLAN tags) or 1526 bytes (with VLAN tags) and contain checksum errors.</td>
</tr>
<tr>
<td></td>
<td>• Symbol error frames: Frames that contained at least one undefined symbol</td>
</tr>
<tr>
<td></td>
<td>• Unknown operation code frames: Frames that were MAC control frames but not pause frames</td>
</tr>
<tr>
<td></td>
<td>• Length error frames: Frames whose 802.3 length fields did not match the actual frame lengths (46 bytes to 1500 bytes)</td>
</tr>
<tr>
<td>- ignored</td>
<td>Number of received packets ignored by the interface because the interface hardware ran low on internal buffers</td>
</tr>
<tr>
<td>- parity errors</td>
<td>Total number of frames with parity errors</td>
</tr>
<tr>
<td>Output (total): 1395522 packets, 183608303 bytes</td>
<td>Packet statistics on the outbound direction of the interface, including the statistics of normal packets, abnormal packets, and normal pause frames, in packets and bytes</td>
</tr>
<tr>
<td></td>
<td>0 unicast, 13 broadcasts, 1273860 multicasts, 0 pauses</td>
</tr>
<tr>
<td>Output (normal): 1395522 packets, - bytes</td>
<td>Normal packet statistics on the outbound direction of the interface, including the statistics of normal packets and pause frames, in packets and bytes</td>
</tr>
<tr>
<td></td>
<td>0 unicast, 13 broadcasts, 1273860 multicasts, 0 pauses</td>
</tr>
<tr>
<td>output errors</td>
<td>Output packets with errors</td>
</tr>
<tr>
<td>- underruns</td>
<td>Number of times the transmit rate of the interface exceeded the capacity of the output queue, causing packets to be discarded. This is a very rare hardware-related problem.</td>
</tr>
<tr>
<td>- buffer failures</td>
<td>Number of packets dropped because the interface ran low on output buffers</td>
</tr>
<tr>
<td>aborts</td>
<td>Number of packets that failed to be transmitted due to causes such as Ethernet collisions</td>
</tr>
<tr>
<td>deferred</td>
<td>Number of frames whose first transmission attempt was delayed, due to traffic on the network media, and that were successfully transmitted later</td>
</tr>
<tr>
<td>collisions</td>
<td>Number of times frames were delayed due to Ethernet collisions detected during the transmission</td>
</tr>
<tr>
<td>late collisions</td>
<td>Number of times frames were delayed due to the detection of collisions after the first 512 bits of the frames were already on the network</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>lost carrier</td>
<td>Number of times the carrier was lost during transmission. This counter applies to serial WAN interfaces.</td>
</tr>
<tr>
<td>- no carrier</td>
<td>Number of times the carrier was not present in the transmission. This counter applies to serial WAN interfaces.</td>
</tr>
</tbody>
</table>

Note

“-” indicates that the corresponding entry is not supported.

display loopback-detection

Syntax

display loopback-detection

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the `display loopback-detection` command to display loopback detection information on a port. If loopback detection is already enabled, this command will also display the detection interval and information on the ports currently detected with a loopback.

Examples

Display loopback detection information on a port.

<Sysname> display loopback-detection
Loopback-detection is running
Detection interval time is 30 seconds
No port is detected with loopback

Table 1-3 display loopback-detection command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loopback-detection is running</td>
<td>Loopback-detection is running.</td>
</tr>
<tr>
<td>Detection interval time is 30 seconds</td>
<td>Detection interval is 30 seconds.</td>
</tr>
<tr>
<td>No port is detected with loopback</td>
<td>No port is currently being detected with a loopback.</td>
</tr>
</tbody>
</table>
display packet-drop interface

Syntax

display packet-drop interface [interface-type [interface-number]]

View

Any view

Default Level

1: Monitor level

Parameters

interface-type: Type of a specified interface.
interface-number: Number of a specified interface.

Description

Use the display packet-drop interface command to display information about dropped packets on an interface or multiple interfaces.

- If you do not specify an interface type or interface number, this command displays information about dropped packets on all the interfaces on the device.
- If you specify an interface type only, this command displays information about dropped packets on the specified type of interfaces.
- If you specify both the interface type and interface number, this command displays information about dropped packets on the specified interface.

Examples

Display information about dropped packets on GigabitEthernet 1/0/1.
<Sysname> display packet-drop interface GigabitEthernet 1/0/1
GigabitEthernet1/0/1:
Packets dropped by GBP full or insufficient bandwidth: 301
Packets dropped by FFP: 261
Packets dropped by STP non-forwarding state: 321

display packet-drop summary

Syntax

display packet-drop summary

View

Any view

Default Level

1: Monitor level

Parameters

None
Description

Use the `display packet-drop summary` command to display information about dropped packets on all interfaces.

Examples

```shell
# Display information about dropped packets on all interfaces.
<Sysname> display packet-drop summary
All interfaces:
Packets dropped by GBP full or insufficient bandwidth: 301
Packets dropped by FFP: 261
Packets dropped by STP non-forwarding state: 321
Packets dropped by Rate-limit: 143
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets dropped by GBP full or insufficient bandwidth</td>
<td>Packets that are dropped because the buffer is used up or the bandwidth is insufficient</td>
</tr>
<tr>
<td>Packets dropped by FFP</td>
<td>Packets that are filtered out</td>
</tr>
<tr>
<td>Packets dropped by STP non-forwarding state</td>
<td>Packets that are dropped because STP is in the non-forwarding state</td>
</tr>
</tbody>
</table>

display port combo

Syntax

```bash
display port combo
```

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the `display port combo` command to display the Combo ports of a device and the corresponding optical ports and electrical ports.

Examples

```shell
# Display the Combo ports of the device and the corresponding optical ports and electrical ports.
<Sysname> display port combo
Combo-group         Active                      Inactive
1         GigabitEthernet1/0/45       GigabitEthernet1/0/51
2         GigabitEthernet1/0/46       GigabitEthernet1/0/49
```
Table 1-5 display port combo command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combo-group</td>
<td>Combo ports of the device, represented by Combo port number, which is</td>
</tr>
<tr>
<td></td>
<td>generated by the system.</td>
</tr>
<tr>
<td>Active</td>
<td>Ports of the Combo ports that are active</td>
</tr>
<tr>
<td>Inactive</td>
<td>Ports of the Combo ports that are inactive</td>
</tr>
</tbody>
</table>

As for the optical port and the electrical port of a Combo port, the one with the smaller port number is active by default. You can determine whether a port is an optical port or an electrical port by checking the “Media type is” field of the `display interface` command.

display port-group manual

Syntax

 display port-group manual [all | name port-group-name]

View

 Any view

Default Level

 2: System level

Parameters

 all: Specifies all the manual port groups.

 name port-group-name: Specifies the name of a manual port group, a string of 1 to 32 characters.

Description

 Use the `display port-group manual` command to display the information about a manual port group or all the manual port groups.

 - If you provide the `port-group-name` argument, this command displays the details for a specified manual port group, including its name and the Ethernet port ports included.
 - If you provide the `all` keyword, this command displays the details for all manual port groups, including their names and the Ethernet port ports included.
 - Absence of parameters indicates that the names of all the port groups will be displayed.

Examples

 # Display the names of all the port groups.
 <Sysname> display port-group manual
 The following manual port group exist(s):
 group1 group2

 # Display details of all the manual port groups.
 <Sysname> display port-group manual all
Member of group 1:

GigabitEthernet1/0/3 GigabitEthernet1/0/4 GigabitEthernet1/0/5
GigabitEthernet1/0/6 GigabitEthernet1/0/7 GigabitEthernet1/0/8

Member of group 2:

None

Table 1-6 display port-group manual command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Member of group</td>
<td>Member of the manual port group</td>
</tr>
</tbody>
</table>

display storm-constrain

Syntax

`display storm-constrain [broadcast | multicast] [interface interface-type interface-number]`

View

Any view

Default Level

1: Monitor level

Parameters

- **broadcast**: Displays the information about storm constrain for broadcast packets.
- **multicast**: Displays the information about storm constrain for multicast packets.
- **interface interface-type interface-number**: Specifies an interface by its type and number.

Description

Use the `display storm-constrain` command to display the information about storm constrain.

If you provide no argument or keyword, this command displays the information about storm constrain for all types of packets on all the interfaces.

Examples

```
# Display the information about storm constrain for all types of packets on all the interfaces.
<Sysname> display storm-constrain
```

Abbreviation: BC - broadcast; MC - multicast; UC - unicast

Flow Statistic Interval: 10(second)

<table>
<thead>
<tr>
<th>PortName</th>
<th>Type</th>
<th>LowerLimit</th>
<th>UpperLimit</th>
<th>CtrMode</th>
<th>Status</th>
<th>Trap</th>
<th>Log</th>
<th>SwiNum</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE1/0/2</td>
<td>BC</td>
<td>1</td>
<td>2</td>
<td>N/A</td>
<td>normal</td>
<td>on</td>
<td>on</td>
<td>0</td>
<td>kbps</td>
</tr>
<tr>
<td>GE1/0/2</td>
<td>MC</td>
<td>1</td>
<td>5</td>
<td>N/A</td>
<td>normal</td>
<td>on</td>
<td>on</td>
<td>0</td>
<td>ratio</td>
</tr>
</tbody>
</table>

Table 1-7 display storm-constrain command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Statistic Interval</td>
<td>Interval for generating storm constrain statistics</td>
</tr>
</tbody>
</table>
Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PortName</td>
<td>Abbreviated port name</td>
</tr>
<tr>
<td>Type</td>
<td>Type of the packets for which storm constrain function is enabled, which can be broadcast (for broadcast packets), and multicast (for multicast packets).</td>
</tr>
<tr>
<td>LowerLimit</td>
<td>Lower threshold (in pps, Kbps or percentage)</td>
</tr>
<tr>
<td>UpperLimit</td>
<td>Upper threshold (in pps, Kbps or percentage)</td>
</tr>
<tr>
<td>CtrMode</td>
<td>Action to be taken when the upper threshold is reached, which can be block, shutdown, and N/A.</td>
</tr>
<tr>
<td>Status</td>
<td>Interface state, which can be normal (indicating the interface operates properly), control (indicating the interface is blocked or shut down).</td>
</tr>
<tr>
<td>Trap</td>
<td>State of trap messages sending. “on” indicates trap message sending is enabled; “off” indicates trap message sending is disabled.</td>
</tr>
<tr>
<td>Log</td>
<td>State of log sending. “on” indicates log sending is enabled; “off” indicates log sending is disabled.</td>
</tr>
<tr>
<td>SwiNum</td>
<td>Number of the forwarding state switching. This field is numbered modulo 65,535.</td>
</tr>
</tbody>
</table>

duplex

Syntax

```bash
duplex { auto | full | half }
undo duplex
```

View

Ethernet port view

Default Level

2: System level

Parameters

- **auto**: Indicates that the interface is in auto-negotiation state.
- **full**: Indicates that the interface is in full-duplex state.
- **half**: Indicates that the interface is in half-duplex state. The optical interfaces of SFP ports and the electrical interfaces of Ethernet ports whose port rate is configured as 1000 Mbps do not support the half keyword.

Description

Use the `duplex` command to configure the duplex mode for an Ethernet port.

Use the `undo duplex` command to restore the duplex mode for an Ethernet port to the default.

By default, the duplex mode for an Ethernet port is **auto**.
Related commands: **speed**.

Note

10-Gigabit Ethernet ports do not support this command.

Examples

Configure the interface GigabitEthernet 1/0/1 to work in full-duplex mode.

```
<Sysname> system-view
<Sysname> interface GigabitEthernet 1/0/1
<Sysname-GigabitEthernet1/0/1] duplex full
```

flow-control

Syntax

```
flow-control
undo flow-control
```

View

Ethernet port view

Default Level

2: System level

Parameters

None

Description

Use the **flow-control** command to enable flow control on an Ethernet port.

Use the **undo flow-control** command to disable flow control on an Ethernet port.

By default, flow control on an Ethernet port is disabled.

Note

The flow control function takes effect on the local Ethernet port only when it is enabled on both the local and peer devices.

Examples

Enable flow control on interface GigabitEthernet1/0/1.

```
<Sysname> system-view
```
flow-interval

Syntax

 flow-interval interval
 undo flow-interval

View

 Ethernet port view

Default Level

 2: System level

Parameters

 interval: Interval at which the interface collects statistics. It ranges from 5 to 300 seconds and must be a multiple of 5. The default value is 300 seconds.

Description

 Use the flow-interval command to configure the time interval for collecting interface statistics.

 Use the undo flow-interval command to restore the default interval.

Examples

 # Set the time interval for collecting interface statistics to 100 seconds.
 <Sysname> system-view
 [Sysname] interface GigabitEthernet 1/0/1
 [Sysname-GigabitEthernet1/0/1] flow-interval 100

group-member

Syntax

 group-member interface-list
 undo group-member interface-list

View

 Port group view

Default Level

 2: System level

Parameters

 interface-list: Ethernet port list, in the form of interface-type interface-number [to interface-type interface-number] &<1-10>, where &<1-10> indicates that you can specify up to 10 port or port ranges.
Description

Use the group-member command to assign an Ethernet port or a list of Ethernet ports to the manual port group.

Use the undo group-member command to remove an Ethernet port or a list of Ethernet ports from the manual port group.

By default, there is no Ethernet port in a manual port group.

Examples

Add interface GigabitEthernet 1/0/1 to the manual port group named group1.
<Sysname> system-view
[Sysname] port-group manual group1
[Sysname-port-group-manual-group1] group-member GigabitEthernet 1/0/1

interface

Syntax

interface interface-type interface-number

View

System view

Default Level

2: System level

Parameters

interface-type interface-number: Interface type and interface number.

Description

Use the interface command to enter interface view.

Examples

Enter GigabitEthernet 1/0/1 interface view
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1]

jumboframe enable

Syntax

jumboframe enable
undo jumboframe enable

View

Ethernet port view, port group view
Default Level

2: System level

Parameters

.None

Description

Use the `jumboframe enable` command to allow jumbo frames with the length of 9216 bytes to pass through an Ethernet port.

Use the `undo jumboframe enable` command to prevent frames longer than 1522 bytes from passing through an Ethernet port.

By default, the device allows frames no larger than 9216 bytes to pass through an Ethernet port.

You can configure length of jumbo frames on a port (in Ethernet port view, port-group view) to allow them to pass through Ethernet ports.

- Execution of this command under Ethernet port view will only apply the configurations to the current Ethernet port.
- Execution of this command under port group view will apply the configurations to the Ethernet port(s) in the port group.

Examples

```
# Enable jumbo frames to pass through all the Ethernet ports in the manual port group named group1.
<Sysname> system-view
[Sysname] port-group manual group1
[Sysname-port-group-manual-group1] group-member GigabitEthernet 1/0/1
[Sysname-port-group-manual-group1] jumboframe enable
```

```
# Enable jumbo frames to pass through GigabitEthernet1/0/1.
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] jumboframe enable
```

link-delay

Syntax

```
link-delay delay-time
undo link-delay
```

View

Ethernet port view

Default Level

2: System level

Parameters

`delay-time`: Up/down suppression time for the physical connection of an Ethernet port (in seconds), in the range 2 to 10.
Description

Use the link-delay command to configure the suppression time of physical-link-state changes on an Ethernet port.

Use the undo link-delay command to restore the default suppression time.

By default, the physical-link-state change suppression time is not configured.

Examples

Set the up/down suppression time of the physical connection of an Ethernet port to 8 seconds.
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] link-delay 8

loopback

Syntax

loopback { external | internal }
undo loopback

View

Ethernet port view

Default Level

2: System level

Parameters

external: Enables external loopback testing on an Ethernet port.
internal: Enables internal loopback testing on an Ethernet port.

Description

Use the loopback command to enable Ethernet port loopback testing.

Use the undo loopback command to disable Ethernet port loopback testing.

By default, Ethernet port loopback testing is disabled.

Note

- Ethernet port loopback testing should be enabled while testing certain functionalities, such as during the initial identification of any network failure.
- While enabled, Ethernet port loopback testing will work in full-duplex mode. The interface will return to its original state upon completion of the loopback testing.

Examples

Enable loopback testing on GigabitEthernet 1/0/1.
loopback-detection control enable

Syntax

 loopback-detection control enable
 undo loopback-detection control enable

View

 Ethernet port view

Default Level

 2: System level

Parameters

 None

Description

Use the `loopback-detection control enable` command to enable loopback detection for a Trunk port or Hybrid port.

Use the `undo loopback-detection control enable` command to restore the default.

By default, loopback detection for a Trunk port or Hybrid port is disabled.

- When the loopback detection is enabled, if a port has been detected with loopback, it will be shut down. A Trap message will be sent to the terminal and the corresponding MAC address forwarding entries will be deleted.
- When the loopback detection is disabled, if a port has been detected with loopback, a Trap message will be sent to the terminal. The port is still working properly.

Note that this command is inapplicable to an Access port as its loopback detection is enabled by default.

Examples

 # Enable loopback detection for the trunk port GigabitEthernet 1/0/1.
 <Sysname> system-view
 [Sysname] interface GigabitEthernet 1/0/1
 [Sysname-GigabitEthernet1/0/1] loopback internal
 [Sysname-GigabitEthernet1/0/1] loopback-detection enable
 [Sysname-GigabitEthernet1/0/1] loopback-detection control enable

loopback-detection enable

Syntax

 loopback-detection enable
 undo loopback-detection enable
View
System view, Ethernet port view

Default Level
2: System level

Parameters
None

Description
Use the `loopback-detection enable` command to enable loopback detection globally or on a specified port.

Use the `undo loopback-detection enable` command to disable loopback detection globally or on a specified port.

By default, loopback detection is disabled for an Access, Trunk, or Hybrid port.

- If an Access port has been detected with loopback, it will be shut down. A Trap message will be sent to the terminal and the corresponding MAC address.
- If a Trunk port or Hybrid port has been detected with loopback, a Trunk message will be sent to the terminal. They will be shut down if the loopback testing function is enabled on them. In addition, a Trap message will be sent to the terminal and the corresponding MAC address forwarding entries will be deleted.

Related commands: `loopback-detection control enable`.

Caution

- Loopback detection on a given port is enabled only after the `loopback-detection enable` command has been configured in both system view and interface view of the port.
- Loopback detection on all ports will be disabled after the configuration of the `undo loopback-detection enable` command in system view.

Examples

Enable loopback detection on the interface GigabitEthernet 1/0/1.

```
<Sysname> system-view
[Sysname] loopback-detection enable
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] loopback-detection enable
```

loopback-detection interval-time

Syntax

```
loopback-detection interval-time time
undo loopback-detection interval-time
```
View

System view

Default Level

2: System level

Parameters

time: Time interval for performing port loopback detection, in the range 5 to 300 (in seconds).

Description

Use the **loopback-detection interval-time** command to configure time interval for performing port loopback detection.

Use the **undo loopback-detection interval-time** command to restore the default time interval for port loopback detection, which is 30 seconds.

Related commands: **display loopback-detection**.

Examples

Set the time interval for performing port loopback detection to 10 seconds.

```
<Sysname> system-view
[Sysname] loopback-detection interval-time 10
```

loopback-detection per-vlan enable

Syntax

```
loopback-detection per-vlan enable
undo loopback-detection per-vlan enable
```

View

Ethernet port view

Default Level

2: System level

Parameters

None

Description

Use the **loopback-detection per-vlan enable** command to enable loopback detection in all VLANs with Trunk ports or Hybrid ports.

Use the **undo loopback-detection per-vlan enable** command to enable loopback detection in the default VLAN with Trunk ports or Hybrid ports.

By default, loopback detection is only enabled in the default VLAN(s) with Trunk ports or Hybrid ports.

Note that the **loopback-detection per-vlan enable** command is not applicable to Access ports.
Examples

Enable loopback detection in all the VLANs to which the Hybrid port GigabitEthernet 1/1 belongs.

<Sysname> system-view
[Sysname] loopback-detection enable
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] loopback-detection enable
[Sysname-GigabitEthernet1/0/1] port link-type trunk
[Sysname-GigabitEthernet1/0/1] loopback-detection per-vlan enable

mdi

Syntax

mdi { across | auto | normal }

undo mdi

View

Ethernet port view

Default Level

2: System level

Parameters

across: Specifies the MDI mode as across.
auto: Specifies the MDI mode as auto.
normal: Specifies the MDI mode as normal.

Description

Use the mdi command to configure the MDI mode for an Ethernet port.
Use the undo mdi command to restore the system default.
By default, the MDI mode of an Ethernet port is auto, that is, the Ethernet port determines the physical pin roles (transmit or receive) through negotiation.

Note

The command is not applicable to optical interfaces of SFP ports or 10-Gigabit Ethernet ports.

Examples

Set the MDI mode of GigabitEthernet 1/0/1 to across.

<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] mdi across
multicast-suppression

Syntax

```
multicast-suppression { ratio | pps max-pps }
undo multicast-suppression
```

View

Ethernet port view, port group view

Default Level

2: System level

Parameters

- **ratio**: Maximum percentage of multicast traffic to the total transmission capability of an Ethernet port, in the range 1 to 100. The smaller the ratio is, the less multicast traffic is allowed to pass through the interface.
- **pps max-pps**: Specifies the maximum number of multicast packets allowed on an Ethernet port per second (in pps, representing packets per second).
 - For a Gigabit port, the value range is 1 to 1488100.
 - For a 10-Gigabit port, the value range is 1 to 14881000.

Note that:

- When a suppression granularity larger than 1 is specified on the device, the value of the **pps** keyword should be no smaller than and an integral multiple of the granularity. The multicast suppression threshold value configured through this keyword on an Ethernet port may not be the one that actually takes effect. To display the actual multicast suppression threshold value on an Ethernet port, you can use the `display interface` command.
- When no suppression granularity is specified or the suppression granularity is set to 1, the value of the **pps** keyword should be no smaller than 1, and the multicast suppression threshold value is the one that actually takes effect on the Ethernet port.

Description

Use the **multicast-suppression** command to configure multicast storm suppression ratio on an interface.

Use the **undo multicast-suppression** command to restore the default multicast suppression ratio.

By default, all multicast traffic is allowed to go through an Ethernet port, that is, multicast traffic is not suppressed.

If you execute this command in Ethernet port view, the configurations take effect only on the current interface. If you execute this command in port-group view, the configurations take effect on all ports in the port group.

Note that when multicast traffic exceeds the maximum value configured, the system will discard the extra packets so that the multicast traffic ratio can drop below the limit to ensure that the network functions properly.
Note

- If you set different suppression ratios in Ethernet port view or port-group view for multiple times, the latest configuration takes effect.
- Do not use the `multicast-suppression` command along with the `storm-constrain` command. Otherwise, the multicast storm suppression ratio configured may get invalid.

Examples

For Ethernet port GigabitEthernet 1/0/1, allow multicast traffic equivalent to 20% of the total transmission capability of GigabitEthernet 1/0/1 to pass.

```plaintext
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] multicast-suppression 20
```

For all the ports of the manual port group `group1`, allow multicast traffic equivalent to 20% of the total transmission capability of each port to pass.

```plaintext
<Sysname> system-view
[Sysname] port-group manual group1
[Sysname-port-group-manual-group1] group-member GigabitEthernet 1/0/2
[Sysname-port-group-manual-group1] group-member GigabitEthernet 1/0/3
[Sysname-port-group-manual-group1] multicast-suppression 20
```

port-group manual

Syntax

`port-group manual port-group-name`

`undo port-group manual port-group-name`

View

System view

Default Level

2: System level

Parameters

`port-group-name`: Specifies name of a manual port group, a string of 1 to 32 characters.

Description

Use the `port-group manual` command to create a manual port group and enter manual port group view.

Use the `undo port-group manual` command to remove a manual port group.

By default, no manual port group is created.

Examples

Create a manual port group named `group1`.

```plaintext
# Create a manual port group named `group1`.
```
reset counters interface

Syntax

```
reset counters interface [interface-type [interface-number]]
```

View

User view

Default Level

2: System level

Parameters

- **interface-type**: Interface type.
- **interface-number**: Interface number.

Description

Use the `reset counters interface` command to clear the statistics of an interface.

Before sampling network traffic within a specific period of time on an interface, you need to clear the existing statistics.

- If neither interface type nor interface number is specified, this command clears the statistics of all the interfaces.
- If only the interface type is specified, this command clears the statistics of the interfaces that are of the interface type specified.
- If both the interface type and interface number are specified, this command clears the statistics of the specified interface.

Examples

```
# Clear the statistics of GigabitEthernet 1/0/1.
<Sysname> reset counters interface GigabitEthernet 1/0/1
```

reset packet-drop interface

Syntax

```
reset packet-drop interface [interface-type [interface-number]]
```

View

Any view

Default Level

2: System level

Parameters

- **interface-type**: Type of a specified interface.
interface-number: Number of a specified interface.

Description

Use the `reset packet-drop interface` command to clear statistics of dropped packets on an interface or multiple interfaces. Sometimes when you want to collect the statistics of dropped packets on an interface, you need to clear the old statistics on the interface first.

- If you do not specify an interface type or interface number, this command clears statistics of dropped packets on all the interfaces on the device.
- If you specify an interface type only, this command clears statistics of dropped packets on the specified type of interfaces.
- If you specify both the interface type and interface number, this command clears statistics of dropped packets on the specified interface.

Examples

```
# Clear statistics of dropped packets on GigabitEthernet 1/0/1.
<Sysname> reset packet-drop interface GigabitEthernet 1/0/1

# Clear statistics of dropped packets on all interfaces.
<Sysname> reset packet-drop interface
```

shutdown

Syntax

```
shutdown
undo shutdown
```

View

Ethernet port view

Default Level

2: System level

Parameters

None

Description

Use the `shutdown` command to shut down an Ethernet port.

Use the `undo shutdown` command to bring up an Ethernet port.

By default, an Ethernet port is in the up state.

In certain circumstances, modification to the interface parameters does not immediately take effect, and therefore, you need to shut down the relative interface to make the modification work.

Note that in case of a Combo port, only one interface (either the optical port or the electrical port) is active at a time. That is, once the optical port is active (after you execute the `undo shutdown` command), the electrical port will be inactive automatically, and vice versa.
Examples

Shut down interface GigabitEthernet 1/0/1.
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] shutdown

Bring up interface GigabitEthernet 1/0/1.
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] undo shutdown

speed

Syntax

speed { 10 | 100 | 1000 | auto }
undo speed

View

Ethernet port view

Default Level

2: System level

Parameters

10: Specifies the interface rate as 10 Mbps. The optical interface of an SFP port does not support the 10 keyword.

100: Specifies the interface rate as 100 Mbps. The optical interface of an SFP port does not support the 100 keyword.

1000: Specifies the interface rate as 1,000 Mbps.

auto: Specifies to determine the interface rate through auto-negotiation.

Description

Use the speed command to configure Ethernet port data rate.
Use the undo speed command to restore Ethernet port data rate.

Note that:

- On the electrical interface of an Ethernet port, the purpose of using the speed command to set the data transmission rate is to make it consistent with that of the peer.
- On an SFP port, the purpose of using the speed command to set the data transmission rate is to make it consistent with that of the pluggable optical module.

Related commands: duplex, speed auto.

Note

10-Gigabit Ethernet ports do not support this command.
Examples

Configure the interface rate as 100 Mbps for interface GigabitEthernet 1/0/1.
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] speed 100

speed auto

Syntax

speed auto [10 | 100 | 1000] *
undo speed

View

Ethernet port view

Default Level

2: System level

Parameters

10: Specifies the interface auto-negotiation rate as 10 Mbps.
100: Specifies the interface auto-negotiation rate as 100 Mbps.
1000: Specifies the interface auto-negotiation rate as 1000 Mbps.

Description

Use the **speed auto** command to configure the auto-negotiation rate range of the current Ethernet port.

Use the **undo speed** command to restore the default.

The default value of the command varies with your device models.

If you repeatedly use the **speed** command and the **speed auto** command to configure the rate of an interface, only the latest configuration takes effect. For example, if you configure **speed 100** after configuring **speed auto 100 1000** on an interface, the rate is 100 Mbps by force, with no negotiation performed between the interface and the peer end; if you configure **speed auto 100 1000** after configuring **speed 100** on the interface, the rate through negotiation can be either 100 Mbps or 1000 Mbps only.

Note that:

- If the auto negotiation rate range specified on the local port and that on the peer do not overlap, for example, 10 Mbps and 100 Mbps are specified on one end while 1000 Mbps is specified on the other, the auto negotiation of interface rate will fail.

- If the auto negotiation rate range specified on the local port and that on the peer overlap, for example, 10 Mbps and 100 Mbps are specified on one end while 100 Mbps and 1000 Mbps are specified on the other, the result of the interface rate auto negotiation is the overlapped part, that is, 100 Mbps in the example.
- If the auto negotiation rate range specified on the local port and that on the peer are the same, for example, 100 Mbps and 1000 Mbps are specified on both ends, the result of the interface rate auto negotiation is the larger value, that is, 1000 Mbps in the example.

Note

- This function is available for auto-negotiation-capable Gigabit Layer-2 Ethernet electrical ports only.
- If you repeatedly use the `speed` and the `speed auto` commands to configure the transmission rate on an port, only the latest configuration takes effect.

Examples

Set the auto-negotiation rate of interface GigabitEthernet 1/0/1 to 10 Mbps or 1000 Mbps.

```
<Sysname> system-view
<Sysname> interface gigabitethernet 1/0/1
<Sysname-GigabitEthernet1/0/1] speed auto 10 1000
```

storm-constrain

Syntax

```plaintext
storm-constrain { broadcast | multicast } { pps | kbps | ratio } max-values min-values
undo storm-constrain { all | broadcast | multicast }
```

View

Ethernet port view

Default Level

2: System level

Parameters

- **all**: Disables the storm constrain function for all types of packets (that is, multicast packets, and broadcast packets).
- **broadcast**: Enables/Disables the storm constrain function for broadcast packets.
- **multicast**: Enables/Disables the storm constrain function for multicast packets.
- **pps**: Specifies the storm constrain threshold in terms of number of packets.
- **kbps**: Specifies the storm constrain threshold in terms of number of kilobytes.
- **ratio**: Specifies the storm constrain threshold in terms of percentages of the received packets to the whole transmission capacity.
- **max-values**: Upper threshold to be set, in pps, kbps, or percentages.

When the threshold is set in pps:

- For a Gigabit port, the value range is 1 to 1488100.
For a 10-Gigabit port, the value range is 1 to 14881000.

When the threshold is set in kbps:

- For a Gigabit port, the value range is 1 to 1000000.
- For a 10-Gigabit port, the value range is 1 to 10000000.

When the threshold is set in percentages, that is, keyword ratio is used, the value range is 1 to 100.

min-values: Lower threshold to be set, in pps, kbps, or percentages.

- For lower threshold to be set, in pps, this value ranges from 1 to **max-values**.
- For lower threshold to be set, in kbps, this value ranges from 1 to **max-values**.
- For lower threshold to be set, in percentages, this value ranges from 1 to **max-values**.

Description

Use the **storm-constrain** command to enable the storm constrain function for specific type of packets and set the upper and lower thresholds.

Use the **undo storm-constrain** command to disable the storm constrain function for specific type of packets.

By default, the storm constrain function is not enabled.

Note

- Do not use the **storm-constrain** command along with the **unicast-suppression** command, the **multicast-suppression** command, or the **broadcast-suppression** command. Otherwise, traffics may be suppressed in an unpredictable way.
- An upper threshold cannot be less than the corresponding lower threshold. Besides, do not configure the two thresholds as the same value.

Examples

Enable the storm constrain function for broadcast packets on GigabitEthernet 1/0/1, setting the upper and lower threshold to 2000 kbps and 1500 kbps.

```
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] storm-constrain broadcast kbps 2000 1500
```

Enable the storm constrain function for multicast packets on GigabitEthernet1/0/3 in terms of percentages of the received multicast packets to the port’s total transmission capacity, setting the upper and lower threshold to 80% and 15%.

```
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/3
[Sysname-GigabitEthernet1/0/3] storm-constrain multicast ratio 80 15
```

storm-constrain control

Syntax

```
storm-constrain control { block | shutdown }
```
undo storm-constrain control

View

Ethernet port view

Default Level

2: System level

Parameters

block: Blocks the traffic of a specific type on a port when the traffic detected exceeds the upper threshold.

shutdown: Shuts down a port when a type of traffic exceeds the corresponding upper threshold. A port shut down by the storm constrain function stops forwarding all types of packets.

Description

Use the storm-constrain control command to set the action to be taken when a type of traffic exceeds the corresponding upper threshold.

Use the undo storm-constrain control command to restore the default.

By default, no action is taken when a type of traffic exceeds the corresponding threshold.

Examples

Configure to block interface GigabitEthernet 1/0/1 when a type of traffic reaching it exceeds the corresponding upper threshold.

<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] storm-constrain control block

storm-constrain enable log

Syntax

storm-constrain enable log

undo storm-constrain enable log

View

Ethernet port view

Default Level

2: System level

Parameters

None

Description

Use the storm-constrain enable log command to enable log sending. With log sending enabled, the system sends log when traffic reaching a port exceeds the corresponding threshold or the traffic drops down below the lower threshold after exceeding the upper threshold.
Use the `undo storm-constrain enable log` command to disable log sending. By default, log sending is enabled.

Examples

```
# Disable log sending for GigabitEthernet 1/0/1.
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] undo storm-constrain enable log
```

storm-constrain enable trap

Syntax

- `storm-constrain enable trap`
- `undo storm-constrain enable trap`

View

- Ethernet port view

Default Level

2: System level

Parameters

None

Description

Use the `storm-constrain enable trap` command to enable trap message sending. With trap message sending enabled, the system sends trap messages when traffic reaching a port exceeds the corresponding threshold or the traffic drops down below the lower threshold after exceeding the upper threshold.

Use the `undo storm-constrain enable trap` command to disable trap message sending. By default, trap message sending is enabled.

Examples

```
# Disable trap message sending for GigabitEthernet 1/0/1.
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] undo storm-constrain enable trap
```

storm-constrain interval

Syntax

- `storm-constrain interval seconds`
- `undo storm-constrain interval`

View

- System view
Default Level
2: System level

Parameters

seconds: Interval for generating traffic statistics, in the range 1 to 300 (in seconds).

Description

Use the storm-constrain interval command to set the interval for generating traffic statistics. Use the undo storm-constrain interval command to restore the default. By default, the interval for generating traffic statistics is 10 seconds.

Note

- The interval set by the storm-constrain interval command is specifically for the storm constrain function. It is different form that set by the flow-interval command.
- For network stability consideration, configure the interval for generating traffic statistics to a value that is not shorter than the default.

Examples

Set the interval for generating traffic statistics to 60 seconds.

<Sysname> system-view
[Sysname] storm-constrain interval 60

unicast-suppression

Syntax

unicast-suppression { ratio | pps max-pps }
undo unicast-suppression

View

Ethernet port view, port group view

Default Level
2: System level

Parameters

ratio: Maximum percentage of unicast traffic to the total transmission capability of an Ethernet port, in the range of 1 to 100. The smaller the ratio is, the less unicast traffic is allowed through the interface.
pps max-pps: Specifies the maximum number of unknown unicast packets passing through an Ethernet port per second (in pps, representing packets per second).
- For a Gigabit port, the value range is 1 to 1488100;
- For a 10-Gigabit port, the value range is 1 to 14881000.
Note that:

- When a suppression granularity larger than 1 is specified on the device, the value of the \texttt{pps} keyword should be no smaller than and an integral multiple of the granularity. The unicast suppression threshold value configured through this keyword on an Ethernet port may not be the one that actually takes effect. To display the actual unicast suppression threshold value on an Ethernet port, you can use the \texttt{display interface} command.

- When no suppression granularity is specified or the suppression granularity is set to 1, the value of the \texttt{pps} keyword should be no smaller than 1, and the unicast suppression threshold value is the one that actually takes effect on the Ethernet port.

\textbf{Description}

Use the \texttt{unicast-suppression} command to configure a unicast storm suppression ratio.

Use the `undo unicast-suppression` command to restore the default unicast suppression ratio.

By default, all unicast traffic is allowed to go through an Ethernet port, that is, unicast traffic is not suppressed.

If you execute this command in Ethernet port view, the configurations take effect only on the current interface. If you execute this command in port-group view, the configurations take effect on all ports in the port group.

Note that when unicast traffic exceeds the maximum value configured, the system will discard the extra packets so that the unknown unicast traffic ratio can drop below the limit to ensure that the network functions properly.

\textbf{Note}

- If you set different suppression ratios in Ethernet port view or port-group view repeatedly, the latest configuration takes effect.

- Do not use the \texttt{unicast-suppression} command along with the \texttt{storm-constrain} command. Otherwise, the unicast storm suppression ratio configured may get invalid.

\textbf{Examples}

\# For Ethernet port GigabitEthernet 1/0/1, allow unknown unicast traffic equivalent to 20\% of the total transmission capability of the interface to pass and suppress the excessive unknown unicast packets.

```
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] unicast-suppression 20
```

\# For all the ports of the manual port group \texttt{group1}, allow unknown unicast traffic equivalent to 20\% of the total transmission capability of each port to pass and suppress excessive unknown unicast packets.

```
<Sysname> system-view
[Sysname] port-group manual group1
[Sysname-port-group-manual-group1] group-member GigabitEthernet 1/0/5
[Sysname-port-group-manual-group1] group-member GigabitEthernet 1/0/6
[Sysname-port-group-manual-group1] unicast-suppression 20
```
virtual-cable-test

Syntax

virtual-cable-test

View

Ethernet port view

Default Level

2: System level

Parameters

None

Description

Use the virtual-cable-test command to test the cable connected to the Ethernet port once and to display the testing result. The tested items include:

Note that:

- When the cable is functioning properly, the cable length in the test result represents the total cable length;
- When the cable is not functioning properly, the cable length in the test result represents the length from the current interface to the failed position.

Note

- 10-Gigabit ports and optical interfaces of SFP ports do not support this command.
- A link in the up state goes down and then up automatically if you execute this command on one of the Ethernet ports forming the link.
- The test result is for your information only. The maximum error in the tested cable length is 5 m. A hyphen “-” indicates that the corresponding test item is not supported.

Examples

Enable the virtual cable test for the interface GigabitEthernet 1/0/1.

<Sysname> system-view

[Sysname] interface GigabitEthernet 1/0/1

[Sysname-GigabitEthernet1/0/1] virtual-cable-test

Cable status: normal, 1 metres
Pair Impedance mismatch: -
Pair skew: - ns
Pair swap: -
Pair polarity: -
Insertion loss: - db
Return loss: - db
Near-end crosstalk: - db
Link Aggregation Configuration Commands

description

Syntax

description text
undo description

View

Layer-2 aggregate interface view

Default Level

2: System level

Parameters

text: Description of an Ethernet interface, a string of 1 to 80 characters. Currently, the device supports
the following types of characters or symbols: standard English characters (numbers and case-sensitive
letters), special English characters, spaces, and other characters or symbols that conform to the
Unicode standard.

Note

- A port description can be the mixture of English characters and other Unicode characters. The
 mixed description cannot exceed the specified length.
- To use a type of Unicode characters or symbols in a port description, you need to install the
 corresponding Input Method Editor (IME) and log in to the device through remote login software
 that supports this character type.
- Each Unicode character or symbol (non-English characters) takes the space of two regular
 characters. When the length of a description string reaches or exceeds the maximum line width on
 the terminal software, the software starts a new line, possibly breaking a Unicode character into
two. As a result, garbled characters may be displayed at the end of a line.

Description

Use the description command to set the description of the current interface.
Use the undo description command to restore the default.
By default, the description of an interface is interface-name Interface, such as Bridge-Aggregation1
Interface.
Examples

Set the description of interface Bridge-aggregation 1 to link-aggregation interface.
<Sysname> system-view
<Sysname> interface bridge-aggregation 1
<Sysname-Bridge-Aggregation1> description link-aggregation interface

display lACP system-id

Syntax

display lACP system-id

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the display lACP system-id command to display the system ID of the local system (that is, the actor).

The system ID comprises the system LACP priority and the system MAC address.

You can use the lACP system-priority command to change the LACP priority of the local system. When you do that, the LACP priority value you specify in the command is in decimal format. However, it is displayed as a hexadecimal value with the display lACP system-id command.

Related commands: lACP system-priority.

Examples

Display the local system ID.
<Sysname> display lACP system-id
Actor System ID: 0x8000, 00e0-fc00-0100

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actor System ID: 0x8000, 00e0-fc00-0100</td>
<td>The local system ID, which comprises the LACP system priority (0x8000 in this sample output) and the system MAC address (00e0-fc00-0100 in this sample output).</td>
</tr>
</tbody>
</table>

display link-aggregation load-sharing mode

Syntax

display link-aggregation load-sharing mode [interface [bridge-aggregation interface-number]]
View

Any view

Default Level

1: Monitor level

Parameters

- **bridge-aggregation**: Displays the load sharing mode of the aggregation group corresponding to the specified Layer 2 aggregate interface.
- **interface-number**: Specifies the number of an existing aggregate interface.

Description

Use the **display link-aggregation load-sharing mode** command to display load sharing mode for link aggregation groups.

To display the global link aggregation load sharing mode, perform the command without the **interface** keyword.

To display the load sharing mode of the aggregation group corresponding to each aggregate interface, perform the command with the **interface** keyword but do not specify a particular interface.

To display the load sharing mode of a particular aggregation group, perform the command with the aggregate interface specified.

Examples

- **# Display the default global link aggregation load sharing mode.**

  ```
  <Sysname> display link-aggregation load-sharing mode
  
  Link-Aggregation Load-Sharing Mode:
  Layer 2 traffic: destination-mac address, source-mac address
  Layer 3 traffic: destination-ip address, source-ip address
  ```

- **# Display the configured global link aggregation load sharing mode.**

  ```
  <Sysname> display link-aggregation load-sharing mode
  
  Link-Aggregation Load-Sharing Mode:
  destination-mac address, source-mac address
  ```

- **# Display the default link aggregation load sharing mode of the aggregation group corresponding to Layer 2 aggregate interface Bridge-Aggregation 10.**

  ```
  <Sysname> display link-aggregation load-sharing mode interface bridge-aggregation 10
  
  Bridge-Aggregation1 Load-Sharing Mode:
  Layer 2 traffic: destination-mac address, source-mac address
  Layer 3 traffic: destination-ip address, source-ip address
  ```

- **# Display the configured link aggregation load sharing mode of the aggregation group corresponding to Layer 2 aggregate interface Bridge-Aggregation 10.**

  ```
  <Sysname> display link-aggregation load-sharing mode interface bridge-aggregation 10
  ```
Bridge-Aggregation1 Load-Sharing Mode:
 destination-mac address, source-mac address

Display the link aggregation load sharing mode of each aggregation group.
<Sysname> display link-aggregation load-sharing mode interface

Bridge-Aggregation10 Load-Sharing Mode:
 destination-ip address, source-ip address

Bridge-Aggregation20 Load-Sharing Mode:
Layer 2 traffic: destination-mac address, source-mac address
Layer 3 traffic: destination-ip address, source-ip address

Table 1-2 display link-aggregation load-sharing mode command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link-Aggregation Load-Sharing Mode</td>
<td>Displays the global link aggregation load sharing mode.</td>
</tr>
<tr>
<td></td>
<td>• By default, the link aggregation load sharing modes for Layer-2 traffic, and Layer-3 traffic displayed.</td>
</tr>
<tr>
<td></td>
<td>• If you have configured a global load sharing mode, the configured mode is displayed.</td>
</tr>
<tr>
<td>Layer 2 traffic: destination-mac address,</td>
<td>The default load sharing mode for Layer-2 traffic. In this sample output, it is based on source MAC address and destination MAC address.</td>
</tr>
<tr>
<td>source-mac address</td>
<td></td>
</tr>
<tr>
<td>Layer 3 traffic: destination-ip address,</td>
<td>The default load sharing mode for Layer-3 traffic. In this sample output, it is based on source IP address and destination IP address.</td>
</tr>
<tr>
<td>source-ip address</td>
<td></td>
</tr>
<tr>
<td>destination-mac address, source-mac address</td>
<td>The user-configured link aggregation load sharing mode. In this sample output, it is based on source MAC address and destination MAC address.</td>
</tr>
</tbody>
</table>

display link-aggregation member-port

Syntax

display link-aggregation member-port [interface-type interface-number [to interface-type interface-number]]

View

Any view

Default Level

1: Monitor level

Parameters

interface-type interface-number: Port type and port number.

to: Specifies an interface range in the form of interface-type interface-number to interface-type interface-number, where the start interface number must be smaller than the end interface number. Note that both the start interface and the end interface are inclusive.
Description

Use the `display link-aggregation member-port` command to display the detailed link aggregation information of the specified interface(s) or all interfaces if no interface is specified.

For an interface in a static aggregation group, only its port number and operational key are displayed, because it is not aware of the information of the partner.

Examples

Display the detailed link aggregation information of GigabitEthernet 1/0/1, which is in a static aggregation group.

```
<Sysname> display link-aggregation member-port GigabitEthernet 1/0/1
```

Flags: A -- LACP_Activity, B -- LACP_Timeout, C -- Aggregation,
D -- Synchronization, E -- Collecting, F -- Distributing,
G -- Defaulted, H -- Expired

GigabitEthernet1/0/1:
Aggregation Interface: Bridge-Aggregation1
Port Number: 1
Oper-Key: 1

Display the detailed link aggregation information of GigabitEthernet 1/0/2, which is in a dynamic aggregation group.

```
<Sysname> display link-aggregation member-port GigabitEthernet 1/0/2
```

Flags: A -- LACP_Activity, B -- LACP_Timeout, C -- Aggregation,
D -- Synchronization, E -- Collecting, F -- Distributing,
G -- Defaulted, H -- Expired

GigabitEthernet1/0/2:
Aggregation Interface: Bridge-Aggregation10
Local:
 Port Number: 2
 Port Priority: 32768
 Oper-Key: 2
 Flag: {ACDEF}
Remote:
 System ID: 0x8000, 000f-e267-6c6a
 Port Number: 26
 Port Priority: 32768
 Oper-Key: 2
 Flag: {ACDEF}
Received LACP Packets: 5 packet(s)
Illegal: 0 packet(s)
Sent LACP Packets: 7 packet(s)
Table 1-3 display link-aggregation member-port command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flags</td>
<td>One-octet LACP state flags field. From the least to the most significant bit, they are represented by A through H as follows:</td>
</tr>
<tr>
<td></td>
<td>- A indicates whether LACP is enabled. 1 for enabled and 0 for disabled.</td>
</tr>
<tr>
<td></td>
<td>- B indicates the timeout control value. 1 for short timeout, and 0 for long timeout.</td>
</tr>
<tr>
<td></td>
<td>- C indicates whether the link is considered as aggregatable by the sending system. 1 for true, and 0 for false.</td>
</tr>
<tr>
<td></td>
<td>- D indicates whether the link is considered as synchronized by the sending system. 1 for true, and 0 for false.</td>
</tr>
<tr>
<td></td>
<td>- E indicates whether the sending system considers that collection of incoming frames is enabled on the link. 1 for true and 0 for false.</td>
</tr>
<tr>
<td></td>
<td>- F indicates whether the sending system considers that distribution of outgoing frames is enabled on the link. 1 for true and 0 for false.</td>
</tr>
<tr>
<td></td>
<td>- G indicates whether the receive state machine of the sending system is using default operational partner information. 1 for true and 0 for false.</td>
</tr>
<tr>
<td></td>
<td>- H indicates whether the receive state machine of the sending system is in the expired state. 1 for true and 0 for false.</td>
</tr>
<tr>
<td></td>
<td>If a flag bit is set to 1, the corresponding English letter that otherwise is not output is displayed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aggregation Interface</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local:</td>
<td>Aggregate interface to which the port belongs</td>
</tr>
<tr>
<td>Port Number</td>
<td>Information about the local end:</td>
</tr>
<tr>
<td>Port Priority</td>
<td>- Port Number: Number of the port.</td>
</tr>
<tr>
<td>Oper-key</td>
<td>- Port Priority: LACP priority of the port.</td>
</tr>
<tr>
<td>Flag</td>
<td>- Oper-key: Operational key</td>
</tr>
<tr>
<td></td>
<td>- Flag: LACP protocol state flag.</td>
</tr>
</tbody>
</table>

Remote:	Information about the remote end:
System ID	- System ID: System ID of the remote end, comprising the system LACP priority and the system MAC address.
Port Number	- Port Number: Number of the port.
Port Priority	- Port Priority: LACP priority of the port.
Oper-key	- Oper-key: Operational key
Flag	- Flag: LACP protocol state flag.

<table>
<thead>
<tr>
<th>Received LACP Packets</th>
<th>Number of LACP packets received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illegal</td>
<td>Number of illegal packets</td>
</tr>
<tr>
<td>Sent LACP Packets</td>
<td>Number of LACP packets sent</td>
</tr>
</tbody>
</table>

display link-aggregation summary

Syntax

display link-aggregation summary

View

Any view
Default Level

1: Monitor level

Parameters

None

Description

Use the `display link-aggregation summary` command to display the summary information of all aggregation groups.

You may find out that information about the remote system for a static link aggregation group is either replaced by `none` or not displayed at all. This is normal because this type of aggregation group is not aware of its partner.

Examples

```bash
# Display the summary information of all aggregation groups.
<Sysname> display link-aggregation summary
```

Aggregation Interface Type:

- BAGG -- Bridge-Aggregation, RAGG -- Route-Aggregation
- Aggregation Mode: S -- Static, D -- Dynamic
- Loadsharing Type: Shar -- Loadsharing, NonS -- Non-Loadsharing

Actor System ID: 0x8000, 000f-e267-6c6a

<table>
<thead>
<tr>
<th>AGG</th>
<th>AGG</th>
<th>Partner ID</th>
<th>Select</th>
<th>Unselect</th>
<th>Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Mode</td>
<td>Ports</td>
<td>Ports</td>
<td>Type</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAGG</td>
<td>S</td>
<td>none</td>
<td>1</td>
<td>0</td>
<td>Shar</td>
</tr>
<tr>
<td>BAGG10</td>
<td>D</td>
<td>0x8000, 000f-e267-57ad</td>
<td>2</td>
<td>0</td>
<td>Shar</td>
</tr>
</tbody>
</table>

Table 1-4 `display link-aggregation summary` command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| Aggregation Interface Type | Aggregate interface type:
| | • BAGG for a Layer-2 aggregate interface
| | • RAGG for a Layer-3 aggregate interface |
| Aggregation Mode | Aggregation group type:
| | • S for static link aggregation
| | • D for dynamic aggregation |
| Loadsharing Type | Loadsharing type:
| | • Shar for load sharing
| | • NonS for non-load sharing |
| Actor System ID | Local system ID, which comprises the system LACP priority and the system MAC address |
| AGG Interface | Abbreviated name of the aggregate interface |
| AGG Mode | Aggregation group type |
| Partner ID | System ID of the partner, which comprises the system LACP priority and the system MAC address |
display link-aggregation verbose

Syntax

```
display link-aggregation verbose [ bridge-aggregation [ interface-number ] ]
```

View

Any view

Default Level

1: Monitor level

Parameters

- **bridge-aggregation**: Displays detailed information about the Layer-2 aggregate groups corresponding to Layer-2 aggregate interfaces.
- **interface-number**: Aggregate interface number. Note that the aggregate interface you specify must already exist.

Description

Use the `display link-aggregation verbose` command to display detailed information about the aggregation groups corresponding to the aggregate interfaces.

To display the information of a specific Layer-2 aggregate group, use the `display link-aggregation verbose bridge-aggregation interface-number` command.

To display the information of all Layer-2 aggregate groups, use the `display link-aggregation verbose bridge-aggregation` command.

To display the information of all aggregate groups, use the `display link-aggregation verbose` command.

Examples

```
# Display the detailed information of the aggregation group corresponding to Layer-2 aggregate interface Bridge-aggregation 10.
<Sysname> display link-aggregation verbose bridge-aggregation 10
```

Loadsharing Type: Shar -- Loadsharing, NonS -- Non-Loadsharing

Port Status: S -- Selected, U -- Unselected

Flags: A -- LACP_Activity, B -- LACP_Timeout, C -- Aggregation,
D -- Synchronization, E -- Collecting, F -- Distributing,
G -- Defaulted, H -- Expired

Aggregation Interface: Bridge-Aggregation10
Aggregation Mode: Dynamic
Loadsharing Type: Shar
System ID: 0x8000, 000f-e267-6c6a

Local:

<table>
<thead>
<tr>
<th>Port</th>
<th>Status</th>
<th>Priority</th>
<th>Oper-Key</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE1/0/6</td>
<td>S</td>
<td>32768</td>
<td>2</td>
<td>{ACDEF}</td>
</tr>
<tr>
<td>GE1/0/12</td>
<td>S</td>
<td>32768</td>
<td>2</td>
<td>{ACDEF}</td>
</tr>
</tbody>
</table>

Remote:

<table>
<thead>
<tr>
<th>Actor</th>
<th>Partner</th>
<th>Priority</th>
<th>Oper-Key</th>
<th>SystemID</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE1/0/6</td>
<td>32</td>
<td>32768</td>
<td>2</td>
<td>0x8000, 000f-e267-57ad</td>
<td>{ACDEF}</td>
</tr>
<tr>
<td>GE1/0/12</td>
<td>26</td>
<td>32768</td>
<td>2</td>
<td>0x8000, 000f-e267-57ad</td>
<td>{ACDEF}</td>
</tr>
</tbody>
</table>

Table 1-5 display link-aggregation verbose command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| Loadsharing Type | Loadsharing type:
 - Shar for load sharing
 - NonS for non-load sharing |
| Port Status | Port state: Selected or unselected. |
| Flags | One-octet LACP state flags field. From the least to the most significant bit, they are represented by A through H as follows:
 - A indicates whether LACP is enabled. 1 for enabled and 0 for disabled.
 - B indicates the timeout control value. 1 for short timeout, and 0 for long timeout.
 - C indicates whether the link is considered as aggregatable by the sending system. 1 for true, and 0 for false.
 - D indicates whether the link is considered as synchronized by the sending system. 1 for true, and 0 for false.
 - E indicates whether the sending system considers that collection of incoming frames is enabled on the link. 1 for true and 0 for false.
 - F indicates whether the sending system considers that distribution of outgoing frames is enabled on the link. 1 for true and 0 for false.
 - G indicates whether the receive state machine of the sending system is using default operational partner information. 1 for true and 0 for false.
 - H indicates whether the receive state machine of the sending system is in the expired state. 1 for true and 0 for false.
If a flag bit is set to 1, the corresponding English letter that otherwise is not output is displayed. |
<p>| Aggregation Interface | Name of the aggregate interface |
| Aggregation Mode | Type of the aggregation group: Static for static aggregation, and Dynamic for dynamic aggregation. |
| System ID | Local system ID, which comprises the system LACP priority and the system MAC address. |
| Local: | Other information of the local end, including the member ports, port state, port LACP priority, operational key, and LACP protocol state flags. |</p>
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote: Actor Partner</td>
<td>Detailed information about the remote end, including the corresponding local port, port ID, port LACP priority, operational key, system ID, and LACP protocol state flags</td>
</tr>
<tr>
<td>Priority Oper-Key SystemID Flag</td>
<td></td>
</tr>
</tbody>
</table>

enable snmp trap updown

Syntax

```
enable snmp trap updown
undo enable snmp trap updown
```

View

Layer-2 aggregate interface view

Default Level

2: System level

Parameters

None

Description

Use the `enable snmp trap updown` command to enable linkUp/linkDown trap generation for the current aggregate interface.

Use the `undo enable snmp trap updown` command to disable linkUp/linkDown trap generation for the current aggregate interface.

By default, linkUp/linkDown trap generation is enabled for an aggregate interface.

Note that for an aggregate interface to generate linkUp/linkDown traps when its link state changes, you must also enable linkUp/linkDown trap generation globally with the `snmp-agent trap enable [standard [linkdown | linkup] *]` command.

Refer to `SNMP Commands` in the `System Volume` for information about the `snmp-agent trap enable` command.

Examples

```
# Enable linkUp/linkDown trap generation on interface Bridge-aggregation 1.
<Sysname> system-view
[Sysname] snmp-agent trap enable
[Sysname] interface bridge-aggregation 1
[Sysname-Bridge-Aggregation1] enable snmp trap updown
```

interface bridge-aggregation

Syntax

```
interface bridge-aggregation interface-number
```
undo interface bridge-aggregation interface-number

View

System view

Default Level

2: System level

Parameters

interface-number: Layer-2 aggregate interface number. The value range is 1 to 128

Description

Use the interface bridge-aggregation command to create a Layer-2 aggregate interface and enter the Layer-2 aggregate interface view.

Use the undo interface bridge-aggregation command to remove a Layer-2 aggregate interface.

Upon creation of a Layer-2 aggregate interface, a Layer-2 aggregation group numbered the same is created automatically. Removing the Layer-2 aggregate interface also removes the Layer-2 aggregation group. At the same time, the member ports of the aggregation group, if any, leave the aggregation group.

Examples

Create Layer-2 aggregate interface Bridge-aggregation 1.
<Sysname> system-view
[Sysname] interface bridge-aggregation 1
[Sysname-Bridge-Aggregation1]

lACP port-priority

Syntax

lACP port-priority port-priority
undo lACP port-priority

View

Ethernet interface view

Default Level

2: System level

Parameters

port-priority: LACP port priority, in the range of 0 to 65535.

Description

Use the lACP port-priority command to set the LACP priority of a port.

Use the undo lACP port-priority command to restore the default.

The default LACP priority of a port is 32768.
Examples

Set the LACP priority of GigabitEthernet 1/0/1 to 64.
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] lacp port-priority 64

IACP system-priority

Syntax

lacp system-priority system-priority
undo lacp system-priority

View

System view

Default Level

2: System level

Parameters

system-priority: LACP priority of the local system, in the range of 0 to 65535.

Description

Use the lacp system-priority command to set the LACP priority of the local system.
Use the undo lacp system-priority command to restore the default.
By default, the system LACP priority is 32768.

Examples

Set the system LACP priority to 64.
<Sysname> system-view
[Sysname] lacp system-priority 64

Link-aggregation load-sharing mode (system view)

Syntax

link-aggregation load-sharing mode { destination-ip | destination-mac | destination-port | ingress-port | source-ip | source-mac | source-port } *
undo link-aggregation load-sharing mode

View

System view

Default Level

2: System level
Parameters

destination-ip: Specifies to perform load sharing in link aggregation groups based on destination IP address.

destination-mac: Specifies to perform load sharing in load-sharing link aggregation groups based on destination MAC address.

destination-port: Specifies to perform load sharing in load-sharing link aggregation groups based on destination port.

ingress-port: Specifies to perform load sharing in load-sharing link aggregation groups based on ingress port.

source-ip: Specifies to perform load sharing in load-sharing link aggregation groups based on source IP address.

source-mac: Specifies to perform load sharing in load-sharing link aggregation groups based on source MAC address.

source-port: Specifies to perform load sharing in load-sharing link aggregation groups based on source port.

Description

Use the `link-aggregation load-sharing mode` command to configure the link aggregation load sharing mode.

Use the `undo link-aggregation load-sharing mode` command to restore the default.

By default, link aggregation load sharing for Layer-2 packets is performed based on source MAC addresses and destination MAC addresses, and that for Layer-3 packets is performed based on source IP addresses and destination IP addresses.

Note that:

- The load sharing mode you configured overwrites rather than adds to the old one, if any. Therefore, to change the load sharing mode from source mac based to source and destination mac based for example, you must configure the `link-aggregation load-sharing mode destination-mac source-mac` to overwrite the `link-aggregation load-sharing mode destination-mac` command rather than configure the `link-aggregation load-sharing mode source-mac` command.

- In case an unsupported load sharing mode is configured, you will be prompted of the error..

Examples

```
# Configure the link aggregation load sharing mode as destination MAC-based.
<Sysname> system-view
[Sysname] link-aggregation load-sharing mode destination-mac
```

link-aggregation load-sharing mode (aggregate interface view)

Syntax

```
link-aggregation load-sharing mode { destination-ip | destination-mac | source-ip | source-mac | } *
undo link-aggregation load-sharing mode
```
View

Layer 2 aggregate interface view

Default Level

2: System level

Parameters

destination-ip: Specifies to perform load sharing in link aggregation groups based on destination IP address.
destination-mac: Specifies to perform load sharing in load-sharing link aggregation groups based on destination MAC address.
source-ip: Specifies to perform load sharing in load-sharing link aggregation groups based on source IP address.
source-mac: Specifies to perform load sharing in load-sharing link aggregation groups based on source MAC address.

Description

Use the link-aggregation load-sharing mode command to configure the aggregation group-specific link aggregation load sharing mode.

Use the undo link-aggregation load-sharing mode command to restore the default.

The global link aggregation load sharing mode is the default for all link aggregation groups.

Note that:

- The load sharing mode you configured overwrites rather than adds to the old one, if any. Therefore, to change the load sharing mode from source mac based to source and destination mac based for example, you must configure the link-aggregation load-sharing mode destination-mac source-mac to overwrite the link-aggregation load-sharing mode destination-mac command rather than configure the link-aggregation load-sharing mode source-mac command.
- In case an unsupported load sharing mode is configured, you will be prompted of the error.

Examples

Configure the load sharing mode of the link aggregation group corresponding to Bridge-Aggregation 10 as destination MAC-based.
<Sysname> system-view
<Sysname> interface bridge-aggregation 10
<Sysname-Bridge-Aggregation10> link-aggregation load-sharing mode destination-mac

link-aggregation mode

Syntax

link-aggregation mode dynamic
undo link-aggregation mode

View

Layer-2 aggregate interface view
Default Level

2: System level

Parameters

None

Description

Use the `link-aggregation mode dynamic` command to configure an aggregation group to work in dynamic aggregation mode.

Use the `undo link-aggregation mode` command to restore the default.

By default, an aggregation group works in static aggregation mode.

If there is any member port in an aggregation group, you cannot modify the aggregation mode of the aggregation group.

Examples

Configure the aggregation group of Bridge-aggregation 1 to work in dynamic aggregation mode.

```plaintext
<Sysname> system-view
[Sysname] interface bridge-aggregation 1
[Sysname-Bridge-Aggregation1] link-aggregation mode dynamic
```

port link-aggregation group

Syntax

```
port link-aggregation group number
undo port link-aggregation group
```

View

Ethernet interface view

Default Level

2: System level

Parameters

number: Aggregate group number. The value range is 1 to 128.

Description

Use the `port link-aggregation group` command to assign the current Ethernet interface to the specified aggregation group.

Use the `undo port link-aggregation group` command to remove the current Ethernet interface from the specified aggregation group.

Note that

- If the Ethernet interface is a Layer-2 interface, you must assign it to a Layer-2 aggregation group.
- An Ethernet interface can belong to only one aggregation group.
Examples

Assign GigabitEthernet 1/0/1 to aggregation group 22.
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] port link-aggregation group 22

reset counters interface

Syntax

reset counters interface [bridge-aggregation [interface-number]]

View

User view

Default Level

2: System level

Parameters

bridge-aggregation: Clears statistics for Layer 2 aggregate interfaces.

interface-number: Aggregate interface number. If the interface-number argument is not specified, this command clears statistics of all aggregate interfaces of the specified type.

Description

Use the reset counters interface command to clear the statistics of the specified aggregate interface or interfaces.

Before collecting statistics for a Layer 2 aggregate interface within a specific period, you need to clear the existing statistics of the interface.

Note that:

- If none of the keywords and argument is specified, this command clears the statistics of all interfaces in the system.
- If only the bridge-aggregation or route-aggregation keyword is specified, the command clears the statistics of all Layer 2 aggregate interfaces.
- If the bridge-aggregation interface-number or route-aggregation interface-number keyword and argument combination is specified, this command clears the statistics of the specified Layer 2 aggregate interface.

Examples

Clear the statistics of Layer 2 aggregate interface bridge-aggregation 1.
<Sysname> reset counters interface bridge-aggregation 1

reset lacp statistics

Syntax

reset lacp statistics [interface interface-type interface-number [to interface-type interface-number]]
View

User view

Default Level

1: Monitor level

Parameters

interface-type interface-number: Interface type and interface number.

to: Specifies an interface range in the form of *interface-type interface-number to interface-type interface-number*, where the start interface number must be smaller than the end interface number. Note that both the start interface and the end interface are inclusive.

Description

Use the `reset lacp statistics` command to clear the LACP statistics for the specified interface(s) or all interfaces if no interface is specified.

Related commands: `display link-aggregation member-port`.

Examples

```
# Clear the LACP statistics for all Ethernet ports.
<Sysname> reset lacp statistics
```

shutdown

Syntax

`shutdown`

`undo shutdown`

View

Layer-2 aggregate interface view

Default Level

2: System level

Parameters

None

Description

Use the `shutdown` command to shut down the current aggregate interface/subinterface.

Use the `undo shutdown` command to bring up the current aggregate interface/subinterface.

By default, aggregate interfaces are enabled.

Examples

```
# Shut down aggregate interface Bridge-Aggregation 1.
<Sysname> system-view
```
[Sysname] interface bridge-aggregation 1
[Sysname-Bridge-Aggregation1] shutdown
Port Isolation Configuration Commands

display port-isolate group

Syntax

display port-isolate group

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the **display port-isolate group** command to display information about the default isolation group (isolation group 1).

Examples

On a single-isolation-group device, display information about the isolation group.

<Sysname> display port-isolate group
Port-isolate group information:
Uplink port support: NO
Group ID: 1
Group members:
 GigabitEthernet1/0/1

Table 2-1 **display port-isolate group** command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port-isolate group information</td>
<td>Display the information of a port-isolation group</td>
</tr>
<tr>
<td>Uplink port support</td>
<td>Indicates whether the uplink port is supported.</td>
</tr>
<tr>
<td>Group ID</td>
<td>Isolation group number</td>
</tr>
<tr>
<td>Group members</td>
<td>Isolated ports in the isolation group</td>
</tr>
</tbody>
</table>
port-isolate enable

Syntax

 port-isolate enable
 undo port-isolate enable

View

 Ethernet interface view, Layer-2 aggregate interface view, port group view

Default Level

 2: System level

Parameters

 None

Description

 Use the **port-isolate enable** command to add a port in Ethernet interface view or a group of ports in port group view to an isolation group as isolated ports.

 Use the **undo port-isolate enable** command to remove the port or ports from the isolation group.

 - In Ethernet interface view, the configuration applies to the current port.
 - In port group view, the configuration applies to all ports in the port group.
 - In Layer-2 aggregate interface view, the configuration applies to the Layer-2 aggregate interface and all its member ports. After you make the configuration, the system starts applying the configuration to the aggregate interface and its aggregation member ports. If the system fails to do that on the aggregate interface, it stops applying the configuration to the aggregation member ports. If it fails to do that on an aggregation member port, it simply skips the port and moves to the next port. For detailed information about Layer-2 aggregate interfaces, refer to Link Aggregation Configuration in the Access Volume.

Examples

 # On a single-isolation-group device, assign ports GigabitEthernet 1/1 and GigabitEthernet 1/2 to the isolation group.
 <Sysname> system-view
 [Sysname] interface GigabitEthernet 1/0/1
 [Sysname-GigabitEthernet1/0/1] port-isolate enable
 [Sysname-GigabitEthernet1/0/1] quit
 [Sysname] interface GigabitEthernet 1/0/2
 [Sysname-GigabitEthernet1/0/2] port-isolate enable

 # On a single-isolation-group device, assign all the ports within port group aa to the isolation group.
 <Sysname> system-view
 [Sysname] port-group manual aa
 [Sysname-port-group-manual-aa] group-member GigabitEthernet 1/0/1
 [Sysname-port-group-manual-aa] group-member GigabitEthernet 1/0/2
 [Sysname-port-group-manual-aa] group-member GigabitEthernet 1/0/3
 [Sysname-port-group-manual-aa] group-member GigabitEthernet 1/0/4
 [Sysname-port-group-manual-aa] port-isolate enable
Assign Layer-2 aggregate interface Bridge-aggregation 1 and its member ports to the isolation group on a single-isolation-group device.

```
<Sysname> system-view
<Sysname> interface bridge-aggregation 1
<Sysname-Bridge-Aggregation1> quit
<Sysname> interface GigabitEthernet 1/0/1
<Sysname-GigabitEthernet1/0/1] port link-aggregation group 1
<Sysname-GigabitEthernet1/0/1] quit
<Sysname> interface GigabitEthernet 1/0/2
<Sysname-GigabitEthernet1/0/2] port link-aggregation group 1
<Sysname-GigabitEthernet1/0/2] quit
<Sysname> interface bridge-aggregation 1
<Sysname-Bridge-Aggregation1] port-isolate enable
```
active region-configuration

Syntax

 active region-configuration

View

 MST region view

Default Level

 2: System level

Parameters

 None

Description

 Use the **active region-configuration** command to activate your MST region configuration.

Note that:

- The configuration of MST region–related parameters, especially the VLAN-to-instance mapping table, will cause MSTP to launch a new spanning tree calculation process, which may result in network topology instability. To reduce the possibility of topology instability caused by configuration, MSTP will not immediately launch a new spanning tree calculation process when processing MST region–related configurations; instead, such configurations will take effect only after you activate the MST region–related parameters using this command, or enable MSTP using the **stp enable** command in the case that MSTP is not enabled.

- Before running this command, you are recommended to use the **check region-configuration** command to check whether the MST region configurations to be activated are correct. You should run this command only if the result returns positive.

Related commands: **instance**, **region-name**, **revision-level**, **vlan-mapping modulo**, **check region-configuration**.

Examples

 # Map VLAN 2 to MSTI 1 and activate MST region configuration manually.

 <Sysname> system-view
 [Sysname] stp region-configuration
 [Sysname-mst-region] instance 1 vlan 2
 [Sysname-mst-region] active region-configuration
bpdu-drop any

Syntax

bpdu-drop any
undo bpdu-drop any

View

Ethernet interface view, port group view, Layer-2 aggregate interface view

Default Level

2: System level

Parameters

None

Description

Use the **bpdu-drop any** command to enable BPDU dropping on the Ethernet port.

Use the **undo bpdu-drop any** command to disable BPDU dropping on the Ethernet port.

By default, BPDU dropping is disabled.

In a STP-enabled network, some users may send BPDU packets to the switch continuously in order to destroy the network. When a switch receives the BPDU packets, it will forward them to other switches. As a result, STP calculation is performed repeatedly, which may occupy too much CPU of the switches or cause errors in the protocol state of the BPDU packets.

In order to avoid this problem, you can enable BPDU dropping on Ethernet ports. Once the function is enabled on a port, the port will not receive or forward any BPDU packets. In this way, the switch is protected against the BPDU packet attack and the STP calculation correctness is ensured.

Examples

```bash
# Enable BPDU dropping on GigabitEthernet 1/0/1.
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] bpdu-drop any
```

check region-configuration

Syntax

check region-configuration

View

MST region view

Default Level

2: System level

Parameters

None
Description

Use the `check region-configuration` command to view MST region configuration information not activated yet, including the region name, revision level, and VLAN-to-instance mapping settings.

Note that:

- Two or more MSTP-enabled devices belong to the same MST region only if they are configured to have the same format selector, MST region name, the same VLAN-to-instance mapping entries in the MST region and the same MST region revision level, and they are interconnected via a physical link.
- Before activating the configurations of an MST region, you are recommended to use this command to check whether the MST region configurations are correct. You should activate the MST region configurations only if the result returns positive.

Related commands: `instance`, `region-name`, `revision-level`, `vlan-mapping modulo`, `active region-configuration`.

Examples

View MST region configurations that are not yet activated.

```plaintext
<Sysname> system-view
[Sysname] stp region-configuration
[Sysname-mst-region] check region-configuration
```

Admin Configuration

- Format selector :0
- Region name :000fe26a58ed
- Revision level :0

<table>
<thead>
<tr>
<th>Instance</th>
<th>Vlans Mapped</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 to 9, 11 to 4094</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 3-1 `check region-configuration` command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format selector</td>
<td>Format selector of the MST region, which defaults to 0 and is not configurable.</td>
</tr>
<tr>
<td>Region name</td>
<td>MST region name</td>
</tr>
<tr>
<td>Revision level</td>
<td>Revision level of the MST region</td>
</tr>
<tr>
<td>Instance Vlans Mapped</td>
<td>VLAN-to-instance mappings in the MST region</td>
</tr>
</tbody>
</table>

display stp

Syntax

```plaintext
display stp [ instance instance-id ] [ interface interface-list ] [ slot slot-number ] [ brief ]
```

View

Any view
Default Level

1: Monitor level

Parameters

- **instance instance-id**: Displays the status and statistics information of a particular MSTI. The minimum value of `instance-id` is 0, representing the common internal spanning tree (CIST), and the maximum value of `instance-id` is 32.

- **interface interface-list**: Displays the MSTP status and statistics information on the ports specified by a port list, in the format of `interface-list = { interface-type interface-number [to interface-type interface-number] }&<1-10>`, where `&<1-10>` indicates that you can specify up to 10 ports or port ranges.

- **slot slot-number**: Displays the spanning tree information of the specified IRF member device. The slot-number argument is the member number of the device in the IRF, which you can display with the `display irf` command. The value range for the slot-number argument depends on the number of members and numbering conditions in the current IRF. If no IRF exists, the slot-number argument is the current device number.

- **brief**: Displays brief MSTP status and statistics information.

Description

Use the `display stp` command to view the MSTP status and statistics information.

Based on the MSTP status and statistics information, you can analyze and maintain the network topology or check whether MSTP is working normally.

Note that:

- If you do not specify any MSTI or port, this command will display the MSTP information of all MSTIs on all ports. The displayed information is sorted by MSTI ID and by port name in each MSTI.
- If you specify an MSTI but not a port, this command will display the MSTP information on all ports in that MSTI. The displayed information is sorted by port name.
- If you specify some ports but not an MSTI, this command will display the MSTP information of all MSTIs on the specified ports. The displayed information is sorted by MSTI ID, and by port name in each MSTI.
- If you specify both an MSTI ID and a port list, this command will display the MSTP information on the specified ports in the specified MSTI. The displayed information is sorted by port name.

The MSTP status information includes:

- CIST global parameters: Protocol work mode, device priority in the CIST (Priority), MAC address, hello time, max age, forward delay, maximum hops, common root of the CIST, external path cost from the device to the CIST common root, regional root, the internal path cost from the device to the regional root, CIST root port of the device, and status of the BPDU guard function (enabled or disabled).

 - CIST port parameters: Port status, role, priority, path cost, designated bridge, designated port, edge port/non-edge port, whether connecting to a point-to-point link, maximum transmission rate (transmit limit), status of the root guard function (enabled or disabled), BPDU format, boundary port/non-boundary port, hello time, max age, forward delay, message age, remaining hops, and whether rapid state transition enabled for designated ports.
• MSTI global parameters: MSTI ID, bridge priority of the MSTI, regional root, internal path cost, MSTI root port, and master bridge.
• MSTI port parameters: Port status, role, priority, path cost, designated bridge, designated port, remaining hops, and whether rapid state transition enabled (for designated ports).

The statistics information includes:
• The number of TCN BPDUs, configuration BPDUs, RST BPDUs and MST BPDUs sent from each port
• The number of TCN BPDUs, configuration BPDUs, RST BPDUs, MST BPDUs and wrong BPDUs received on each port
• The number of BPDUs discarded on each port

Related commands: reset stp.

Examples

View the brief MSTP status and statistics information.
<Sysname> display stp instance 0 interface gigabitethernet 1/0/1 to gigabitethernet 1/0/4 brief

<table>
<thead>
<tr>
<th>MSTID</th>
<th>Port</th>
<th>Role</th>
<th>STP State</th>
<th>Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>GigabitEthernet1/0/1</td>
<td>DESI</td>
<td>FORWARDING</td>
<td>NONE</td>
</tr>
<tr>
<td>0</td>
<td>GigabitEthernet1/0/2</td>
<td>DESI</td>
<td>FORWARDING</td>
<td>NONE</td>
</tr>
<tr>
<td>0</td>
<td>GigabitEthernet1/0/3</td>
<td>DESI</td>
<td>FORWARDING</td>
<td>NONE</td>
</tr>
<tr>
<td>0</td>
<td>GigabitEthernet1/0/4</td>
<td>DESI</td>
<td>FORWARDING</td>
<td>NONE</td>
</tr>
</tbody>
</table>

Table 3-2 display stp brief command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSTID</td>
<td>MSTI ID in the MST region</td>
</tr>
<tr>
<td>Port</td>
<td>Port name, corresponding to each MSTI</td>
</tr>
</tbody>
</table>

Role
Port role, which can be one of the following:
- ALTE: The port is an alternate port
- BACK: The port is a backup port
- ROOT: The port is a root port
- DESI: The port is a designated port
- MAST: The port is a master port
- DISA: The port is disabled

STP State
MSTP status on the port, which can be:
- FORWARDING: The port learns MAC addresses and forwards user traffic
- DISCARDING: The port does not learn MAC addresses or forward user traffic
- LEARNING: The port learns MAC addresses but does not forward user traffic

Protection
Protection type on the port, which can be:
- ROOT: Root guard
- LOOP: Loop guard
- BPDU: BPDU guard
- NONE: No protection

View the MSTP status and statistics information.
<Sysname> display stp

-------[CIST Global Info][Mode MSTP]-------
CIST Bridge :32768.000f-e200-2200
Bridge Times :Hello 2s MaxAge 20s FwDly 15s MaxHop 20
CIST Root/ERPC :0.00e0-fc0e-6554 / 200200
CIST RegRoot/IRPC :32768.000f-e200-2200 / 0
CIST RootPortId :128.48
BPDU-Protection :disabled
Bridge Config-
Digest-Snooping :disabled
TC or TCN received :2
Time since last TC :0 days 0h:5m:42s

----[Port1(GigabitEthernet1/0/1)][FORWARDING]----
Port Protocol :enabled
Port Role :CIST Designated Port
Port Priority :128
Port Cost(Legacy) :Config=auto / Active=200
Desg. Bridge/Port :32768.000f-e200-2200 / 128.2
Port Edged :Config=disabled / Active=disabled
Point-to-point :Config=auto / Active=true
Transmit Limit :10 packets/hello-time
Protection Type :None
MST BPDU Format :Config=auto / Active=legacy
Port Config-
Digest-Snooping :disabled
Rapid transition :false
Num of Vlans Mapped :1
PortTimes :Hello 2s MaxAge 20s FwDly 15s MsqAge 2s RemHop 20
BPDU Sent :186
 TCN: 0, Config: 0, RST: 0, MST: 186
BPDU Received :0
 TCN: 0, Config: 0, RST: 0, MST: 0

-------[MSTI 1 Global Info]-------
MSTI Bridge ID :0.000f-e23e-9ca4
MSTI RegRoot/IRPC :0.000f-e23e-9ca4 / 0
MSTI RootPortId :0.0
MSTI Root Type :PRIMARY root
Master Bridge :32768.000f-e23e-9ca4
Cost to Master :0
TC received :0

View the MSTP status and statistics information when STP is not enabled.

<Sysname> display stp
Protocol Status :disabled
Protocol Std. :IEEE 802.1s
Version :3
CIST Bridge-Prio. : 32768
MAC address: 000f-e200-8048
Max age(s): 20
Forward delay(s): 15
Hello time(s): 2
Max hops: 20

<table>
<thead>
<tr>
<th>Table 3-3 display stp command output description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field</td>
</tr>
<tr>
<td>CIST Bridge</td>
</tr>
<tr>
<td>Bridge Times</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CIST Root/ERPC</td>
</tr>
<tr>
<td>CIST RegRoot/IRPC</td>
</tr>
<tr>
<td>CIST RootPortId</td>
</tr>
<tr>
<td>BPDU-Protection</td>
</tr>
<tr>
<td>Bridge Config-Digest-Snooping</td>
</tr>
<tr>
<td>TC or TCN received</td>
</tr>
<tr>
<td>Time since last TC</td>
</tr>
<tr>
<td>[FORWARDING]</td>
</tr>
<tr>
<td>[DISCARDING]</td>
</tr>
<tr>
<td>[LEARNING]</td>
</tr>
<tr>
<td>Port Protocol</td>
</tr>
<tr>
<td>Port Role</td>
</tr>
<tr>
<td>Port Priority</td>
</tr>
<tr>
<td>Port Cost(Legacy)</td>
</tr>
<tr>
<td>Desg. Bridge/Port</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Port Edged</td>
</tr>
<tr>
<td>Point-to-point</td>
</tr>
<tr>
<td>Transmit Limit</td>
</tr>
<tr>
<td>Field</td>
</tr>
<tr>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Protection Type</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MST BPDU Format</td>
</tr>
<tr>
<td>Port Config-Digest-Snooping</td>
</tr>
<tr>
<td>Rapid transition</td>
</tr>
<tr>
<td>Num of Vlans Mapped</td>
</tr>
<tr>
<td>Port Times</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>BPDU Sent</td>
</tr>
<tr>
<td>BPDU Received</td>
</tr>
<tr>
<td>MSTI RegRoot/IRPC</td>
</tr>
<tr>
<td>MSTI RootPortId</td>
</tr>
<tr>
<td>MSTI Root Type</td>
</tr>
<tr>
<td>Master Bridge</td>
</tr>
<tr>
<td>Cost to Master</td>
</tr>
<tr>
<td>TC received</td>
</tr>
<tr>
<td>Protocol Status</td>
</tr>
<tr>
<td>Protocol Std.</td>
</tr>
<tr>
<td>Version</td>
</tr>
<tr>
<td>CIST Bridge-Prio.</td>
</tr>
<tr>
<td>MAC address</td>
</tr>
<tr>
<td>Max age(s)</td>
</tr>
<tr>
<td>Forward delay(s)</td>
</tr>
<tr>
<td>Hello time(s)</td>
</tr>
<tr>
<td>Max hops</td>
</tr>
</tbody>
</table>

display stp abnormal-port

Syntax

display stp abnormal-port
Use the `display stp abnormal-port` command to view the information about abnormally blocked ports.

Any of the following reasons may cause a port to be abnormally blocked:

- Root guard function
- Loop guard function
- MSTP BPDU format incompatibility protection function

Examples

```
# View information about abnormally blocked ports.
<Sysname> display stp abnormal-port
MSTID       Blocked Port                 Reason
1           GigabitEthernet1/0/1       ROOT-Protected
2           GigabitEthernet1/0/2       LOOP-Protected
2           GigabitEthernet1/0/3       Formatcompatibility-Protected
```

Table 3-4 `display stp abnormal-port` command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSTID</td>
<td>ID of the MSTI to which an abnormally blocked port belongs</td>
</tr>
<tr>
<td>Blocked Port</td>
<td>Name of an abnormally blocked port</td>
</tr>
<tr>
<td>Reason</td>
<td>Reason that caused abnormal blocking of the port.</td>
</tr>
<tr>
<td></td>
<td>• ROOT-Protected: root guard function</td>
</tr>
<tr>
<td></td>
<td>• LOOP-Protected: loop guard function</td>
</tr>
<tr>
<td></td>
<td>• Formatcompatibility-Protected: MSTP BPDU format incompatibility protection function</td>
</tr>
</tbody>
</table>

display stp down-port

Syntax

`display stp down-port`

View

Any view

Default Level

1: Monitor level
Parameters

None

Description

Use the `display stp down-port` command to display the information about ports blocked by STP protection functions.

These functions include:

- BPDU attack guard function
- MSTP BPDU format frequent change protection function

Examples

```
# View the information about ports blocked by STP protection functions.
<Sysname> display stp down-port
Down Port                     Reason
GigabitEthernet1/0/1      BPDU-Protected
GigabitEthernet1/0/2      Formatfrequency-Protected
```

Table 3-5 `display stp abnormal-port` command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Down Port</td>
<td>Name of a blocked port</td>
</tr>
<tr>
<td>Reason</td>
<td>Reason that caused the port to be blocked.</td>
</tr>
<tr>
<td></td>
<td>BPDU-Protected: BPDU attack guard function</td>
</tr>
<tr>
<td></td>
<td>Formatfrequency-Protected: MSTP BPDU format frequent change protection function</td>
</tr>
</tbody>
</table>

display stp history

Syntax

```
display stp [ instance instance-id ] history [ slot slot-number ]
```

View

Any view

Default Level

0: Visit level

Parameters

- `instance instance-id`: Displays the historic port role calculation information of a particular MSTI. The minimum value of `instance-id` is 0, representing the common internal spanning tree (CIST), and the maximum value of `instance-id` is 32.
- `slot slot-number`: Displays the historic port role calculation information of the specified IRF member device. The slot-number argument is the member number of the device in the IRF, which you can display with the `display irf` command. The value range for the slot-number argument depends on the number of members and numbering conditions in the current IRF. If no IRF exists, the slot-number argument is the current device number.
Description

Use the **display stp history** command to view the historic port role calculation information of the specified MSTI or all MSTIs.

Note that:

- If you do not specify an MSTI ID, this command will display the historic port role calculation information of all MSTIs. The displayed information is sorted by MSTI ID, and by port role calculation time in each MSTI.
- If you specify an MSTI ID, this command will display the historic port role calculation information of only this specified MSTI by the sequence of port role calculation time.

Examples

View the historic port role calculation information of the IRF member device 1 in MSTI 2.

```bash
<Sysname> display stp instance 2 history slot 1
---------------------- STP slot 1 history trace ----------------------
------------------- Instance 2 ----------------------
Port GigabitEthernet1/0/1
 Role change   : ROOT->DESI (Aged)
 Time          : 2009/02/08 00:22:56
 Port priority : 0.00e0-fc01-6510 0 0.00e0-fc01-6510 128.1

Port GigabitEthernet1/0/2
 Role change   : ALTER->ROOT
 Time          : 2009/02/08 00:22:56
 Port priority : 0.00e0-fc01-6510 0 0.00e0-fc01-6510 128.2
```

Table 3-6 display stp history command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>Port name</td>
</tr>
<tr>
<td>Role change</td>
<td>A role change of the port ("Age" means that the change was caused by expiry of the received configuration BPDU)</td>
</tr>
<tr>
<td>Time</td>
<td>Time of port role calculation</td>
</tr>
<tr>
<td>Port priority</td>
<td>Port priority</td>
</tr>
</tbody>
</table>

display stp region-configuration

Syntax

display stp region-configuration

View

Any view

Default Level

1: Monitor level
Parameters

None

Description

Use the **display stp region-configuration** command to view the currently effective configuration information of the MST region, including the region name, revision level, and user-configured VLAN-to-instance mappings.

Related commands: **instance**, **region-name**, **revision-level**, **vlan-mapping modulo**.

Examples

```
# View the currently effective MST region configuration information.
<Sysname> display stp region-configuration
Oper Configuration
  Format selector    :0
  Region name        :hello
  Revision level     :0

  Instance   Vlans Mapped
              0       21 to 4094
              1       1 to 10
              2       11 to 20
```

Table 3-7 display stp region-configuration command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Format selector</td>
<td>MSTP-defined format selector, which defaults to 0 and is not</td>
</tr>
<tr>
<td></td>
<td>configurable</td>
</tr>
<tr>
<td>Region name</td>
<td>MST region name</td>
</tr>
<tr>
<td>Revision level</td>
<td>Revision level of the MST region, which can be configured using</td>
</tr>
<tr>
<td></td>
<td>the revision-level command and defaults to 0.</td>
</tr>
<tr>
<td>Instance Vlans Mapped</td>
<td>VLAN-to-instance mappings in the MST region</td>
</tr>
</tbody>
</table>

display stp root

Syntax

```
display stp root
```

View

Any view

Default Level

1: Monitor level

Parameters

None
Description

Use the `display stp root` command to view the root bridge information of all MSTIs.

Examples

```bash
# View the root bridge information of all MSTIs.
<Sysname> display stp root

<table>
<thead>
<tr>
<th>MSTID</th>
<th>Root Bridge ID</th>
<th>ExtPathCost</th>
<th>IntPathCost</th>
<th>Root Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00e0-fc0e-6554</td>
<td>200200</td>
<td>0</td>
<td>GigabitEthernet1/0/1</td>
</tr>
</tbody>
</table>
```

Table 3-8 display stp root command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSTID</td>
<td>MSTI ID</td>
</tr>
<tr>
<td>Root Bridge ID</td>
<td>Root bridge ID</td>
</tr>
<tr>
<td>ExtPathCost</td>
<td>External path cost. The device can automatically calculate the default path cost of a port, or alternatively, you can use the <code>stp cost</code> command to configure the path cost of a port.</td>
</tr>
<tr>
<td>IntPathCost</td>
<td>Internal path cost. The device can automatically calculate the default path cost of a port, or alternatively, you can use the <code>stp cost</code> command to configure the path cost of a port.</td>
</tr>
<tr>
<td>Root Port</td>
<td>Root port name (displayed only if a port of the current device is the root port of MSTIs)</td>
</tr>
</tbody>
</table>

display stp tc

Syntax

```bash
display stp [ instance instance-id ] tc [ slot slot-number ]
```

View

Any view

Default Level

0: Visit level

Parameters

- **instance instance-id**: Displays the statistics of TC/TCN BPDUs received and sent by all ports in the specified MSTI. The minimum value of `instance-id` is 0, representing the common internal spanning tree (CIST), and the maximum value of `instance-id` is 32.

- **slot slot-number**: Displays the statistics of TC/TCN BPDUs received and sent by all ports of the specified IRF member device. The slot-number argument is the member number of the device in the IRF, which you can display with the `display irf` command. The value range for the slot-number argument depends on the number of members and numbering conditions in the current IRF. If no IRF exists, the slot-number argument is the current device number.
Description

Use the `display stp tc` command to view the statistics of TC/TCN BPDUs received and sent by all ports in an MSTI or all MSTIs.

Note that:

- If you do not specify an MSTI ID, this command will display the statistics of TC/TCN BPDUs received and sent by all ports in all MSTIs. The displayed information is sorted by instance ID and by port name in each MSTI.
- If you specify an MSTI ID, this command will display the statistics of TC/TCN BPDUs received and sent by all ports in the specified MSTI, in port name order.

Examples

View the statistics of TC/TCN BPDUs received and sent by all ports on the IRF member device 1 in MSTI 0.

```bash
<Sysname> display stp instance 0 tc slot 1
```

---------- STP slot 1 TC or TCN count ----------
MSTID Port Receive Send
0 GigabitEthernet1/0/1 6 4
0 GigabitEthernet1/0/2 0 2

Table 3-9 display stp tc command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSTID</td>
<td>MSTI ID</td>
</tr>
<tr>
<td>Port</td>
<td>Port name</td>
</tr>
<tr>
<td>Receive</td>
<td>Number of TC/TCN BPDUs received on each port</td>
</tr>
<tr>
<td>Send</td>
<td>Number of TC/TCN BPDUs sent by each port</td>
</tr>
</tbody>
</table>

instance

Syntax

```
instance instance-id vlan vlan-list
undo instance instance-id [vlan vlan-list]
```

View

MST region view

Default Level

2: System level

Parameters

- `instance-id`: MSTI ID. The minimum value is 0, representing the CIST, and the maximum value is 32.
- `vlan vlan-list`: Specifies a VLAN list in the format of `vlan-list = {vlan-id [to vlan-id2] &<1-10>}`, in which `vlan-id` represents the VLAN ID and ranges from 1 to 4094. `&<1-10>` indicates you can specify up to 10 VLAN IDs or VLAN ID ranges.
Description

Use the `instance` command to map the specified VLANs to the specified MSTI. Use the `undo instance` command to remap the specified VLAN or all VLANs to the CIST (MSTI 0). By default, all VLANs are mapped to the CIST.

Notice that:

- If you specify no VLAN in the `undo instance` command, all VLANs mapped to the specified MSTI will be remapped to the CIST.
- You cannot map the same VLAN to different MSTIs. If you map a VLAN that has been mapped to an MSTI to a new MSTI, the old mapping will be automatically removed.
- After configuring this command, you need to run the `active region-configuration` command to activate the VLAN-to-instance mapping.

Related commands: `display stp region-configuration`, `check region-configuration`, `active region-configuration`.

Examples

```
# Map VLAN 2 to MSTI 1.
<Sysname> system-view
[Sysname] stp region-configuration
[Sysname-mst-region] instance 1 vlan 2
```

region-name

Syntax

```
region-name name
undo region-name
```

View

MST region view

Default Level

2: System level

Parameters

`name`: MST region name, a string of 1 to 32 characters.

Description

Use the `region-name` command to configure the MST region name.

Use the `undo region-name` command to restore the default MST region name.

By default, the MST region name of a device is its MAC address.

Note that:

- The MST region name, the VLAN-to-instance mapping table and the MSTP revision level of a device jointly determine the MST region to which the device belongs.
- After configuring this command, you need to run the `active region-configuration` command to activate the configured MST region name.
Related commands: instance, revision-level, vlan-mapping modulo, display stp region-configuration, check region-configuration, active region-configuration.

Examples

Set the MST region name of the device to hello.
<Sysname> system-view
[Sysname] stp region-configuration
[Sysname-mst-region] region-name hello

reset stp

Syntax

reset stp [interface interface-list]

View

User view

Default Level

1: Monitor level

Parameters

interface interface-list: Specifies a port list, in the format of interface-list = { interface-type interface-number [to interface-type interface-number] }&<1-10>, where &<1-10> indicates that you can specify up to 10 ports or port ranges.

Description

Use the reset stp command to clear the MSTP statistics information.

The MSTP statistics information includes the numbers of TCN BPDUs, configuration BPDUs, RST BPDUs and MST BPDUs sent/received through the specified ports (STP BPDUs and TCN BPDUs are counted only for the CIST).

Note that this command clears the spanning tree-related statistics information on the specified ports if you specify the interface-list argument; otherwise, this command clears the spanning tree-related statistics on all ports.

Related commands: display stp.

Examples

Clear the spanning tree-related statistics information on ports GigabitEthernet 1/0/1 through GigabitEthernet 1/0/3.
<Sysname> reset stp interface gigabitethernet 1/0/1 to gigabitethernet 1/0/3

revision-level

Syntax

revision-level level

undo revision-level
View

MST region view

Default Level

2: System level

Parameters

`level`: MSTP revision level, in the range of 0 to 65535.

Description

Use the **region-level** command to configure the MSTP revision level. Use the **undo region-level** command to restore the default MSTP revision level. By default, the MSTP revision level is 0.

Note that:
- The MSTP revision level, the MST region name and the VLAN-to-instance mapping table of a device jointly determine the MST region to which the device belongs. When the MST region name and VLAN-to-instance mapping table are both the same for two MST regions, you can still tell them apart by their MSTP revision levels.
- After configuring this command, you need to run the **active region-configuration** command to activate the configured MST region level.

Related commands: **instance**, **region-name**, **vlan-mapping modulo**, **display stp region-configuration**, **check region-configuration**, **active region-configuration**.

Examples

```none
# Set the MSTP revision level of the MST region to 5.
<Sysname> system-view
[Sysname] stp region-configuration
[Sysname-mst-region] revision-level 5
```

stp bpdu-protection

Syntax

```none
stp bpdu-protection
undo stp bpdu-protection
```

View

System view

Default Level

2: System level

Parameters

None
Description

Use the **stp bpdu-protection** command to enable the BPDU guard function.
Use the **undo stp bpdu-protection** command to disable the BPDU guard function.
By default, the BPDU guard function is disabled.

Examples

Enable the BPDU guard function.

```plaintext
<Sysname> system-view
<Sysname> stp bpdu-protection
```

stp bridge-diameter

Syntax

```plaintext
stp bridge-diameter diameter
undo stp bridge-diameter
```

View

System view

Default Level

2: System level

Parameters

- **diameter**: Specifies the switched network diameter, in the range of 2 to 7.

Description

Use the **stp bridge-diameter** command to specify the network diameter, namely the maximum possible number of stations between any two terminal devices on the switched network.
Use the **undo stp bridge-diameter** command to restore the default.
By default, the network diameter of the switched network is 7.

Note that:
- An appropriate setting of hello time, forward delay and max age can speed up network convergence. The values of these timers are related to the network size. You can set these three timers indirectly by setting the network diameter. Based on the network diameter you configured, MSTP automatically sets an optimal hello time, forward delay, and max age for the device. With the network diameter set to 7 (the default), the three timer are also set to their defaults.
- This configuration must be configured on the root bridge and is effective for the CIST only, not for MSTIs.

Related commands: **stp timer forward-delay**, **stp timer hello**, **stp timer max-age**.

Examples

Set the network diameter of the switched network to 5.

```plaintext
<Sysname> system-view
<Sysname> stp bridge-diameter 5
```
stp compliance

Syntax

```
stp compliance { auto | dot1s | legacy }  
undo stp compliance
```

View

Ethernet interface view, port group view, Layer 2 aggregate interface view

Default Level

2: System level

Parameters

- **auto**: Configures the port(s) to recognize the MSTP BPDU format automatically and accordingly determine the format of MSTP BPDUs to send.
- **dot1s**: Configures the port(s) to receive and send only standard-format (802.1s-compliant) MSTP BPDUs.
- **legacy**: Configures the port(s) to receive and send only compatible-format MSTP BPDUs.

Description

Use the **stp compliance** command to configure the mode the specified port(s) will use to recognize and send MSTP BPDUs.

Use the **undo stp compliance** command to restore the system default.

By default, a port automatically recognizes the formats of received MSTP packets and determines the formats of MSTP packets to be sent based on the recognized formats.

Note that:
- Configured in Ethernet interface view, the setting takes effect on the current interface only; configured in port group view, the setting takes effect on all ports in the port group.
- Configured in Layer 2 aggregate interface view, the setting takes effect only on the aggregate interface; configured on a member port in an aggregation group, the setting can take effect only after the port leaves the aggregation group.

Examples

```
# Configure GigabitEthernet 1/0/1 to receive and send only standard-format (802.1s) MSTP packets.
<Sysname> system-view
>Sysname] interface gigabitethernet 1/0/1
>Sysname-GigabitEthernet1/0/1] stp compliance dot1s
```

stp config-digest-snooping

Syntax

```
stp config-digest-snooping
undo stp config-digest-snooping
```
View

System view, Ethernet interface view, port group view, Layer 2 aggregate interface view

Default Level

2: System level

Parameters

None

Description

Use the `stp config-digest-snooping` command to enable Digest Snooping.
Use the `undo stp config-digest-snooping` command to disable Digest Snooping.
The feature is disabled by default.

Note that:

- Configured in system view, the setting takes effect globally; configured in Ethernet interface view, the setting takes effect on the current interface only; configured in port group view, the setting takes effect on all ports in the port group.
- Configured in Layer 2 aggregate interface view, the setting takes effect only on the aggregate interface; configured on a member port in an aggregation group, the setting can take effect only after the port leaves the aggregation group.
- You need to enable this feature both globally and on ports connected to third-party devices to make it take effect. It is recommended to enable the feature on all associated ports first and then globally, making all configured ports take effect at the same time to minimize the impact on the network, and disable the feature globally to disable it on all associated ports.

Related commands: `display stp`.

Examples

Enable Digest Snooping on GigabitEthernet 1/0/1 and then globally.

```
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] stp config-digest-snooping
[Sysname-GigabitEthernet1/0/1] quit
[Sysname] stp config-digest-snooping
```

stp cost

Syntax

```
stp [ instance instance-id ] cost cost
undo stp [ instance instance-id ] cost
```

View

Ethernet interface view, port group view, Layer 2 aggregate interface view

Default Level

2: System level
Parameters

instance instance-id: Sets the path cost of the port(s) in a particular MSTI. The minimum value of instance-id is 0, representing the CIST, and the maximum value of instance-id is 32.

cost: Path cost of the port, the effective range of which depends on the path cost calculation standard adopted.

- With the IEEE 802.1d-1998 standard selected for path cost calculation, the cost argument ranges from 1 to 65535.
- With the IEEE 802.1t standard selected for path cost calculation, the cost argument ranges from 1 to 200000000.
- With the private standard selected for path cost calculation, the cost argument ranges from 1 to 200000.

Description

Use the stp cost command to set the path cost of the port(s) in the specified MSTI or all MSTIs.

Use the undo stp cost command to restore the system default.

By default, the device automatically calculates the path costs of ports in each MSTI based on the corresponding standard.

Note that:

- Configured in Ethernet interface view, the setting takes effect on the current interface only; configured in port group view, the setting takes effect on all ports in the port group.
- Configured in Layer 2 aggregate interface view, the setting takes effect only on the aggregate interface; configured on a member port in an aggregation group, the setting can take effect only after the port leaves the aggregation group.
- Path cost is an important factor in spanning tree calculation. Setting different path costs for a port in MSTIs allows VLAN traffic flows to be forwarded along different physical links, thus achieving VLAN-based load balancing.
- The path cost setting of a port can affect the role selection of the port. When the path cost of a port is changed, MSTP will re-compute the role of the port and initiate a state transition.

Related commands: display stp.

Examples

Set the path cost of port GigabitEthernet 1/0/3 in MSTI 2 to 200.
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/3
[Sysname-GigabitEthernet1/0/3] stp instance 2 cost 200

stp edged-port

Syntax

stp edged-port { enable | disable }

undo stp edged-port

View

Ethernet interface view, port group view, Layer 2 aggregate interface view
Default Level

2: System level

Parameters

enable: Configures the current port(s) to be an edge port or edge ports.

disable: Configures the current port(s) to be a non-edge port or non-edge ports.

Description

Use the `stp edged-port enable` command to configure the port(s) as an edge port or ports.

Use the `undo stp edged-port` command to restore the default.

All ports are non-edge ports by default.

Note that:

- Configured in Ethernet interface view, the setting takes effect on the current interface only; configured in port group view, the setting takes effect on all ports in the port group.
- Configured in Layer 2 aggregate interface view, the setting takes effect only on the aggregate interface; configured on a member port in an aggregation group, the setting can take effect only after the port leaves the aggregation group.
- If a port directly connects to a user terminal rather than another device or a shared LAN segment, this port is regarded as an edge port. When the network topology changes, an edge port will not cause a temporary loop. Therefore, configuring a port as an edge port can enable the port to transition to the forwarding state rapidly. We recommend that you configure a port directly connecting to a user terminal as an edge port to enable it to transition to the forwarding state rapidly.
- Normally, configuration BPDUs from other devices cannot reach an edge port because it does not connect to any other device. Before the BPDU guard function is enabled, if a port receives a configuration BPDU, the port is working actually as a non-edge port even if you have configured it as an edge port.

Examples

```
# Configure GigabitEthernet 1/0/1 as an edge port.

<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] stp edged-port enable
```

stp enable

Syntax

```
stp enable
undo stp enable
```

View

System view, Ethernet interface view, port group view, Layer 2 aggregate interface view

Default Level

2: System level
Parameters

None

Description

Use the `stp enable` command to enable MSTP globally in system view, on a port in interface view, or on multiple ports in port group view.

Use the `undo stp enable` command to disable MSTP globally or on the port(s).

By default, MSTP is enabled on all ports and globally.

Note that:

- MSTP takes effect when it is enabled both globally and on the port.
- Configured in system view, the setting takes effect globally; configured in Ethernet interface view, the setting takes effect on the current interface only; configured in port group view, the setting takes effect on all ports in the port group; configured in Layer 2 aggregate interface view, the setting takes effect only on the aggregate interface; configured on a member port in an aggregation group, the setting can take effect only after the port leaves the aggregation group.
- After you enable MSTP, the device works in STP-compatible mode, RSTP mode or MSTP mode depending on the MSTP mode setting.
- After being enabled, MSTP dynamically maintains the spanning tree status of VLANs based on received configuration BPDUs; after being disabled, it stops maintaining the spanning tree status.

Related commands: `stp mode`.

Examples

```
# Disable the MSTP feature globally.
<Sysname> system-view
[Sysname] undo stp enable

# Disable MSTP on port GigabitEthernet 1/0/1.
<Sysname> system-view
[Sysname-GigabitEthernet1/0/1] undo stp enable
```

```
```

tstp loop-protection

Syntax

```
stp loop-protection
undo stp loop-protection
```

View

Ethernet interface view, port group view, Layer 2 aggregate interface view

Default Level

2: System level

Parameters

None
Description

Use the `stp loop-protection` command to enable the loop guard function on the port(s).

Use the `undo stp loop-protection` command to restore the system default.

By default, the loop guard function is disabled.

Note that:

- Configured in Ethernet interface view, the setting takes effect on the current interface only; configured in port group view, the setting takes effect on all ports in the port group.
- Configured in Layer 2 aggregate interface view, the setting takes effect only on the aggregate interface. Configured on the member port in an aggregation group, the setting can take effect only after the port leaves the aggregation group.

Examples

```
# Enable the loop guard function on GigabitEthernet 1/0/1.
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] stp loop-protection
```

stp max-hops

Syntax

```
stp max-hops hops
undo stp max-hops
```

View

System view

Default Level

2: System level

Parameters

`hops`: Maximum hops, in the range of 1 to 40

Description

Use the `stp max-hops` command to set the maximum hops of the MST region on the device.

Use the `undo stp max-hops` command to restore the maximum hops to the default setting.

Setting the maximum hops of MST regions is to limit the sizes of MST regions. By default, the maximum number of hops of an MST region is 20.

Related commands: `display stp`.

Examples

```
# Set the maximum hops of the MST region on the device to 35.
<Sysname> system-view
[Sysname] stp max-hops 35
```
stp mcheck

Syntax

```
stp mcheck
```

View

System view, Ethernet interface view, Layer 2 aggregate interface view

Default Level

2: System level

Parameters

None

Description

Use the `stp mcheck` command to carry out the mCheck operation globally or on the current port. If a port on a device running MSTP (or RSTP) connects to a device running STP, this port will automatically migrate to the STP-compatible mode. However, it will not be able to migrate automatically back to the MSTP (or RSTP) mode, but will remain working in the STP-compatible mode under the following circumstances:

- The device running STP is shut down or removed.
- The device running STP migrates to the MSTP (or RSTP) mode.

By then, you can perform an mCheck operation to force the port to migrate to the MSTP (or RSTP) mode.

Note that:

- The device works in STP-compatible mode, RSTP mode or MSTP mode depending on the MSTP mode setting.
- The `stp mcheck` command is meaningful only when the device works in RSTP or MSTP mode.
- Configured in system view, the setting takes effect globally; configured in Ethernet interface view, the setting takes effect on the current interface only; configured in port group view, the setting takes effect on all member ports in the port group.
- Configured in Layer 2 aggregate interface view, the setting takes effect only on the aggregate interface; configured on a member port in an aggregation group, the setting can take effect only after the port leaves the aggregation group.

Related commands: `stp mode`.

Examples

```
# Carry out mCheck on GigabitEthernet 1/0/1.
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] stp mcheck
```

stp mode

Syntax

```
stp mode { stp | rstp | mstp }
```
undo stp mode

View
System view

Default Level
2: System level

Parameters
- **stp**: Configures the MSTP-enabled device to work in STP-compatible mode.
- **rstp**: Configures an MSTP-enabled device to work in RSTP mode.
- **mstp**: Configures an MSTP-enabled device to work in MSTP mode.

Description
Use the **stp mode** command to configure the MSTP work mode of the device.
Use the **undo stp mode** command to restore the MSTP work mode to the default setting.
By default, an MSTP-enabled device works in MSTP mode.
Related commands: **stp mcheck, stp enable**.

Examples
```
# Configure the MSTP-enabled device to work in STP-compatible mode.
<Sysname> system-view
[Sysname] stp mode stp
```

stp no-agreement-check

Syntax
```
stp no-agreement-check
undo stp no-agreement-check
```

View
Ethernet interface view, port group view, Layer 2 aggregate interface view

Default Level
2: System level

Parameters
None

Description
Use the **stp no-agreement-check** command to enable No Agreement Check on the port(s).
Use the **undo stp no-agreement-check** command to disable No Agreement Check on the port(s).
By default, No Agreement Check is disabled.
Note that:
• Configured in Ethernet interface view, the setting takes effect on the current interface only; configured in port group view, the setting takes effect on all member ports in the port group.
• Configured in Layer 2 aggregate interface view, the setting takes effect only on the aggregate interface; configured on a member port in an aggregation group, the setting can take effect only after the port leaves the aggregation group.
• This feature takes effect only after you enable it on the root port.

Examples

Enable No Agreement Check on GigabitEthernet 1/0/1.
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] stp no-agreement-check

stp pathcost-standard
Syntax

stp pathcost-standard { dot1d-1998 | dot1t | legacy }
undo stp pathcost-standard

View

System view

Default Level

2: System level

Parameters

dot1t: The device calculates the default path cost for ports based on IEEE 802.1t.
legacy: The device calculates the default path cost for ports based on a private standard.

Description

Use the stp pathcost-standard command to specify a standard for the device to use when calculating the default path costs for ports of the device.

Use the undo stp pathcost-standard command to restore the system default.

By default, the device calculates the default path cost for ports based on a private standard.

Note that:

• If you change the standard that the device uses in calculating the default path cost, the port path cost value set through the stp cost command will be invalid.
• Table 3-10 shows the path costs calculated using different standards at different link speed. When calculating path cost for an aggregate interface, 802.1d-1998 does not take into account the number of member ports in its aggregation group as 802.1t does. The calculation formula of 802.1t is: Path Cost = 200,000,000/link speed (in 100 kbps), where link speed is the sum of the link speed values of the non-blocked ports in the aggregation group.
Table 3-10 Link speed vs. path cost

<table>
<thead>
<tr>
<th>Link speed</th>
<th>Duplex state</th>
<th>Path cost in 802.1d-1998 standard</th>
<th>Path cost in IEEE 802.1t standard</th>
<th>Path cost in private standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>65535</td>
<td>200,000,000</td>
<td>200,000</td>
</tr>
<tr>
<td>10 Mbps</td>
<td>Single Port</td>
<td>100</td>
<td>2,000,000</td>
<td>2,000</td>
</tr>
<tr>
<td></td>
<td>Aggregate Link 2 Ports</td>
<td>100</td>
<td>1,000,000</td>
<td>1,800</td>
</tr>
<tr>
<td></td>
<td>Aggregate Link 3 Ports</td>
<td>100</td>
<td>666,666</td>
<td>1,600</td>
</tr>
<tr>
<td></td>
<td>Aggregate Link 4 Ports</td>
<td>100</td>
<td>500,000</td>
<td>1,400</td>
</tr>
<tr>
<td>100 Mbps</td>
<td>Single Port</td>
<td>19</td>
<td>200,000</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Aggregate Link 2 Ports</td>
<td>19</td>
<td>100,000</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Aggregate Link 3 Ports</td>
<td>19</td>
<td>66,666</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>Aggregate Link 4 Ports</td>
<td>19</td>
<td>50,000</td>
<td>140</td>
</tr>
<tr>
<td>1000 Mbps</td>
<td>Single Port</td>
<td>4</td>
<td>20,000</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Aggregate Link 2 Ports</td>
<td>4</td>
<td>10,000</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Aggregate Link 3 Ports</td>
<td>4</td>
<td>6,666</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Aggregate Link 4 Ports</td>
<td>4</td>
<td>5,000</td>
<td>14</td>
</tr>
<tr>
<td>10 Gbps</td>
<td>Single Port</td>
<td>2</td>
<td>2,000</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Aggregate Link 2 Ports</td>
<td>2</td>
<td>1,000</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Aggregate Link 3 Ports</td>
<td>2</td>
<td>666</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Aggregate Link 4 Ports</td>
<td>2</td>
<td>500</td>
<td>1</td>
</tr>
</tbody>
</table>

Related commands: stp cost, display stp.

Examples

```
# Configure the device to calculate the default path cost for ports based on IEEE 802.1d-1998.
<Sysname> system-view
<Sysname> stp pathcost-standard dot1d-1998
```

stp point-to-point

Syntax

```
stp point-to-point { auto | force-false | force-true }
undo stp point-to-point
```

View

Ethernet interface view, port group view, Layer 2 aggregate interface view

Default Level

2: System level

Parameters

- **auto**: Specifies automatic detection of the link type.
- **force-false**: Specifies the non-point-to-point link type.
- **force-true**: Specifies the point-to-point link type.
Description

Use the **stp point-to-point** command to configure the link type of the current port(s).

Use the **undo stp point-to-point** command to restore the system default.

The default setting is **auto**; namely the MSTP-enabled device automatically detects whether a port connects to a point-to-point link.

Note that:

- Configured in Ethernet interface view, the setting takes effect on the current interface only; configured in port group view, the setting takes effect on all member ports in the port group.
- Configured in Layer 2 aggregate interface view, the setting takes effect only on the aggregate interface. Configured on a member port in an aggregation group, the setting can take effect only after the port leaves the aggregation group.
- When connecting to a non-point-to-point link, a port is incapable of rapid state transition.
- If the current port is a Layer 2 aggregate interface or if it works in full duplex mode, the link to which the current port connects is a point-to-point link. We recommend that you use the default setting, namely let MSTP detect the link status automatically.
- This setting takes effect on the CIST and all MSTIs. If a port is configured as connecting to a point-to-point link or a non-point-to-point link, the setting takes effect for the port in all MSTIs. If the physical link to which the port connects is not a point-to-point link and you force it to be a point-to-point link by configuration, your configuration may incur a temporary loop.

Related commands: **display stp**.

Examples

```bash
# Configure the link connecting GigabitEthernet 1/0/3 as a point-to-point link.
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/3
[Sysname-GigabitEthernet1/0/3] stp point-to-point force-true
```

stp port priority

Syntax

```
stp [ instance instance-id ] port priority priority
undo stp [ instance instance-id ] port priority
```

View

Ethernet interface view, port group view, Layer 2 aggregate interface view

Default Level

2: System level

Parameters

- **instance instance-id**: Sets the priority of the current port(s) in a particular MSTI. The minimum value of **instance-id** is 0, representing the CIST, and the maximum value of **instance-id** is 32.
- **priority**: Port priority, in the range of 0 to 240 at the step of 16 (0, 16, 32..., for example).
Description

Use the `stp port priority` command to set the priority of the port(s).
Use the `undo stp port priority` command to restore the system default.
Port priority affects the role of a port in an MSTI.
By default, the port priority is 128.

Note that:
- Configured in Ethernet interface view, the setting takes effect on the current interface only; configured in port group view, the setting takes effect on all ports in the port group.
- Configured in Layer 2 aggregate interface view, the setting takes effect only on the aggregate interface. Configured on a member port in an aggregation group, the setting can take effect only after the port leaves the aggregation group.
- Setting different priorities for the same port in different MSTIs allows VLAN traffic flows to be forwarded along different physical links, thus to achieve VLAN-based load balancing.
- When the priority of a port is changed in an MSTI, MSTP will re-compute the role of the port and initiate a state transition in the MSTI.

Related commands: `display stp`.

Examples

```sh
# Set the priority of port GigabitEthernet 1/0/3 in MSTI 2 to 16.
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/3
[Sysname-GigabitEthernet1/0/3] stp instance 2 port priority 16
```

stp port-log

Syntax

```
stp port-log { all | instance instance-id }
```

```
undo stp port-log { all | instance instance-id }
```

View

System view

Default Level

2: System level

Parameters

```
all: Enables output of port state transition information for all MSTIs.

instance instance-id: Enables output of port state transition information for the specified MSTI. The minimum value of `instance-id` is 0, representing the CIST, and the maximum value of this argument is 32.
```

Description

Use the `stp port-log` command to enable output of port state transition information for the specified MSTI or all MSTIs.
Use the **undo stp port-log** command to disable output of port state transition information for the specified MSTI or all MSTIs.

This function is enabled by default.

Examples

```
# Enable output of port state transition information for MSTI 2.
<Sysname> system-view
[Sysname] stp port-log instance 2
%Aug 16 00:49:41:856 2006 Sysname MSTP/3/PDISC: Instance 2's GigabitEthernet1/0/1 has been set to discarding state!
%Aug 16 00:49:41:856 2006 Sysname MSTP/3/PFWD: Instance 2's GigabitEthernet1/0/2 has been set to forwarding state!

// The information above shows that in MSTI 2 the state of GigabitEthernet 1/0/1 has changed to discarding and that of GigabitEthernet 1/0/2 has changed to forwarding.
```

stp priority

Syntax

```
stp [ instance instance-id ] priority priority
undo stp [ instance instance-id ] priority
```

View

System view

Default Level

2: System level

Parameters

- `instance instance-id`: Sets the priority of the device in a MSTI. The minimum value of `instance-id` is 0, representing the CIST, and the maximum value of `instance-id` is 32.
- `priority`: Device priority, in the range of 0 to 61440 at the step of 4096, namely you can set up to 16 priority values, such as 0, 4096, 8192..., on the device. The smaller the `priority` value, the higher the device priority.

Description

Use the **stp priority** command to set the priority of the device.

Use the **undo stp priority** command to restore the default device priority.

By default, the device priority is 32768.

Examples

```
# Set the device priority in MSTI 1 to 4096.
<Sysname> system-view
[Sysname] stp instance 1 priority 4096
```
stp region-configuration

Syntax

```plaintext
stp region-configuration
undo stp region-configuration
```

View

System view

Default Level

2: System level

Parameters

None

Description

Use the **stp region-configuration** command to enter MST region view.

Use the **undo stp region-configuration** command to restore the default MST region configurations.

By default, the default settings are used for all the three MST region parameters. Namely, the device’s MST region name is the device’s MAC address, all VLANs are mapped to the CIST, and the MSTP revision level is 0.

After you enter MST region view, you can configure the MST region-related parameters, including the region name, VLAN-to-instance mappings and revision level.

Examples

```plaintext
# Enter MST region view.
<Sysname> system-view
[Sysname] stp region-configuration
[Sysname-mst-region]
```

stp root primary

Syntax

```plaintext
stp [ instance instance-id ] root primary
undo stp [ instance instance-id ] root
```

View

System view

Default Level

2: System level

Parameters

- **instance instance-id**: Configures the device as the root bridge in a particular MSTI. The minimum value of `instance-id` is 0, representing the CIST, and the maximum value of `instance-id` is 32.
Description

Use the **stp root primary** command to configure the current device as the root bridge.

Use the **undo stp root** command to restore the system default.

By default, a device is not a root bridge in any MSTI.

Note that:

- There is only one root bridge in effect in an MSTI. If two or more devices have been designated to be root bridges of the same MSTI, MSTP will select the device with the lowest MAC address as the root bridge.
- You can specify a root bridge for each MSTI without caring about the device priority. After specifying the current device as the root bridge or a secondary root bridge, you cannot change the priority of the device.

Related commands: **stp priority**, **stp root secondary**.

Examples

```bash
# Specify the current device as the root bridge of MSTI 0.
<Sysname> system-view
[Sysname] stp instance 0 root primary
```

stp root secondary

Syntax

```bash
stp [ instance instance-id ] root secondary
undo stp [ instance instance-id ] root
```

View

System view

Default Level

2: System level

Parameters

- **instance instance-id**: Configures the device as a secondary root bridge in a particular MSTI. The minimum value of `instance-id` is 0, representing the CIST, and the maximum value of `instance-id` is 32.

Description

Use the **stp root secondary** command to configure the device as a secondary root bridge.

Use the **undo stp root** command to restore the system default.

By default, a device is not a secondary root bridge.

Note that:

- You can configure one or more secondary root bridges for each MSTI. When the root bridge of an MSTI fails or is shut down, the secondary root bridge can take over the role of the root bridge of the specified MSTI. However, if you specify a new primary root bridge for the instance then, the secondary root bridge will not become the root bridge. If you specify more than one secondary root bridge, the secondary root bridge with the lowest MAC address will become the root bridge.
After specifying the current device as a secondary root bridge, you cannot change the priority of the device.

Related commands: stp priority, stp root primary.

Examples

```bash
# Specify the current device as a secondary root bridge of MSTI 0.
<Sysname> system-view
[Sysname] stp instance 0 root secondary
```

stp root-protection

Syntax

```bash
stp root-protection
undo stp root-protection
```

View

Ethernet interface view, port group view, Layer 2 aggregate interface view

Default Level

2: System level

Parameters

None

Description

Use the stp root-protection command to enable the root guard function on the port(s).

Use the undo stp root-protection command to restore the default.

By default, the root guard function is disabled.

Note that:

- Configured in Ethernet interface view, the setting takes effect on the current interface only; configured in port group view, the setting takes effect on all ports in the port group.
- Configured in Layer 2 aggregate interface view, the setting takes effect only on the aggregate interface. Configured on the member port in an aggregation group, the setting can take effect only after the port leaves the aggregation group.

Examples

```bash
# Enable the root guard function for GigabitEthernet 1/0/1.
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] stp root-protection
```

stp tc-protection

Syntax

```bash
stp tc-protection enable
```

```bash
```

3-34
stp tc-protection disable

View

System view

Default Level

2: System level

Parameters

None

Description

Use the stp tc-protection enable command to enable the TC-BPDU attack guard function for the device.

Use the stp tc-protection disable command to disable the TC-BPDU attack guard function for the device.

By default, the TC-BPDU attack guard function is enabled.

Examples

Disable the TC-BPDU attack guard function for the device.
<Sysname> system-view
<Sysname> stp tc-protection disable

stp tc-protection threshold

Syntax

stp tc-protection threshold number
undo stp tc-protection threshold

View

System view

Default Level

2: System level

Parameters

number: Maximum number of immediate forwarding address entry flushes that the switch can perform within a certain period of time after it receives the first TC-BPDU. The value range for the argument is 1 to 255.

Description

Use the stp tc-protection threshold command to configure the maximum number of forwarding address entry flushes that the device can perform within a certain period of time after it receives the first TC-BPDU.

Use the undo stp tc-protection threshold command to restore the default.
By default, the device can perform a maximum of six forwarding address entry flushes within 10 seconds after it receives the first TC-BPDU.

Examples

```bash
# Set the maximum number of forwarding address entry flushes that the device can perform within 10 seconds after it receives the first TC-BPDU to 10.

<Sysname> system-view
[Sysname] stp tc-protection threshold 10
```

stp timer forward-delay

Syntax

```bash
stp timer forward-delay time
undo stp timer forward-delay
```

View

System view

Default Level

2: System level

Parameters

- `time`: Forward delay in centiseconds, ranging from 400 to 3000 at the step of 100.

Description

Use the `stp timer forward-delay` command to set the forward delay timer of the device. Use the `undo stp timer forward-delay` command to restore the system default.

By default, the forward delay timer is set to 1,500 centiseconds.

In order to prevent temporary loops, a port must go through an intermediate state, the learning state, before it transitions from the discarding state to the forwarding state, and must wait a certain period of time before it transitions from one state to another to keep synchronized with the remote device during state transition. The forward delay timer set on the root bridge determines the time interval of state transition.

If the current device is the root bridge, the state transition interval of the device depends on the forward delay value configured through this command; for a non-root bridge, its state transition interval is determined by the forward delay timer set on the root bridge.

The settings of the hello time, forward delay and max age timers must meet the following formulae, thus avoiding frequent network changes:

- $2 \times (\text{forward delay} - 1 \text{ second}) \geq \text{max age}$
- Max age $\geq 2 \times (\text{hello Time} + 1 \text{ second})$

We recommend that you specify the network diameter of the switched network using the `stp root primary` command and let MSTP automatically calculate optimal settings of these three timers.

Related commands: `stp timer hello`, `stp timer max-age`, `stp bridge-diameter`.
Examples

Set the forward delay timer of the device to 2,000 centiseconds.
<Sysname> system-view
[Sysname] stp timer forward-delay 2000

stp timer hello

Syntax

stp timer hello time
undo stp timer hello

View

System view

Default Level

2: System level

Parameters

time: Hello time in centiseconds, ranging from 100 to 1000 at the step of 100.

Description

Use the stp timer hello command to set the hello time of the device.
Use the undo stp timer hello command to restore the system default.
By default, the hello time is set to 200 centiseconds.
Hello time is the time interval at which MSTP-enabled devices send configuration BPDUs to maintain spanning tree. If a device fails to receive configuration BPDUs within the set period of time, a new spanning tree calculation process will be triggered due to timeout. The root bridge sends configuration BPDUs at the interval of the hello time set through this command, while non-root bridges use the hello time set on the root bridge.
The settings of the hello time, forward delay and max age timers must meet the following formulae, thus avoiding frequent network changes:
- \(2 \times (\text{forward delay} - 1 \text{ second}) \geq \text{max age} \)
- \(\text{Max age} \geq 2 \times (\text{hello time} + 1 \text{ second}) \)

We recommend that you specify the network diameter of the switched network using the stp root primary command and let MSTP automatically calculate optimal settings of these three timers.

Related commands: stp timer forward-delay, stp timer max-age, stp bridge-diameter.

Examples

Set the hello time of the device to 400 centiseconds.
<Sysname> system-view
[Sysname] stp timer hello 400
stp timer max-age

Syntax

```
stp timer max-age time
undo stp timer max-age
```

View

System view

Default Level

2: System level

Parameters

- `time`: Max age in centiseconds, ranging from 600 to 4000 at the step of 100.

Description

Use the `stp timer max-age` command to set the max age timer of the device.

Use the `undo stp timer max-age` command to restore the system default.

By default, the max age is set to 2,000 centiseconds.

MSTP can detect link failures and automatically restore the forwarding state of the redundant link. In the CIST, the device determines whether a configuration BPDU received on a port has expired based on the max age timer. If a port receives a configuration BPDU that has expired, that MSTI needs to be re-computed.

The max age timer is not meaningful for MSTIs. If the current device is the root bridge of the CIST, it determines whether a configuration BPDU has expired based on the configured max age timer; if the current device is not the root bridge of the CIST, it uses the max age timer set on the CIST root bridge.

The settings of the hello time, forward delay and max age timers must meet the following formulae, thus avoiding frequent network changes:

- \[2 \times (\text{forward delay} - 1 \text{ second}) \geq \text{max age} \]
- \[\text{Max age} \geq 2 \times (\text{hello time} + 1 \text{ second}) \]

We recommend that you specify the network diameter using the `stp root primary` command and let MSTP automatically calculate an optimal setting of these three timers.

Related commands: `stp timer forward-delay`, `stp timer hello`, `stp bridge-diameter`.

Examples

```
# Set the max age timer of the device to 1,000 centiseconds.
<Sysname> system-view
[Sysname] stp timer max-age 1000
```

stp timer-factor

Syntax

```
stp timer-factor factor
undo stp timer-factor
```

3-38
View

System view

Default Level

2: System level

Parameters

factor: Timeout factor, in the range of 1 to 20.

Description

Use the stp timer-factor command to set the timeout factor, which decides the timeout time. Timeout time = timeout factor × 3 × hello time.

Use the undo stp timer-factor command to restore the default.

By default, the timeout factor is 3.

Note that:

- After the network topology is stabilized, each non-root-bridge device forwards configuration BPDUs to the surrounding devices at the interval of hello time to check whether any link is faulty. Typically, if a device does not receive a BPDU from the upstream device within nine times the hello time, it will assume that the upstream device has failed and start a new spanning tree calculation process.

- In a very stable network, this kind of spanning tree calculation may occur because the upstream device is busy. In this case, you can avoid such unwanted spanning tree calculations by lengthening the timeout time, thus saving the network resources. We recommend that you set the timeout factor to 5, or 6, or 7 for a stable network.

Examples

Set the timeout factor of the device to 7.

<Sysname> system-view

[Sysname] stp timer-factor 7

stp transmit-limit

Syntax

stp transmit-limit limit

undo stp transmit-limit

View

Ethernet interface view, port group view, Layer 2 aggregate interface view

Default Level

2: System level

Parameters

limit: Maximum number of BPDUs the port(s) can send within each hello time, in the range of 1 to 255.
Description

Use the `stp transmit-limit` command to set the maximum transmission rate of the port(s), that is, the maximum number of BPDUs the port(s) can send within each hello time.

Use the `undo stp transmit-limit` command to restore the system default.

By default, the maximum transmission rate of all ports of the device is 10, that is, each port can send up to 10 BPDUs within each hello time.

Note that:

- Configured in Ethernet interface view, the setting takes effect on the current interface only; configured in port group view, the setting takes effect on all member ports in the port group.
- Configured in Layer 2 aggregate interface view, the setting takes effect only on the aggregate interface; configured on a member port in an aggregation group, the setting can take effect only after the port leaves the aggregation group.
- A larger maximum transmission rate value represents more BPDUs that the port will send within each hello time, but this means that more system resources will be used. An appropriate maximum transmission rate setting can limit the speed at which a port sends BPDUs and prevent MSTP from using excessive bandwidth resources during network topology changes. You are recommended to use the default value.

Examples

```
# Set the maximum transmission rate of port GigabitEthernet 1/0/1 to 5.
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] stp transmit-limit 5
```

`vlan-mapping modulo`

Syntax

```
vlan-mapping modulo modulo
```

View

MST region view

Default Level

2: System level

Parameters

`modulo`: Modulo value. The minimum value is 1, and the maximum value is 32.

Description

Use the `vlan-mapping modulo` command to map VLANs in the current MST region to MSTIs according to the specified modulo value, thus quickly creating a VLAN-to-instance mapping table.

By default, all VLANs are mapped to the CIST (MSTI 0).

Note that:

- You cannot map the same VLAN to different MSTIs. If you map a VLAN that has been mapped to an MSTI to a new MSTI, the old mapping will be automatically removed.
This command maps each VLAN to the MSTI whose ID is \((VLAN \text{ ID} - 1) \mod \text{modulo} + 1\), where \((VLAN \text{ ID} - 1) \mod \text{modulo}\) is the modulo operation for \((VLAN \text{ ID} - 1)\). If the modulo value is 15, for example, then VLAN 1 will be mapped to MSTI 1, VLAN 2 to MSTI 2, VLAN 15 to MSTI 15, VLAN 16 to MSTI 1, and so on.

Related commands: `region-name`, `revision-level`, `display stp region-configuration`, `check region-configuration`, `active region-configuration`.

Examples

```
# Map VLANs to MSTIs as per modulo 8.

<Sysname> system-view
[Sysname] stp region-configuration
[Sysname-mst-region] vlan-mapping modulo 8
```
LLDP Configuration Commands

display lldp local-information

Syntax

display lldp local-information [global | interface interface-type interface-number]

View

Any view

Default level

1: Monitor level

Parameters

global: Displays the global LLDP information to be transmitted.

interface interface-type interface-number: Displays the LLDP information to be sent out the interface specified by its type and number.

Description

Use the display lldp local-information command to display the global LLDP information to be transmitted, which will be contained in the LLDP TLVs and sent to neighbor devices.

If no keyword or argument is specified, this command displays all the LLDP information to be sent, including the global LLDP information and the LLDP information about the LLDP-enabled ports in the up state.

Examples

Display all the LLDP information to be sent.

<Sysname> display lldp local-information

Global LLDP local-information:
 Chassis ID : 00e0-fc00-5600
 System name : System
 System description : System
 System capabilities supported : Bridge,Router
 System capabilities enabled : Bridge,Router

MED information
 Device class: Connectivity device

 (MED inventory information of master board)
 HardwareRev : REV.A
FirmwareRev : 109
SoftwareRev : 5.20 Alpha 2101
SerialNum : NONE
Manufacturer name : Manufacturer name
Model name : Model name
Asset tracking identifier : Unknown

LLDP local-information of port 1[GigabitEthernet1/0/1]:

Port ID subtype : Interface name
Port ID : GigabitEthernet1/0/1
Port description : GigabitEthernet1/0/1 Interface

Management address type : ipv4
Management address : 192.168.1.11
Management address interface type : IfIndex
Management address interface ID : 54
Management address OID : 0

Port VLAN ID(PVID): 1

Port and protocol VLAN ID(PVID) : 1
Port and protocol VLAN supported : Yes
Port and protocol VLAN enabled : No

VLAN name of VLAN 1: VLAN 0001
Auto-negotiation supported : Yes
Auto-negotiation enabled : Yes
OperMau : speed(1000)/duplex(Full)

Power port class : PSE
PSE power supported : Yes
PSE power enabled : No
PSE pairs control ability : No
Power pairs : Signal
Port power classification : Class 0

Link aggregation supported : Yes
Link aggregation enabled : No
Aggregation port ID : 0

Maximum frame Size: 1536

MED information
Media policy type : Unknown
Unknown Policy : Yes
VLAN tagged : No
Media policy VlanID : 0
Media policy L2 priority : 0
Media policy Dscp : 0
PoE PSE power source : Primary
Port PSE Priority : Low
Port Available power value: 15.4(W)

Table 4-1 display lldp local-information command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global LLDP local-information</td>
<td>The global LLDP information to be sent</td>
</tr>
<tr>
<td>Chassis ID</td>
<td>ID that identifies the LLDP sending device, which can be a MAC address, a network address, an interface or some other value depending on the chassis type.</td>
</tr>
<tr>
<td>System name</td>
<td>System name</td>
</tr>
<tr>
<td>System description</td>
<td>System description</td>
</tr>
<tr>
<td>System capabilities supported</td>
<td>Supported capabilities, which can be:</td>
</tr>
<tr>
<td></td>
<td>- Bridge, indicating switching</td>
</tr>
<tr>
<td></td>
<td>- Router, indicating routing</td>
</tr>
<tr>
<td>System capabilities enabled</td>
<td>Currently enabled capabilities, which can be:</td>
</tr>
<tr>
<td></td>
<td>- Bridge, indicating switching is currently enabled.</td>
</tr>
<tr>
<td></td>
<td>- Router, indicating routing is currently enabled.</td>
</tr>
<tr>
<td>MED information</td>
<td>MED information</td>
</tr>
<tr>
<td>Device class</td>
<td>Device type, which can be:</td>
</tr>
<tr>
<td></td>
<td>- Connectivity device, indicating an intermediate device.</td>
</tr>
<tr>
<td></td>
<td>- Class I, indicating a normal terminal device. All terminal devices that are LLDP-enabled are of this type.</td>
</tr>
<tr>
<td></td>
<td>- Class II, indicating a media terminal device. A device of this type is media-capable. That is, besides the capabilities of a normal terminal device, it also supports media streams.</td>
</tr>
<tr>
<td></td>
<td>- Class III indicating a communication terminal device. A device of this type supports IP communication systems of end user. A device of this type supports all the capabilities of a normal terminal device and a media terminal device and can be used directly by end users.</td>
</tr>
<tr>
<td>MED inventory information of master board</td>
<td>MED inventory information of the master device in an IRF</td>
</tr>
<tr>
<td>HardwareRev</td>
<td>Hardware version</td>
</tr>
<tr>
<td>FirmwareRev</td>
<td>Firmware version</td>
</tr>
<tr>
<td>SoftwareRev</td>
<td>Software version</td>
</tr>
<tr>
<td>SerialNum</td>
<td>Serial number</td>
</tr>
<tr>
<td>Manufacturer name</td>
<td>Device manufacturer</td>
</tr>
<tr>
<td>Model name</td>
<td>Device model</td>
</tr>
<tr>
<td>Asset tracking identifier</td>
<td>Asset tracking ID</td>
</tr>
<tr>
<td>LLDPP local-information of port 1</td>
<td>LLDPP information to be sent out port 1</td>
</tr>
<tr>
<td>Port ID subtype</td>
<td>Port ID type, which can be MAC address or interface name</td>
</tr>
<tr>
<td>Port ID</td>
<td>Port ID, the value of which depends on the port ID type</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Port description</td>
<td>Port description</td>
</tr>
<tr>
<td>Management address type</td>
<td>Management address type</td>
</tr>
<tr>
<td>Management address</td>
<td>Management address</td>
</tr>
<tr>
<td>Management address interface type</td>
<td>Type of the interface identified by the management address</td>
</tr>
<tr>
<td>Management address interface ID</td>
<td>ID of the interface identified by the management address</td>
</tr>
<tr>
<td>Management address OID</td>
<td>Management address object ID</td>
</tr>
<tr>
<td>Port VLAN ID (PVID)</td>
<td>Port VLAN ID</td>
</tr>
<tr>
<td>Port and protocol VLAN ID (PPVID)</td>
<td>Port protocol VLAN ID</td>
</tr>
<tr>
<td>Port and protocol VLAN supported</td>
<td>Indicates whether protocol VLAN is supported on the port.</td>
</tr>
<tr>
<td>Port and protocol VLAN enabled</td>
<td>Indicates whether protocol VLAN is enabled on the port.</td>
</tr>
<tr>
<td>VLAN name of VLAN 1</td>
<td>Name of VLAN 1</td>
</tr>
<tr>
<td>Auto-negotiation supported</td>
<td>Indicates whether auto-negotiation is supported on the port.</td>
</tr>
<tr>
<td>Auto-negotiation enabled</td>
<td>State of auto-negotiation</td>
</tr>
<tr>
<td>OperMau</td>
<td>Current speed and duplex state of the port</td>
</tr>
<tr>
<td>PoE supported</td>
<td>Indicates whether PoE is supported on the port.</td>
</tr>
<tr>
<td>Power port class</td>
<td>PoE device type, which can be:</td>
</tr>
<tr>
<td></td>
<td>• PSE: power sourcing equipment</td>
</tr>
<tr>
<td></td>
<td>• PD: powered device</td>
</tr>
<tr>
<td>PSE power supported</td>
<td>Indicates whether or not the device can operate as a PSE.</td>
</tr>
<tr>
<td>PSE power enabled</td>
<td>Indicates whether or not the device is operating as a PSE.</td>
</tr>
<tr>
<td>PSE pairs control ability</td>
<td>Indicates whether or not the PSE-PD pair control is available.</td>
</tr>
<tr>
<td>Power pairs</td>
<td>PoE mode, which can be Signal (PoE via signal lines) or Spare (PoE via spare lines).</td>
</tr>
<tr>
<td>Port power classification</td>
<td>Port power classification of the PD, which can be:</td>
</tr>
<tr>
<td></td>
<td>• Class0</td>
</tr>
<tr>
<td></td>
<td>• Class1</td>
</tr>
<tr>
<td></td>
<td>• Class2</td>
</tr>
<tr>
<td></td>
<td>• Class3</td>
</tr>
<tr>
<td></td>
<td>• Class4</td>
</tr>
<tr>
<td>Link aggregation supported</td>
<td>Indicates whether or not link aggregation is supported.</td>
</tr>
<tr>
<td>Link aggregation enabled</td>
<td>Indicates whether or not link aggregation is enabled.</td>
</tr>
<tr>
<td>Aggregation port ID</td>
<td>Aggregation group ID, which is 0 if link aggregation is not enabled.</td>
</tr>
<tr>
<td>Maximum frame Size</td>
<td>Maximum frame size supported</td>
</tr>
<tr>
<td>MED information</td>
<td>MED LLDP information</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| Media policy type | Media policy type, which can be:
 - unknown
 - voice
 - voiceSignaling
 - guestVoice
 - guestVoiceSignaling
 - softPhoneVoice
 - videoconferencing
 - streamingVideo
 - videoSignaling |
| Unknown Policy | Indicates whether or not the media policy is unknown. |
| VLAN tagged | Indicates whether packets of the media VLAN are tagged. |
| Media Policy VlanID | ID of the media VLAN |
| Media Policy L2 priority | Layer 2 priority |
| Media Policy Dscp | DSCP precedence |
| Location format | Location information format, which can be:
 - Invalid, indicating the format of the location information is invalid.
 - Coordinate-based LCI, indicating the location information is coordinate-based.
 - Civic Address LCI, indicating normal address information.
 - ECS ELIN, indicating a telephone number for urgencies. |
| Location Information | Location information |
| PoE PSE power source | PSE power type, which can be:
 - Primary, indicating a primary power supply
 - Backup, indicating a backup power supply |
| Port PSE Priority | PoE power supply priority of PSE ports, which can be:
 - Unknown
 - Critical
 - High
 - Low |
| Port available power value | Available PoE power on PSE ports |

display lldp neighbor-information

Syntax

```
display lldp neighbor-information [ brief | interface interface-type interface-number [ brief ] | list [ system-name system-name ] ]
```

View

Any view
Default level

1: Monitor level

Parameters

brief: Displays the brief LLDP information sent by the neighboring devices. If the **brief** keyword is not specified, this command displays the detailed LLDP information sent by the neighboring devices.

interface interface-type interface-number: Displays the LLDP information about the neighboring devices received through a port specified by its type and number. If this keyword-argument combination is not specified, this command displays the LLDP information about the neighboring devices received through all ports.

list: Displays the LLDP information about the neighboring devices in the form of a list.

system-name system-name: Displays the LLDP information about a specified neighboring device in the form of a list, where **system-name** indicates the system name of a neighboring device and is a string of 1 to 255 characters. If this keyword-argument combination is not specified, this command displays the LLDP information sent by all the neighboring devices in the form of a list.

Description

Use the **display lldp neighbor-information** command to display the LLDP information about the neighboring devices received on the local device. The LLDP information is sent as TLVs.

Examples

Display the LLDP information about the neighboring devices received through all the ports.

```
<Sysname> display lldp neighbor-information

LLDP neighbor-information of port 1[GigabitEthernet1/0/1]:
Neighbor index : 1
Update time : 0 days, 0 hours, 1 minutes, 1 seconds
Chassis type : MAC address
Chassis ID : 000f-0055-0002
Port ID type : Interface name
Port ID : GigabitEthernet1/0/1
Port description : GigabitEthernet1/0/1 Interface
System name : System
System description : System
System capabilities supported : Bridge, Router
System capabilities enabled : Bridge, Router

Management address type : ipv4
Management address : 192.168.1.55
Management address interface type : IfIndex
Management address interface ID : Unknown
Management address OID : 0

Port VLAN ID(PVID): 1

Port and protocol VLAN ID(PPVID) : 1
```
Port and protocol VLAN supported : Yes
Port and protocol VLAN enabled : No

VLAN name of VLAN 1: VLAN 0001

Auto-negotiation supported : Yes
Auto-negotiation enabled : Yes
OperMau : speed(1000)/duplex(Full)

Power port class : PD
PSE power supported : No
PSE power enabled : No
PSE pairs control ability : No
Power pairs : Signal
Port power classification : Class 0

Link aggregation supported : Yes
Link aggregation enabled : No
Aggregation port ID : 0

Maximum frame Size: 1536

LLDP neighbor-information of port 2[GigabitEthernet1/0/2]:
Neighbor index : 1
Update time : 0 days,0 hours,1 minutes,1 seconds
Chassis type : MAC address
Chassis ID : 000f-0055-0002
Port ID type : Interface name
Port ID : GigabitEthernet1/0/2
Port description : GigabitEthernet1/0/2 Interface
System name : System
System description : System
System capabilities supported : Bridge,Router
System capabilities enabled : Bridge,Router

Management address type : ipv4
Management address : 127.0.0.1
Management address interface type : IfIndex
Management address interface ID : Unknown
Management address OID : 0

Port VLAN ID(PVID): 1

Port and protocol VLAN ID(PPVID) : 1
Port and protocol VLAN supported : Yes
Port and protocol VLAN enabled : No
VLAN name of VLAN 1: VLAN 0001

Auto-negotiation supported : Yes
Auto-negotiation enabled : Yes
OperMau : speed(1000)/duplex(Full)

Power port class : PD
PSE power supported : No
PSE power enabled : No
PSE pairs control ability : No
Power pairs : Signal
Port power classification : Class 0

Link aggregation supported : Yes
Link aggregation enabled : No
Aggregation port ID : 0

Maximum frame Size: 1536

Display the LLDP information about all the neighboring devices in the form of a list.

<Systemname> display lldp neighbor-information list

<table>
<thead>
<tr>
<th>System Name</th>
<th>Local Interface</th>
<th>Chassis ID</th>
<th>Port ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>System1</td>
<td>GE1/0/1</td>
<td>000f-e25d-ee91</td>
<td>GigabitEthernet1/0/5</td>
</tr>
<tr>
<td>System2</td>
<td>GE1/0/2</td>
<td>000f-e25d-ee92</td>
<td>GigabitEthernet1/0/6</td>
</tr>
<tr>
<td>System3</td>
<td>GE1/0/3</td>
<td>000f-e25d-ee93</td>
<td>GigabitEthernet1/0/7</td>
</tr>
</tbody>
</table>

Table 4-2 display lldp neighbor-information command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLDP neighbor-information of port 1</td>
<td>LLDP information received through port 1</td>
</tr>
<tr>
<td>Neighbor index</td>
<td>Neighbor index</td>
</tr>
<tr>
<td>Update time</td>
<td>Time when the LLDP information about a neighboring device is latest updated.</td>
</tr>
<tr>
<td>Chassis type</td>
<td>Chassis information, which can be:</td>
</tr>
<tr>
<td></td>
<td>- Chassis component</td>
</tr>
<tr>
<td></td>
<td>- Interface alias</td>
</tr>
<tr>
<td></td>
<td>- Port component</td>
</tr>
<tr>
<td></td>
<td>- MAC address</td>
</tr>
<tr>
<td></td>
<td>- Network address</td>
</tr>
<tr>
<td></td>
<td>- Interface name</td>
</tr>
<tr>
<td></td>
<td>- Locally assigned (indicating the local configuration)</td>
</tr>
<tr>
<td>Chassis ID</td>
<td>ID that identifies the LLDP sending device, which can be a MAC address, a network address, an interface or some other value depending on the chassis type.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Port ID type</td>
<td>Port information, which can be:</td>
</tr>
<tr>
<td></td>
<td>- Interface alias</td>
</tr>
<tr>
<td></td>
<td>- Port component</td>
</tr>
<tr>
<td></td>
<td>- MAC address</td>
</tr>
<tr>
<td></td>
<td>- Network Address</td>
</tr>
<tr>
<td></td>
<td>- Interface name</td>
</tr>
<tr>
<td></td>
<td>- Agent circuit ID</td>
</tr>
<tr>
<td></td>
<td>- Locally assigned (indicating the local configuration)</td>
</tr>
<tr>
<td>Port ID</td>
<td>Port ID, the value of which depends on the port ID type</td>
</tr>
<tr>
<td>Port description</td>
<td>Port description</td>
</tr>
<tr>
<td>System name</td>
<td>System name of the neighboring device</td>
</tr>
<tr>
<td>System description</td>
<td>System description of the neighboring device</td>
</tr>
<tr>
<td>System capabilities supported</td>
<td>Capabilities supported on the neighboring device, which can be:</td>
</tr>
<tr>
<td></td>
<td>- Repeater, indicating forwarding</td>
</tr>
<tr>
<td></td>
<td>- Bridge, indicating switching</td>
</tr>
<tr>
<td></td>
<td>- Router, indicating routing</td>
</tr>
<tr>
<td>System capabilities enabled</td>
<td>Capabilities currently enabled on the neighboring device, which can be:</td>
</tr>
<tr>
<td></td>
<td>- Repeater, indicating forwarding is currently enabled.</td>
</tr>
<tr>
<td></td>
<td>- Bridge, indicating switching is currently enabled.</td>
</tr>
<tr>
<td></td>
<td>- Router, indicating routing is currently enabled.</td>
</tr>
<tr>
<td>Management address type</td>
<td>Management address type</td>
</tr>
<tr>
<td>Management address</td>
<td>Management address</td>
</tr>
<tr>
<td>Management address interface type</td>
<td>Type of the interface identified by the management address</td>
</tr>
<tr>
<td>Management address interface ID</td>
<td>Management address interface ID</td>
</tr>
<tr>
<td>Management address OID</td>
<td>Management address object ID</td>
</tr>
<tr>
<td>Port VLAN ID</td>
<td>Port VLAN ID</td>
</tr>
<tr>
<td>Port and protocol VLAN ID(PPVID)</td>
<td>Port protocol VLAN ID</td>
</tr>
<tr>
<td>Port and protocol VLAN supported</td>
<td>Indicates whether protocol VLAN is supported.</td>
</tr>
<tr>
<td>Port and protocol VLAN enabled</td>
<td>Indicates whether protocol VLAN is enabled.</td>
</tr>
<tr>
<td>VLAN name of VLAN 1</td>
<td>Name of VLAN 1</td>
</tr>
<tr>
<td>Auto-negotiation supported</td>
<td>Indicates whether auto-negotiation is supported.</td>
</tr>
<tr>
<td>Auto-negotiation enabled</td>
<td>State of auto-negotiation</td>
</tr>
<tr>
<td>OperMau</td>
<td>Current speed and duplex state</td>
</tr>
<tr>
<td>Power port class</td>
<td>PoE device type, which can be:</td>
</tr>
<tr>
<td></td>
<td>- PSE: power sourcing equipment</td>
</tr>
<tr>
<td></td>
<td>- PD: powered device</td>
</tr>
<tr>
<td>PSE power supported</td>
<td>Indicates whether or not the device can operate as a PSE.</td>
</tr>
<tr>
<td>PSE power enabled</td>
<td>Indicates whether or not the device is operating as a PSE.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>PSE pairs control ability</td>
<td>Indicates whether or not the PSE-PD pair control is available.</td>
</tr>
<tr>
<td>Power pairs</td>
<td>PoE mode, which can be Signal (PoE via signal lines) or Spare (PoE via spare lines).</td>
</tr>
<tr>
<td>Port power classification</td>
<td>Port power classification of the PD, which can be the following:</td>
</tr>
<tr>
<td></td>
<td>• Class0</td>
</tr>
<tr>
<td></td>
<td>• Class1</td>
</tr>
<tr>
<td></td>
<td>• Class2</td>
</tr>
<tr>
<td></td>
<td>• Class3</td>
</tr>
<tr>
<td></td>
<td>• Class4</td>
</tr>
<tr>
<td>Link aggregation supported</td>
<td>Indicates whether or not link aggregation is supported.</td>
</tr>
<tr>
<td>Link aggregation enabled</td>
<td>Indicates whether or not link aggregation is enabled.</td>
</tr>
<tr>
<td>Aggregation port ID</td>
<td>Aggregation group ID, which is 0 if link aggregation is not enabled.</td>
</tr>
<tr>
<td>Maximum frame Size</td>
<td>Maximum frame size supported</td>
</tr>
<tr>
<td>Location format</td>
<td>Location information format, which can be:</td>
</tr>
<tr>
<td></td>
<td>• Invalid, indicating the format of the location information is invalid.</td>
</tr>
<tr>
<td></td>
<td>• Coordinate-based LCI, indicating the location information is coordinate-based.</td>
</tr>
<tr>
<td></td>
<td>• Civic Address LCI, indicating normal address information.</td>
</tr>
<tr>
<td></td>
<td>• ECS ELIN, indicating a telephone for urgencies.</td>
</tr>
<tr>
<td>Location Information</td>
<td>Location information</td>
</tr>
<tr>
<td>PoE PSE power source</td>
<td>PSE power type, which can be:</td>
</tr>
<tr>
<td></td>
<td>• Primary, indicating a primary power supply</td>
</tr>
<tr>
<td></td>
<td>• Backup, indicating a backup power supply</td>
</tr>
<tr>
<td>PoE service type</td>
<td>PoE service type</td>
</tr>
<tr>
<td>Port PSE Priority</td>
<td>PoE power supply priority of PSE ports, which can be:</td>
</tr>
<tr>
<td></td>
<td>• Unknown</td>
</tr>
<tr>
<td></td>
<td>• Critical</td>
</tr>
<tr>
<td></td>
<td>• High</td>
</tr>
<tr>
<td></td>
<td>• Low</td>
</tr>
<tr>
<td>Port available power value</td>
<td>Available PoE power on PSE ports</td>
</tr>
<tr>
<td>Unknown basic TLV</td>
<td>Unknown basic TLV</td>
</tr>
<tr>
<td>TLV type</td>
<td>Unknown basic TLV type</td>
</tr>
<tr>
<td>TLV information</td>
<td>Information contained in the unknown basic TLV type</td>
</tr>
<tr>
<td>Unknown organizationally-defined TLV</td>
<td>Unknown organizationally specific TLV</td>
</tr>
<tr>
<td>TLV OUI</td>
<td>OUI of the unknown organizationally specific TLV</td>
</tr>
<tr>
<td>TLV subtype</td>
<td>Unknown organizationally specific TLV subtype</td>
</tr>
<tr>
<td>Index</td>
<td>Unknown organization index</td>
</tr>
</tbody>
</table>
display lldp statistics

Syntax

```plaintext
display lldp statistics [ global | interface interface-type interface-number ]
```

View

Any view

Default level

1: Monitor level

Parameters

- **global**: Displays the global LLDP statistics.
- **interface interface-type interface-number**: Specifies a port by its type and number.

Description

Use the `display lldp statistics` command to display the global LLDP statistics or the LLDP statistics of a port.

If no keyword/argument is specified, this command displays all the LLDP statistics.

Examples

```plaintext
# Display all the LLDP statistics.
<Sysname> display lldp statistics
LLDP statistics global Information:
LLDP neighbor information last change time:0 days,0 hours,4 minutes,40 seconds
The number of LLDP neighbor information inserted : 1
The number of LLDP neighbor information deleted : 1
The number of LLDP neighbor information dropped : 0
The number of LLDP neighbor information aged out : 1
LLDP statistics Information of port 1 [GigabitEthernet1/0/1]:
The number of LLDP frames transmitted : 0
The number of LLDP frames received : 0
The number of LLDP frames discarded : 0
The number of LLDP error frames : 0
The number of LLDP TLVs discarded : 0
The number of LLDP TLVs unrecognized : 0
The number of LLDP neighbor information aged out : 0
The number of CDP frames transmitted : 0
The number of CDP frames received : 0
The number of CDP frames discarded : 0
```
The number of CDP error frames : 0

Table 4-3 display lldp statistics command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLDP statistics global information</td>
<td>Global LLDP statistics</td>
</tr>
<tr>
<td>LLDP neighbor information last change time</td>
<td>Time the neighbor information is latest updated</td>
</tr>
<tr>
<td>The number of LLDP neighbor information inserted</td>
<td>Number of times of adding neighbor information</td>
</tr>
<tr>
<td>The number of LLDP neighbor information deleted</td>
<td>Number of times of removing neighbor information</td>
</tr>
<tr>
<td>The number of LLDP neighbor information dropped</td>
<td>Number of times of dropping neighbor information due to lack of available memory space</td>
</tr>
<tr>
<td>The number of LLDP neighbor information aged out</td>
<td>Number of the neighbor information entries that have aged out</td>
</tr>
<tr>
<td>LLDP statistics Information of port 1</td>
<td>LLDP statistics of port 1</td>
</tr>
<tr>
<td>The number of LLDP frames transmitted</td>
<td>Total number of the LLDP frames transmitted</td>
</tr>
<tr>
<td>The number of LLDP frames received</td>
<td>Total number of the LLDP frames received</td>
</tr>
<tr>
<td>The number of LLDP frames discarded</td>
<td>Total number of the LLDP frames dropped</td>
</tr>
<tr>
<td>The number of LLDP error frames</td>
<td>Total number of the LLDP error frames received</td>
</tr>
<tr>
<td>The number of LLDP TLVs discarded</td>
<td>Total number of the LLDP TLVs dropped</td>
</tr>
<tr>
<td>The number of LLDP TLVs unrecognized</td>
<td>Total number of the LLDP TLVs that cannot be recognized</td>
</tr>
<tr>
<td>The number of LLDP neighbor information aged out</td>
<td>Number of the LLDP neighbor information entries that have aged out</td>
</tr>
<tr>
<td>The number of CDP frames transmitted</td>
<td>Total number of the CDP frames transmitted</td>
</tr>
<tr>
<td>The number of CDP frames received</td>
<td>Total number of the CDP frames received</td>
</tr>
<tr>
<td>The number of CDP frames discarded</td>
<td>Total number of the CDP frames dropped</td>
</tr>
<tr>
<td>The number of CDP error frames</td>
<td>Total number of the CDP error frames received</td>
</tr>
</tbody>
</table>

display lldp status

Syntax

display lldp status [interface interface-type interface-number]

View

Any view

Default level

1: Monitor level

Parameters

interface interface-type interface-number: Specifies a port by its type and number.
Description

Use the `display lldp status` command to display the LLDP status of a port.

If no port is specified, this command displays the LLDP status of all the ports.

Examples

Display the LLDP status of all the ports.

```
<Sysname> display lldp status
Global status of LLDP: Enable
The current number of LLDP neighbors: 4
The current number of CDP neighbors: 0
LLDP neighbor information last changed time: 0 days, 0 hours, 4 minutes, 40 seconds
Transmit interval : 30s
Hold multiplier : 4
Reinit delay : 2s
Transmit delay : 2s
Trap interval : 5s
Fast start times : 3
Port 1 [GigabitEthernet1/0/1]:
  Port status of LLDP : Enable
  Admin status : Tx_Rx
  Trap flag : No
  Rolling interval : 0s
  Number of neighbors : 5
  Number of MED neighbors : 2
  Number of CDP neighbors : 0
  Number of sent optional TLV : 12
  Number of received unknown TLV : 5
```

Table 4-4 display lldp status command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global status of LLDP</td>
<td>Indicating whether or not LLDP is globally enabled</td>
</tr>
<tr>
<td>The current number of LLDP neighbors</td>
<td>Total number of the LLDP neighbor devices</td>
</tr>
<tr>
<td>The current number of CDP neighbors</td>
<td>The current number of CDP neighbors</td>
</tr>
<tr>
<td>LLDP neighbor information last changed time</td>
<td>Time the neighbor information is latest updated</td>
</tr>
<tr>
<td>Transmit interval</td>
<td>Interval to send LLDPDU</td>
</tr>
<tr>
<td>Hold multiplier</td>
<td>TTL multiplier</td>
</tr>
<tr>
<td>Reinit delay</td>
<td>Initialization delay</td>
</tr>
<tr>
<td>Transmit delay</td>
<td>Delay period to send LLDPDUs</td>
</tr>
<tr>
<td>Trap interval</td>
<td>Interval to send traps</td>
</tr>
<tr>
<td>Fast start times</td>
<td>Number of the LLDPDUs to be sent successively when a new neighboring device is detected</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Port 1</td>
<td>LLDP status of port 1</td>
</tr>
<tr>
<td>Port status of LLDP</td>
<td>Indicates whether or not LLDP is enabled on the port.</td>
</tr>
<tr>
<td>Admin status</td>
<td>LLDP mode of the port, which can be:</td>
</tr>
<tr>
<td></td>
<td>• TxRx. A port in this mode sends and receives LLDPDUs.</td>
</tr>
<tr>
<td></td>
<td>• Rx_Only. A port in this mode receives LLDPDUs only.</td>
</tr>
<tr>
<td></td>
<td>• Tx_Only. A port in this mode sends LLDPDUs only.</td>
</tr>
<tr>
<td></td>
<td>• Disable. A port in this mode does not send or receive LLDPDUs.</td>
</tr>
<tr>
<td>Trap Flag</td>
<td>Indicates whether or not trap is enabled.</td>
</tr>
<tr>
<td>Rolling interval</td>
<td>LLDP polling interval. A value of 0 indicates LLDP polling is disabled.</td>
</tr>
<tr>
<td>Number of neighbors</td>
<td>Number of the LLDP neighbors connecting to the port</td>
</tr>
<tr>
<td>Number of MED neighbors</td>
<td>Number of MED neighbors connecting to the port</td>
</tr>
<tr>
<td>Number of CDP neighbors</td>
<td>Number of the CDP neighbors connecting to the port</td>
</tr>
<tr>
<td>Number of sent optional TLV</td>
<td>Number of the optional TLVs contained in an LLDPDU sent through the port</td>
</tr>
<tr>
<td>Number of received unknown TLV</td>
<td>Number of the unknown TLVs contained in a received LLDPDU</td>
</tr>
</tbody>
</table>

display lldp tlv-config

Syntax

```
display lldp tlv-config [ interface interface-type interface-number ]
```

View

Any view

Default level

1: Monitor level

Parameters

```
interface interface-type interface-number: Specifies a port by its type and number.
```

Description

Use the `display lldp tlv-config` command to display the advertisable TLVs of a port.

If no port is specified, this command displays the advertisable TLVs of each port.

Examples

```
# Display the advertisable TLVs of port GigabitEthernet1/0/1.
<Sysname> display lldp tlv-config interface GigabitEthernet 1/0/1
LLDP tlv-config of port 1[GigabitEthernet1/0/1]:
NAME                    STATUS      DEFAULT
Basic optional TLV:
```

4-14
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLDP tlv-config of port 1</td>
<td>Advertisable TLVs of port 1</td>
</tr>
<tr>
<td>NAME</td>
<td>TLV type</td>
</tr>
<tr>
<td>STATUS</td>
<td>Indicates whether or not TLVs of a specific type are currently sent through a port</td>
</tr>
<tr>
<td>DEFAULT</td>
<td>Indicates whether or not TLVs of a specific type are sent through a port by default</td>
</tr>
<tr>
<td>Basic optional TLV</td>
<td>Basic TLVs, including:</td>
</tr>
<tr>
<td></td>
<td>- Port description TLV</td>
</tr>
<tr>
<td></td>
<td>- System name TLV</td>
</tr>
<tr>
<td></td>
<td>- System description TLV</td>
</tr>
<tr>
<td></td>
<td>- System capabilities TLV</td>
</tr>
<tr>
<td></td>
<td>- Management address TLV</td>
</tr>
<tr>
<td>IEEE 802.1 extended TLV</td>
<td>IEEE 802.1 organizationally specific TLVs, including:</td>
</tr>
<tr>
<td></td>
<td>- Port VLAN ID TLV</td>
</tr>
<tr>
<td></td>
<td>- Port and protocol VLAN ID TLV</td>
</tr>
<tr>
<td></td>
<td>- VLAN name TLV</td>
</tr>
<tr>
<td>IEEE 802.3 extended TLV</td>
<td>IEEE 802.3 organizationally specific TLVs, including:</td>
</tr>
<tr>
<td></td>
<td>- MAC-Physic TLV</td>
</tr>
<tr>
<td></td>
<td>- Power via MDI TLV</td>
</tr>
<tr>
<td></td>
<td>- Link aggregation TLV</td>
</tr>
<tr>
<td></td>
<td>- Maximum frame size TLV</td>
</tr>
</tbody>
</table>
LLDP-MED extend TLV

MED related LLDP TLVs, including:
- Capabilities TLV
- Network Policy TLV
- Extended Power-via-MDI TLV
- Location Identification TLV
- Inventory TLV, which can be hardware revision TLV, firmware revision TLV, software revision TLV, serial number TLV, manufacturer name TLV, model name TLV, and asset id TLV.

lldp admin-status

Syntax

```plaintext
lldp admin-status { disable | rx | tx | txrx }
undo lldp admin-status
```

View

- Ethernet interface view, port group view

Default level

- 2: System level

Parameters

- **disable**: Specifies the **Disable** mode. A port in this mode does not send or receive LLDPDUs.
- **rx**: Specifies the **Rx** mode. A port in this mode receives LLDPDUs only.
- **tx**: Specifies the **Tx** mode. A port in this mode sends LLDPDUs only.
- **txrx**: Specifies the **TxRx** mode. A port in this mode sends and receives LLDPDUs.

Description

Use the `lldp admin-status` command to specify the LLDP operating mode for a port or all the ports in a port group.

Use the `undo lldp admin-status` command to restore the default LLDP operating mode.

The default LLDP operating mode is **TxRx**.

Examples

```
# Configure the LLDP operating mode as Rx for GigabitEthernet1/0/1.
<Sysname> system-view
<Sysname> interface gigabitethernet 1/0/1
<Sysname-GigabitEthernet1/0/1] lldp admin-status rx
```

lldp check-change-interval

Syntax

```plaintext
lldp check-change-interval interval
```

4-16
undo lldp check-change-interval

View

Ethernet interface view, port group view

Default level

2: System level

Parameters

interval: LLDP polling interval to be set, in the range 1 to 30 (in seconds).

Description

Use the `lldp check-change-interval` command to enable LLDP polling and set the polling interval.

Use the `undo lldp check-change-interval` command to restore the default.

By default, LLDP polling is disabled.

With LLDP polling enabled, LLDP detects for local configuration changes periodically. A local configuration change triggers LLDPDU sending, through which neighboring devices can be informed of the configuration change timely.

Examples

Enable LLDP polling on GigabitEthernet1/0/1, setting the polling interval to 30 seconds.

```plaintext
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] lldp check-change-interval 30
```

lldp compliance admin-status cdp

Syntax

```
lldp compliance admin-status cdp { disable | txrx }
```

View

Ethernet interface view, port group view

Default Level

2: System level

Parameters

disable: Specifies the disable mode, where CDP-compatible LLDP neither receives nor transmits CDP packets.

txrx: Specifies the TxRx mode, where CDP-compatible LLDP can send and receive CDP packets.

Description

Use the `lldp compliance admin-status cdp` command to configure the operation mode of CDP-compatible LLDP on a port or port group.

By default, CDP-compatible LLDP operates in disable mode.
To have your device work with Cisco IP phones, you must enable CDP-compatible LLDP globally and then configure CDP-compatible LLDP to work in TxRx mode on the specified port(s).

Related commands: `lldp compliance cdp`.

Examples

```
# Configure CDP-compatible LLDP to operate in TxRx mode on GigabitEthernet1/0/1.
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] lldp compliance admin-status cdp txrx
```

Ildp compliance cdp

Syntax

```
lldp compliance cdp
undo lldp compliance cdp
```

View

```
System view
```

Default Level

```
2: System level
```

Parameters

```
None
```

Description

Use the `lldp compliance cdp` command to enable CDP compatibility globally.

Use the `undo lldp compliance cdp` command to restore the default.

By default, CDP compatibility is disabled globally.

Note that, as the maximum TTL allowed by CDP is 255 seconds, your TTL configuration, that is, the product of the TTL multiplier and the LLDPDU transmit interval, must be no more than 255 seconds for CDP-compatible LLDP to work properly with Cisco IP phones.

Related commands: `lldp hold-multiplier`, `lldp timer tx-interval`.

Examples

```
# Enable LLDP to be compatible with CDP globally.
<Sysname> system-view
[Sysname] lldp compliance cdp
```

Ildp enable

Syntax

```
lldp enable
undo lldp enable
```
View

- System view, Ethernet interface view, port group view

Default level

- 2: System level

Parameters

- None

Description

Use the `lldp enable` command to enable LLDP.

Use the `undo lldp enable` command to disable LLDP.

By default, LLDP is disabled globally and enabled on a port.

Note that LLDP takes effect on a port only when it is enabled both globally and on the port.

Examples

```
# Disable LLDP on GigabitEthernet1/0/1.
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] undo lldp enable
```

lldp encapsulation snap

Syntax

```
lldp encapsulation snap
undo lldp encapsulation [ snap ]
```

View

- Ethernet interface view, port group view

Default level

- 2: System level

Parameters

- None

Description

Use the `lldp encapsulation snap` command to configure the encapsulation format for LLDPDUs as SNAP on a port or a group of ports.

Use the `undo lldp encapsulation` command to restore the default encapsulation format for LLDPDUs.

By default, Ethernet II encapsulation applies.
The command does not apply to LLDP-CDP packets, which use only SNAP encapsulation.

Examples

Configure the encapsulation format for LLDPDUs as SNAP on GigabitEthernet1/0/1.
<Sysname> system-view
<Sysname> interface gigabitethernet 1/0/1
<Sysname-GigabitEthernet1/0/1] lldp encapsulation snap

lldp fast-count

Syntax

```
lldp fast-count count
undo lldp fast-count
```

View

System view

Default level

2: System level

Parameters

```
count: Number of the LLDPDUs to be sent successively when a new neighboring device is detected. This argument ranges from 1 to 10.
```

Description

Use the `lldp fast-count` command to set the number of the LLDPDUs to be sent successively when a new neighboring device is detected.

Use the `undo lldp fast-count` command to restore the default.

By default, the number is 3.

Examples

Configure to send four LLDP successively when a new neighboring device is detected.
<Sysname> system-view
<Sysname> lldp fast-count 4

lldp hold-multiplier

Syntax

```
lldp hold-multiplier value
undo lldp hold-multiplier
```
View

System view

Default level

2: System level

Parameters

value: TTL multiplier, in the range 2 to 10.

Description

Use the `lldp hold-multiplier` command to set the TTL multiplier.

Use the `undo lldp hold-multiplier` command to restore the default.

The TTL multiplier defaults to 4.

You can set the TTL of the local device information by configuring the TTL multiplier.

The TTL of the information about a device is determined by the following expression:

\[\text{TTL multiplier} \times \text{LLDPDU transmit interval} \]

You can set the TTL of the local device information by configuring the TTL multiplier. Note that the TTL can be up to 65535 seconds. TTLs longer than it will be rounded off to 65535 seconds.

Related commands: `lldp timer tx-interval`.

Examples

```
# Set the TTL multiplier to 6.
<Sysname> system-view
[Sysname] lldp hold-multiplier 6
```

lldp management-address-format string

Syntax

```
lldp management-address-format string
undo lldp management-address-format
```

View

Ethernet interface view, port group view

Default Level

2: System level

Parameters

None

Description

Use the `lldp management-address-format string` command to configure the encapsulation format of the management address as strings in TLVs.

Use the `undo lldp management-address-format` command to restore the default.
By default, the management address is encapsulated in the form of numbers in TLVs.

Examples

Configure GigabitEthernet1/0/1 to encapsulate the management address in the form of strings in management address TLVs.

```plaintext
<Sysname> system-view
<Sysname> interface gigabitethernet 1/0/1
<Sysname-GigabitEthernet1/0/1] lldp management-address-format string
```

Ildp management-address-tlv

Syntax

```
lldp management-address-tlv [ip-address]
undo lldp management-address-tlv
```

View

Ethernet interface view, port group view

Default level

2: System level

Parameters

- `ip-address`: Management address to be set.

Description

Use the `lldp management-address-tlv` command to enable the management address sending. This command also sets the management address.

Use the `undo lldp management-address-tlv` command to disable management address sending.

By default, the management address is sent through LLDPDUs, and the management address is the primary IP address of the VLAN with the smallest VLAN ID among the VLANs whose packets are permitted on the port. If the primary IP address is not configured, the management address is 127.0.0.1.

Note that an LLDPDU carries only one management address. If you set the management address repeatedly, the latest one takes effect.

Examples

Set the management address to 192.6.0.1 for GigabitEthernet1/0/1.

```plaintext
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] lldp management-address-tlv 192.6.0.1
```

Ildp notification remote-change enable

Syntax

```
lldp notification remote-change enable
```

```plaintext
``
undo lldp notification remote-change enable

View

Ethernet interface view, port group view

Default level

2: System level

Parameters

None

Description

Use the lldp notification remote-change enable command to enable trap for a port or all the ports in a port group.

Use the undo lldp notification remote-change enable command to restore the default.

By default, trap is disabled on a port.

Examples

# Enable LLDP trap for GigabitEthernet1/0/1.

<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] lldp notification remote-change enable

lldp timer notification-interval

Syntax

lldp timer notification-interval interval
undo lldp timer notification-interval

View

System view

Default level

2: System level

Parameters

interval: Interval to send LLDP trap messages, in the range 5 to 3600 (in seconds).

Description

Use the lldp timer notification-interval command to set the interval to send LLDP trap messages.

Use the undo lldp timer notification-interval command to restore the default.

By default, the interval to send LLDP trap messages is 5 seconds.

Examples

# Set the interval to send LLDP trap messages to 8 seconds.

<Sysname> system-view
lldp timer reinit-delay

Syntax

```plaintext
lldp timer reinit-delay delay
undo lldp timer reinit-delay
```

View

System view

Default level

2: System level

Parameters

- `delay`: Initialization delay period to be set, in the range 1 to 10 (in seconds).

Description

Use the `lldp timer reinit-delay` command to set the initialization delay period.

Use the `undo lldp timer reinit-delay` command to restore the default.

By default, the initialization delay period is 2 seconds.

Examples

```plaintext
Set the initialization delay period to 4 seconds.
<Sysname> system-view
[Sysname] lldp timer reinit-delay 4
```

lldp timer tx-delay

Syntax

```plaintext
lldp timer tx-delay delay
undo lldp timer tx-delay
```

View

System view

Default level

2: System level

Parameters

- `delay`: Delay period to send LLDPDUs, in the range 1 to 8192 (in seconds).

Description

Use the `lldp timer tx-delay` command to set the delay period to send LLDPDUs.

Use the `undo lldp timer tx-delay` command to restore the default.
By default, the delay period to send LLDPDUs is 2 seconds.

Examples

# Set the delay period to send LLDPDUs to 4 seconds.
<Sysname> system-view
[Sysname] lldp timer tx-delay 4

Ildp timer tx-interval

Syntax

Ildp timer tx-interval interval
undo lldp timer tx-interval

View

System view

Default level

2: System level

Parameters

interval: Interval to send LLDPDUs, in the range 5 to 32768 (in seconds).

Description

Use the Ildp timer tx-interval command to set the interval to send LLDPDUs.

Use the undo Ildp timer tx-interval command to restore the default.

By default, the interval to send LLDPDUs is 30 seconds.

To enable local device information to be updated on neighboring devices before being aged out, make sure the interval to send LLDPDUs is shorter than the TTL of the local device information.

Examples

# Set the interval to send LLDPDUs to 20 seconds.
<Sysname> system-view
[Sysname] lldp timer tx-interval 20

Ildp tlv-enable

Syntax

Ildp tlv-enable { basic-tlv { all | port-description | system-capability | system-description | system-name } | dot1-tlv { all | port-vlan-id | protocol-vlan-id [ vlan-id ] | vlan-name [ vlan-id ] } | dot3-tlv { all | link-aggregation | mac-physic | max-frame-size | power } | med-tlv { all | capability | inventory | location-id { civic-address device-type country-code { ca-type ca-value }&<1-10> | elin-address tel-number } | network-policy | power-over-ethernet } } undo Ildp tlv-enable { basic-tlv { all | port-description | system-capability | system-description | system-name } | dot1-tlv { all | port-vlan-id | protocol-vlan-id | vlan-name } | dot3-tlv { all |
link-aggregation | mac-physic | max-frame-size | power } | med-tlv { all | capability | inventory | location-id | network-policy | power-over-ethernet } }

View

Ethernet interface view, port group view

Default level

2: System level

Parameters

all: Sends all the basic LLDP TLVs, all the IEEE 802.1 organizationally specific LLDP TLVs, or all the IEEE 802.3 organizationally specific LLDP TLVs when the all keyword is specified for basic-tlv, dot1-tlv, or dot3-tlv; or sends all the MED related LLDP TLVs except location identification TLVs when the all keyword is specified for med-tlv.

basic-tlv: Sends basic LLDP TLVs.

port-description: Sends port description TLVs.

system-capability: Sends system capabilities TLVs.

system-description: Sends system description TLVs.

system-name: Sends system name TLVs.

dot1-tlv: Sends IEEE 802.1 organizationally specific LLDP TLVs.

port-vlan-id: Sends port VLAN ID TLVs.

protocol-vlan-id: Sends port and protocol VLAN ID TLVs.

vlan-name: Sends VLAN name TLVs.

vlan-id: ID of the VLAN in the TLVs (port and protocol VLAN ID TLVs or VLAN name TLVs) to be sent. This argument ranges from 1 to 4094 and defaults to the least protocol VLAN ID.

dot3-tlv: Sends IEEE 802.3 organizationally specific LLDP TLVs.

link-aggregation: Sends link aggregation group TLVs.

mac-physic: Sends MAC/PHY configuration/status TLVs.

max-frame-size: Sends maximum frame size TLVS.

power: Sends power via MDI TLVs.

med-tlv: Sends MED related LLDP TLVs.

capability: Sends LLDP-MED capabilities TLVs.

inventory: Sends hardware revision TLVs, firmware revision TLVs, software revision TLVs, serial number TLVs, manufacturer name TLVs, model name TLVs, and asset ID TLVs.

location-id: Sends location identification TLVS.

civic-address: Inserts the address information about the intermediate device in location identification TLVs.

device-type: Device type value. A value of 0 specifies DHCP server; a value of 1 specifies switch, and a value of 2 specifies LLDP-MED endpoint.

country-code: Country code, confirming to ISO 3166.
{ ca-type ca-value }&<1-10>: Configures address information, where ca-type represents the address information type, in the range 0 to 255, ca-value represents address information, a string of 1 to 250 characters, and &<1-10> indicates that you can enter up to ten such parameters.

elin-address: Inserts telephone numbers for urgencies in location identification TLVs.
tel-number: Telephone number for urgencies, a string of 10 to 25 characters.
network-policy: Sends network policy TLVs.
power-over-ethernet: Sends extended power-via-MDI TLVs.

Description

Use the lldp tlv-enable command to configure advertisable TLVs for a port or all the ports in a port group.

Use the undo lldp tlv-enable command to disable the sending of specific TLVs.

By default, all the TLVs except location identification TLVs are advertisable on a port.

Note that:

- To enable MED related LLDP TLV sending, you need to enable LLDP-MED capabilities TLV sending first. Conversely, to disable LLDP-MED capabilities TLV sending, you need to disable the sending of other MED related LLDP TLV.
- To disable MAC/PHY configuration/status TLV sending, you need to disable LLDP-MED capabilities TLV sending first.
- Enabling the sending of LLDP-MED capabilities TLVs also enables the sending of MAC/PHY configuration/status TLVs.
- You can specify to send multiple types of TLVs by executing the lldp tlv-enable command repeatedly.

Examples

# Enable the sending of link aggregation group TLVs of the IEEE 802.3 organizationally specific TLVs on GigabitEthernet1/0/1.

<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] lldp tlv-enable dot3-tlv link-aggregation
VLAN Configuration Commands

description

Syntax

description text
undo description

View

VLAN view, VLAN interface view

Default Level

2: System level

Parameters

text: Case-sensitive string that describes the current VLAN or VLAN interface. Spaces can be included in the description.
  - For a VLAN, this is a string of 1 to 32 characters.
  - For a VLAN interface, this is a string of 1 to 80 characters.

Description

Use the description command to configure the description of the current VLAN or VLAN interface.
Use the undo description command to restore the default.
For a VLAN, the default description is the VLAN ID, for example, VLAN 0001; for a VLAN interface, the default description is the name of the interface, for example, Vlan-interface 1 Interface.
You can configure a description to describe the function or connection of a VLAN or VLAN interface for management sake.

Examples

# Configure the description of VLAN 1 as RESEARCH.
<Sysname> system-view
[Sysname] vlan 1
[Sysname-vlan1] description RESEARCH

# Configure the description of VLAN-interface 2 as VLAN-INTERFACE-2.
<Sysname> system-view
[Sysname] vlan 2
[Sysname-vlan2] quit
[Sysname] interface vlan-interface 2
[Sysname-Vlan-interface2] description VLAN-INTERFACE-2
display interface vlan-interface

Syntax

    display interface vlan-interface [ vlan-interface-id ]

View

    Any view

Default Level

    1: Monitor level

Parameters

    vlan-interface-id: VLAN interface number, in the range of the numbers of existing VLANs on the device.

Description

    Use the display interface vlan-interface command to display information about a specified or all VLAN interfaces if no interface is specified.

    Related commands: interface vlan-interface.

Examples

    # Display the information of VLAN-interface 2.
    <Sysname> display interface vlan-interface 2
    Vlan-interface2 current state: DOWN
    Line protocol current state: DOWN
    Description: Vlan-interface2 Interface
    The Maximum Transmit Unit is 1500
    Internet protocol processing : disabled
    IP Packet Frame Type: PKTFMT_ETHNT_2, Hardware Address: 001e-c16f-ae69
    IPv6 Packet Frame Type: PKTFMT_ETHNT_2, Hardware Address: 001e-c16f-ae69

Table 5-1 display interface vlan-interface command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlan-interface2 current state</td>
<td>The physical state of the VLAN interface, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>● Administratively DOWN: The administrative state of the VLAN interface is down because it has been manually shut down with the shutdown command.</td>
</tr>
<tr>
<td></td>
<td>● DOWN: The administrative state of this VLAN interface is up, but its physical state is down. It indicates that the VLAN corresponding to this interface does not contain any port in the UP state (possibly because the ports are not well connected or the lines have failed).</td>
</tr>
<tr>
<td></td>
<td>● UP: both the administrative state and the physical state of this VLAN interface are up.</td>
</tr>
<tr>
<td>Line protocol current state</td>
<td>The link layer protocol state of a VLAN interface, which can be one of the following:</td>
</tr>
<tr>
<td></td>
<td>● DOWN: The protocol state of this VLAN interface is down, usually because no IP address is configured.</td>
</tr>
<tr>
<td></td>
<td>● UP: The protocol state of this VLAN interface is up.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Description</td>
<td>The description string of a VLAN interface</td>
</tr>
<tr>
<td>The Maximum Transmit Unit</td>
<td>The MTU of a VLAN interface</td>
</tr>
<tr>
<td>Internet protocol processing</td>
<td>IP packets processing ability. Disabled indicates that the interface</td>
</tr>
<tr>
<td>Internet protocol processing</td>
<td>is not configured with an IP address.</td>
</tr>
<tr>
<td>IP Packet Frame Type</td>
<td>IPv4 outgoing frame format</td>
</tr>
<tr>
<td>Hardware address</td>
<td>MAC address corresponding to a VLAN interface</td>
</tr>
<tr>
<td>IPv6 Packet Frame Type</td>
<td>IPv6 outgoing frame format</td>
</tr>
</tbody>
</table>

**display vlan**

**Syntax**

```
display vlan [vlan-id1 [to vlan-id2] | all | dynamic | reserved | static]
```

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

- `vlan-id1`: Displays the information of a VLAN specified by VLAN ID in the range of 1 to 4094.
- `vlan-id1 to vlan-id2`: Displays the information of a range of VLANs specified by a VLAN ID range. Note that `vlan-id2` must be equal to or greater than `vlan-id1`.
- `all`: Displays all current VLAN information except for the reserved VLANs.
- `dynamic`: Displays the number of dynamic VLANs and the ID of each dynamic VLAN. Dynamic VLANs refer to VLANs that are generated through GVRP or those distributed by a RADIUS server.
- `reserved`: Displays information of the reserved VLANs. Protocol modules determine which VLANs are reserved VLANs according to function implementation, and reserved VLANs serve protocol modules. You cannot do any configuration on reserved VLANs.
- `static`: Displays the number of static VLANs and the ID of each static VLAN. Static VLANs refer to VLANs manually created.

**Description**

Use the `display vlan` command to display VLAN information.

**Related commands:** `vlan`.

**Examples**

```
Display VLAN 2 information.
<Sysname> display vlan 2
VLAN ID: 2
VLAN Type: static
Route Interface: not configured
```
Description: VLAN 0002
Name: VLAN 0002
Tagged Ports:
  GigabitEthernet1/0/11    GigabitEthernet1/0/12
Untagged Ports: none

# Display VLAN 3 information.
<Sysname> display vlan 3
VLAN ID: 3
VLAN Type: static
Route Interface: configured
IP Address: 1.1.1.1
Subnet Mask: 255.255.255.0
Description: VLAN 0003
Name: VLAN 0003
Tagged Ports: none
Untagged Ports: none

Table 5-2 display vlan command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>VLAN ID</td>
</tr>
<tr>
<td>VLAN Type</td>
<td>VLAN type (static or dynamic)</td>
</tr>
<tr>
<td>Route interface</td>
<td>Whether the VLAN interface is configured for the VLAN: not configured or</td>
</tr>
<tr>
<td></td>
<td>configured</td>
</tr>
<tr>
<td>Description</td>
<td>VLAN description</td>
</tr>
<tr>
<td>Name</td>
<td>Name configured for the VLAN</td>
</tr>
<tr>
<td>IP Address</td>
<td>Primary IP address of the VLAN interface (available only on a VLAN interface</td>
</tr>
<tr>
<td></td>
<td>configured with an IP address). You can use the display interface vlan-</td>
</tr>
<tr>
<td></td>
<td>interface command in any view or the display this command in VLAN interface</td>
</tr>
<tr>
<td></td>
<td>view to display its secondary IP address(es), if any.</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>Subnet mask of the primary IP address (available only on a VLAN interface</td>
</tr>
<tr>
<td></td>
<td>configured with an IP address)</td>
</tr>
<tr>
<td>Tagged Ports</td>
<td>Ports through which packets of the VLAN are sent tagged</td>
</tr>
<tr>
<td>Untagged Ports</td>
<td>Ports through which packets of the VLAN are sent untagged</td>
</tr>
</tbody>
</table>

interface vlan-interface

Syntax

interface vlan-interface  vlan-interface-id
undo interface vlan-interface  vlan-interface-id

View

System view
Default Level
2: System level

Parameters

vlan-interface-id: VLAN interface number, in the range of 1 to 4094.

Description

Use the interface vlan-interface command to create a VLAN interface and enter its view or enter the view of an existing VLAN interface.

Before you can create the VLAN interface of a VLAN, create the VLAN first.

Use the undo interface vlan-interface command to remove the specified VLAN interface.

You can use the ip address command in VLAN interface view to configure an IP address for a VLAN interface to perform IP routing.

Related commands: display interface Vlan-interface.

Examples

# Create VLAN-interface 2.
<Sysname> system-view
[Sysname] vlan 2
[Sysname-vlan2] quit
[Sysname] interface vlan-interface 2
[Sysname-Vlan-interface2]

ip address

Syntax

ip address ip-address { mask | mask-length } [ sub ]
undo ip address [ ip-address { mask | mask-length } [ sub ] ]

View

VLAN interface view

Default Level
2: System level

Parameters

ip-address: IP address to be assigned to the current VLAN interface, in dotted decimal format.
mask: Subnet mask in dotted decimal notation.
mask-length: Subnet mask length, the number of consecutive ones in the mask. The value range is 0 to 32.
sub: Indicates the address is a secondary IP address.

Description

Use the ip address command to assign an IP address and subnet mask to a VLAN interface.

Use the undo ip address command to remove the IP address and subnet mask for a VLAN interface.
By default, no IP address is assigned to any VLAN interface.

In general conditions, you need to assign only one IP address for a VLAN interface. For a VLAN to connect to multiple subnets, you need to assign multiple IP addresses for the VLAN interface. Among these IP addresses, one is primary and the others are secondary. On an Switch 4210G, you can assign up to ten IP addresses for a VLAN interface.

When configuring IP addresses for a VLAN interface, consider the following:

- You can assign only one primary IP address to an interface.
- Before removing the primary IP address, remove all secondary IP addresses.
- To remove all IP addresses, use the `undo ip address` command without any parameter.
- To remove the primary IP address, use the `undo ip address ip-address { mask | mask-length }` command.
- To remove a secondary IP address, use the `undo ip address ip-address { mask | mask-length } sub` command.

Related commands: `display ip interface` (*IP Address Commands* in the *IP Services Volume*).

**Examples**

```
Specify the IP address as 1.1.0.1, the subnet mask as 255.255.255.0 for VLAN-interface 1.
<Sysname> system-view
[Sysname] interface vlan-interface 1
[Sysname-Vlan-interface1] ip address 1.1.0.1 255.255.255.0
```

**name**

**Syntax**

```
name text
undo name
```

**View**

VLAN interface view

**Default Level**

2: System level

**Parameters**

- `text`: VLAN name, a string of 1 to 32 characters. Spaces and special characters can be included in the name.

**Description**

Use the `name` command to configure a name for the current VLAN.

Use the `undo name` command to restore the default name of the VLAN.

The default name of a VLAN is its VLAN ID, **VLAN 0001** for example.

When 802.1X or MAC address authentication is configured on a switch, you can use a RADIUS server to issue VLAN configuration to ports that have passed the authentication. Some servers can send IDs or names of the issued VLANs to the switch. When there are a large number of VLANs, you can use VLAN names rather than VLAN IDs to better locate VLANs.
Examples

# Configure the name of VLAN 2 as test vlan.

<Sysname> system-view
[Sysname] vlan 2
[Sysname-vlan2] name test vlan

shutdown

Syntax

shutdown
undo shutdown

View

VLAN interface view

Default Level

2: System level

Parameters

None

Description

Use the shutdown command to shut down a VLAN interface.

Use the undo shutdown command to bring up a VLAN interface.

By default, a VLAN interface is up except when all ports in the VLAN are down.

You can use the undo shutdown command to bring up a VLAN interface after configuring related parameters and protocols for the VLAN interface. When a VLAN interface fails, you can shut down the interface with the shutdown command and then bring it up with the undo shutdown command. In this way, the interface may resume.

The state of any Ethernet port in a VLAN is independent of the VLAN interface state.

Examples

# Shut down VLAN interface 2 and then bring it up.

<Sysname> system-view
[Sysname] interface vlan-interface 2
[Sysname-Vlan-interface2] shutdown
[Sysname-Vlan-interface2] undo shutdown

vlan

Syntax

vlan { vlan-id1 [ to vlan-id2 ] | all }

undo vlan { vlan-id1 [ to vlan-id2 ] | all }
View

System view

Default Level

2: System level

Parameters

vlan-id1, vlan-id2: VLAN ID, in the range 1 to 4094.

vlan-id1 to vlan-id2: Specifies a VLAN range. A VLAN ID is in the range 1 to 4094. Note that vlan-id2 must be equal to or greater than vlan-id1.

all: Creates or removes all VLANs except reserved VLANs. The keyword is not supported when the maximum number of VLANs that can be created on a device is less than 4094.

Description

Use the `vlan vlan-id` command to create a VLAN and enter its view or enter the view of an existing VLAN.

Use the `vlan vlan-id1 to vlan-id2` command to create a range of VLANs specified by `vlan-id1 to vlan-id2`, except reserved VLANs.

Use the `undo vlan` command to remove the specified VLAN(s).

Note

- As the default VLAN, VLAN 1 cannot be created or removed.
- You cannot create/remove reserved VLANs reserved for specific functions.
- You cannot use the `undo vlan` command to directly remove reserved VLANs, voice VLANs, management VLANs, dynamic VLANs, VLANs configured with QoS policies, control VLANs configured for smart link, or remote probe VLANs configured for port mirroring. To remove these VLANs, you need to first remove related configurations.

Related commands: `display vlan`.

Examples

# Enter VLAN 2 view.

```
<Sysname> system-view
[Sysname] vlan 2
[Sysname-vlan2]
```

# Create VLAN 4 through VLAN 100.

```
<Sysname> system-view
[Sysname] vlan 4 to 100
Please wait............. Done.
```
Port-Based VLAN Configuration Commands

display port

Syntax

display port { hybrid | trunk }

View

Any view

Default Level

1: Monitor level

Parameters

hybrid: Displays hybrid ports.

trunk: Displays trunk ports.

Description

Use the display port command to display information about the hybrid or trunk ports on the device, including the port names, default VLAN IDs, and allowed VLAN IDs.

Examples

# Display information about the hybrid ports in the system.
<Sysname> display port hybrid
Interface PVID VLAN passing
GE1/0/6 1 Tagged: 1002
Untagged:1-2, 5-50, 100, 200

# Display information about the trunk ports in the system.
<Sysname> display port trunk
Interface PVID VLAN passing
GE1/0/1 100 2, 6-50, 100
GE1/0/11 1 1-2, 5-50, 100, 200, 1002
GE1/0/12 1 1-2, 5-50, 100, 200, 1002

Table 5-3 display port command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Port name</td>
</tr>
<tr>
<td>PVID</td>
<td>Default VLAN ID of the port</td>
</tr>
<tr>
<td>VLAN passing</td>
<td>VLANs whose packets are allowed to pass through the port.</td>
</tr>
<tr>
<td>Tagged</td>
<td>VLANs whose packets are required to pass through the port tagged.</td>
</tr>
<tr>
<td>Untagged</td>
<td>VLANs whose packets are required to pass through the port untagged.</td>
</tr>
</tbody>
</table>
port

Syntax

   port interface-list
   undo port interface-list

View

   VLAN view

Default Level

   2: System level

Parameters

   interface interface-list: Specifies an Ethernet port list or Layer-2 aggregate interface list, in the format of interface-list = { interface-type interface-number [ to interface-type interface-number ] }&<1-10>, where &<1-10> indicates that you can specify up to 10 ports or port ranges.

Description

   Use the port command to assign the specified access port(s) to the current VLAN.
   Use the undo port command to remove the specified access port(s) from the current VLAN.
   By default, all ports are in VLAN 1.
   Note that:
     ● This command is only applicable on access ports.
     ● All ports are access ports by default. However, you can manually configure the port type. For more information, refer to port link-type.
   Related commands: display vlan.

Examples

   # Assign GigabitEthernet 1/0/1 through GigabitEthernet 1/0/3 to VLAN 2.
   <Sysname> system-view
   [Sysname] vlan 2
   [Sysname-vlan2] port gigabitethernet 1/0/1 to gigabitethernet 1/0/3

port access vlan

Syntax

   port access vlan vlan-id
   undo port access vlan

View

   Ethernet interface view, port group view, Layer-2 aggregate interface view

Default Level

   2: System level
Parameters

vlan-id: VLAN ID, in the range of 1 to 4094. Be sure that the VLAN specified by the VLAN ID already exists.

Description

Use the \texttt{port access vlan} command to assign the current access port(s) to the specified VLAN.

Use the \texttt{undo port access vlan} command to restore the default.

By default, all access ports belong to VLAN 1.

You can assign an access port to only one VLAN. When doing that, note the following:

- In port group view, this command applies to all ports in the port group. For information about port groups, refer to \textit{Ethernet Interface Configuration} in the Access Volume.
- In Layer-2 aggregate interface view, this command applies to the Layer-2 aggregate interface and all its member ports. After you perform the configuration, the system starts applying the configuration to the aggregate interface and its aggregation member ports. If the system fails to do that on the aggregate interface, it stops applying the configuration to the aggregation member ports. If it fails to do that on an aggregation member port, it simply skips the port and moves to the next port. For information about Layer-2 aggregate interfaces, refer to \textit{Link Aggregation Configuration} in the Access Volume.

Examples

\begin{verbatim}
# Assign GigabitEthernet 1/0/1 to VLAN 3.
<Sysname> system-view
[Sysname] vlan 3
[Sysname-vlan3] quit
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] port access vlan 3

# Assign Layer-2 aggregate interface Bridge-aggregation 1 and its member ports to VLAN 3.
<Sysname> system-view
[Sysname] vlan 3
[Sysname-vlan3] quit
[Sysname] interface bridge-aggregation 1
[Sysname-Bridge-Aggregation1] port access vlan 3
\end{verbatim}

\textbf{port hybrid pvid vlan}

\textbf{Syntax}

\texttt{port hybrid pvid vlan \textit{vlan-id}}

\texttt{undo port hybrid pvid}

\textbf{View}

Ethernet interface view, port group view, Layer-2 aggregate interface view

\textbf{Default Level}

2: System level
Parameters

**vlan-id**: VLAN ID, in the range of 1 to 4094.

Description

Use the **port hybrid pvid vlan** command to configure the default VLAN ID of the hybrid port.

Use the **undo port hybrid pvid** command to restore the default.

By default, the default VLAN of a hybrid port is VLAN 1.

You can use a nonexistent VLAN as the default VLAN for a hybrid port. Removing the default VLAN of a hybrid port with the **undo vlan** command does not affect the setting of the default VLAN on the port.

- In port group view, this command applies to all ports in the port group. For information about port groups, refer to **Ethernet Interface Configuration** in the Access Volume.
- In Layer-2 aggregate interface view, this command applies to the Layer-2 aggregate interface and all its member ports. After you perform the configuration, the system starts applying the configuration to the aggregate interface and its aggregation member ports. If the system fails to do that on the aggregate interface, it stops applying the configuration to the aggregation member ports. If it fails to do that on an aggregation member port, it simply skips the port and moves to the next port. For information about Layer-2 aggregate interfaces, refer to **Link Aggregation Configuration** in the Access Volume.
- The local and remote hybrid ports must use the same default VLAN ID for the traffic of the default VLAN to be transmitted properly.
- After configuring the default VLAN for a hybrid port, you must use the **port trunk permit vlan** command to configure the hybrid port to allow packets from the default VLAN to pass through, so that the port can forward packets from the default VLAN.

Related commands: **port link-type**, **port hybrid vlan**.

Examples

# Configure VLAN 100 as the default VLAN of the hybrid port GigabitEthernet 1/0/1.

```
<Sysname> system-view
[Sysname] vlan 100
[Sysname-vlan100] quit
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] port link-type hybrid tagged 100
[Sysname-GigabitEthernet1/0/1] port hybrid pvid vlan 100
```

# Configure VLAN 100 as the default VLAN of the hybrid Layer-2 aggregate interface Bridge-aggregation 1.

```
<Sysname> system-view
[Sysname] interface bridge-aggregation 1
[Sysname-Bridge-Aggregation1] port hybrid pvid vlan 100
```

port hybrid vlan

Syntax

```
port hybrid vlan vlan-id-list { tagged | untagged }
undo port hybrid vlan vlan-id-list
```

5-12
View

Ethernet interface view, port group view, Layer-2 aggregate interface view

Default Level

2: System level

Parameters

vlan-id-list: VLANs that the hybrid ports will be assigned to. This argument is expressed in the format of \([ \text{vlan-id1} \text{ to vlan-id2} ]\)&<1-10>, where vlan-id ranges from 1 to 4094 and &<1-10> indicates that you can specify up to 10 VLAN IDs or VLAN ID ranges. Be sure that the specified VLANs already exist.

tagged: Configures the port(s) to send the packets of the specified VLAN(s) with the tags kept.

untagged: Configures the port to send the packets of the specified VLAN(s) with the tags removed.

Description

Use the port hybrid vlan command to assign the current hybrid port(s) to the specified VLAN(s).

Use the undo port hybrid vlan command to remove the current hybrid port(s) from the specified VLAN(s).

By default, a hybrid port only allows packets from VLAN 1 to pass through untagged.

A hybrid port can carry multiple VLANs. If you execute the port hybrid vlan command multiple times, the VLANs the hybrid port carries are the set of VLANs specified by vlan-id-list in each execution.

- In port group view, this command applies to all ports in the port group. For information about port groups, refer to Ethernet Interface Configuration in the Access Volume.
- In Layer-2 aggregate interface view, this command applies to the Layer-2 aggregate interface and all its member ports. After you perform the configuration, the system starts applying the configuration to the aggregate interface and its aggregation member ports. If the system fails to do that on the aggregate interface, it stops applying the configuration to the aggregation member ports. If it fails to do that on an aggregation member port, it simply skips the port and moves to the next port. For information about Layer-2 aggregate interfaces, refer to Link Aggregation Configuration in the Access Volume.

Related commands: port link-type.

Examples

# Assign the hybrid port GigabitEthernet 1/0/1 to VLAN 2, VLAN 4, and VLAN 50 through VLAN 100, and configure GigabitEthernet 1/0/1 to send packets of these VLANs with tags kept.

    <Sysname> system-view
    [Sysname] interface gigabitethernet 1/0/1
    [Sysname-GigabitEthernet1/0/1] port link-type hybrid
    [Sysname-GigabitEthernet1/0/1] port hybrid vlan 2 4 50 to 100 tagged

# Assign hybrid ports in port group 2 to VLAN 2, and configure these hybrid ports to send packets of VLAN 2 with VLAN tags removed.

    <Sysname> system-view
    [Sysname] vlan 2
    [Sysname-vlan2] quit
    [Sysname] port-group manual 2
    [Sysname-port-group-manual-2] group-member gigabitethernet 1/0/1 to gigabitethernet 1/0/6
port link-type hybrid
port hybrid vlan 2 untagged

Configuring GigabitEthernet1/0/1... Done.
Configuring GigabitEthernet1/0/2... Done.
Configuring GigabitEthernet1/0/3... Done.
Configuring GigabitEthernet1/0/4... Done.
Configuring GigabitEthernet1/0/5... Done.
Configuring GigabitEthernet1/0/6... Done.

# Assign the hybrid Layer-2 aggregate interface Bridge-aggregation 1 and its member ports to VLAN 2, and configure them to send packets of VLAN 2 with tags removed.

<Sysname> system-view
<Sysname> interface bridge-aggregation 1
<Sysname-Bridge-Aggregation1> port link-type hybrid
<Sysname-Bridge-Aggregation1> port hybrid vlan 2 untagged
Please wait... Done.
Configuring GigabitEthernet1/0/2... Done.
Configuring GigabitEthernet1/0/3... Done.

Note that GigabitEthernet1/0/2 and GigabitEthernet1/0/3 are the member ports of the aggregation group corresponding to Bridge-aggregation 1.

port link-type

Syntax

port link-type { access | hybrid | trunk }
undo port link-type

View

Ethernet interface view, port group view, Layer-2 aggregate interface view

Default Level

2: System level

Parameters

access: Configures the link type of a port as access.
hybrid: Configures the link type of a port as hybrid.
trunk: Configures the link type of a port as trunk.

Description

Use the port link-type command to configure the link type of a port.
Use the undo port link-type command to restore the default link type of a port.

By default, any port is an access port.

- In port group view, this command applies to all ports in the port group. For information about port groups, refer to Ethernet Interface Configuration in the Access Volume.
- In Layer-2 aggregate interface view, this command applies to the Layer-2 aggregate interface and all its member ports. After you perform the configuration, the system starts applying the
configuration to the aggregate interface and its aggregation member ports. If the system fails to do that on the aggregate interface, it stops applying the configuration to the aggregation member ports. If it fails to do that on an aggregation member port, it simply skips the port and moves to the next port. For information about Layer-2 aggregate interfaces, refer to Link Aggregation Configuration in the Access Volume.

---

**Note**

To change the link type of a port from trunk to hybrid or vice versa, you must set the link type to access first.

---

**Examples**

```
Configure GigabitEthernet 1/0/1 as a trunk port.
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] port link-type trunk

Configure all the ports in the manual port group group1 as hybrid ports.
<Sysname> system-view
[Sysname] port-group manual group1
[Sysname-port-group-manual-group1] group-member gigabitethernet 1/0/2
[Sysname-port-group-manual-group1] group-member gigabitethernet 1/0/3
[Sysname-port-group-manual-group1] port link-type hybrid

Configure Layer-2 aggregate interface Bridge-aggregation 1 and its member ports as hybrid ports.
<Sysname> system-view
[Sysname] interface bridge-aggregation 1
[Sysname-Bridge-Aggregation1] port link-type hybrid
```

**port trunk permit vlan**

**Syntax**

```
port trunk permit vlan { vlan-id-list | all }
undo port trunk permit vlan { vlan-id-list | all }
```

**View**

- Ethernet interface view, port group view, Layer-2 aggregate interface view

**Default Level**

2: System level

**Parameters**

- `vlan-id-list`: VLANs that the trunk port(s) will be assigned to. This argument is expressed in the format of `vlan-id1 [ to vlan-id2 ]`&<1-10>, where `vlan-id` ranges from 1 to 4094 and &<1-10> indicates that you can specify up to 10 VLAN IDs or VLAN ID ranges.
all: Permits all VLANs to pass through the trunk port(s). On GVRP-enabled trunk ports, you must configure the `port trunk permit vlan all` command to ensure that the traffic of all dynamically registered VLANs can pass through. However, when GVRP is disabled on a port, you are discouraged to configure the command on the port. This is to prevent users of unauthorized VLANs from accessing restricted resources through the port.

**Description**

Use the `port trunk permit vlan` command to assign the current trunk port(s) to the specified VLAN(s).

Use the `undo port trunk permit vlan` command to remove the trunk port(s) from the specified VLANs.

By default, a trunk port allows only packets from VLAN 1 to pass through.

A trunk port can carry multiple VLANs. If you execute the `port trunk permit vlan` command multiple times, the VLANs the trunk port carries are the set of VLANs specified by `vlan-id-list` in each execution.

Note that on a trunk port, only traffic of the default VLAN can pass through untagged.

- In port group view, this command applies to all ports in the port group. For information about port groups, refer to *Ethernet Interface Configuration* in the Access Volume.
- In Layer-2 aggregate interface view, this command applies to the Layer-2 aggregate interface and all its member ports. After you perform the configuration, the system starts applying the configuration to the aggregate interface and its aggregation member ports. If the system fails to do that on the aggregate interface, it stops applying the configuration to the aggregation member ports. If it fails to do that on an aggregation member port, it simply skips the port and moves to the next port. For information about Layer-2 aggregate interfaces, refer to *Link Aggregation Configuration* in the Access Volume.

Related commands: `port link-type`.

**Examples**

# Assign the trunk port GigabitEthernet 1/0/1 to VLAN 2, VLAN 4, and VLAN 50 through VLAN 100.

```bash
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] port link-type trunk
[Sysname-GigabitEthernet1/0/1] port trunk permit vlan 2 4 50 to 100
Please wait........... Done.
```

# Assign the trunk Layer-2 aggregate interface Bridge-aggregation 1 to VLAN 2, assuming that Bridge-aggregation 1 does not have member ports.

```bash
<Sysname> system-view
[Sysname] interface bridge-aggregation 1
[Sysname-Bridge-Aggregation1] port trunk permit vlan 2
Please wait... Done.
```

# Assign the trunk Layer-2 aggregate interface Bridge-aggregation 1 to VLAN 13 and VLAN 15. Among the member ports of the aggregation group corresponding to Bridge-aggregation 1, GigabitEthernet 1/0/2 is an access port, and GigabitEthernet 1/0/3 is a trunk port.

```bash
<Sysname> system-view
[Sysname] interface bridge-aggregation 1
[Sysname-Bridge-Aggregation1] port trunk permit vlan 13 15
Please wait... Done.
```

Error: Failed to configure on interface GigabitEthernet1/0/2! This port is not a Trunk port!
Among the output fields above, the message “Please wait... Done” indicates that the configuration on Bridge-aggregation 1 succeeded; “Error: Failed to configure on interface GigabitEthernet1/0/2! This port is not a Trunk port!” indicates that the configuration failed on GigabitEthernet 1/0/2 because GigabitEthernet 1/0/2 was not a trunk port; “Configuring GigabitEthernet1/0/3... Done” indicates that the configuration on GigabitEthernet 1/0/3 succeeded.

**port trunk pvid vlan**

**Syntax**

```plaintext
port trunk pvid vlan vlan-id
undo port trunk pvid
```

**View**

Ethernet interface view, port group view, Layer-2 aggregate interface view

**Default Level**

2: System level

**Parameters**

- **vlan-id**: VLAN ID, in the range of 1 to 4094

**Description**

Use the `port trunk pvid vlan` command to configure the default VLAN ID for the trunk port.

Use the `undo port trunk pvid` command to restore the default.

By default, the default VLAN of a trunk port is VLAN 1.

You can use a nonexistent VLAN as the default VLAN for a trunk port. Removing the default VLAN of a trunk port with the `undo vlan` command does not affect the setting of the default VLAN on the port.

- In port group view, this command applies to all ports in the port group. For information about port groups, refer to *Ethernet Interface Configuration* in the Access Volume.
- In Layer-2 aggregate interface view, this command applies to the Layer-2 aggregate interface and all its member ports. After you perform the configuration, the system starts applying the configuration to the aggregate interface and its aggregation member ports. If the system fails to do that on the aggregate interface, it stops applying the configuration to the aggregation member ports. If it fails to do that on an aggregation member port, it simply skips the port and moves to the next port. For information about Layer-2 aggregate interfaces, refer to *Link Aggregation Configuration* in the Access Volume.
- The local and remote trunk ports must use the same default VLAN ID for the traffic of the default VLAN to be transmitted properly.
- After configuring the default VLAN for a trunk port, you must use the `port trunk permit vlan` command to configure the trunk port to allow packets from the default VLAN to pass through, so that the port can forward packets from the default VLAN.

Related commands: `port link-type`, `port trunk permit vlan`.

**Examples**

```
Configure VLAN 100 as the default VLAN of the trunk port GigabitEthernet 1/0/1.
```
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] port link-type trunk
[Sysname-GigabitEthernet1/0/1] port trunk pvid vlan 100

# Configure VLAN 100 as the default VLAN of the trunk Layer-2 aggregate interface Bridge-aggregation 1, assuming Bridge-aggregation 1 does not have member ports.

<Sysname> system-view
[Sysname] interface bridge-aggregation 1
[Sysname-Bridge-Aggregation1] port trunk pvid vlan 100

# Configure VLAN 100 as the default VLAN of the trunk Layer-2 aggregate interface Bridge-aggregation 1. Among the member ports of the aggregation group corresponding to Bridge-aggregation 1, GigabitEthernet 1/0/2 is an access port and GigabitEthernet 1/0/3 is a trunk port.

<Sysname> system-view
[Sysname] interface bridge-aggregation 1
[Sysname-Bridge-Aggregation1] port trunk pvid vlan 100

Error: Failed to configure on interface GigabitEthernet1/0/2! This port is not a Trunk port!

The output above shows that the configuration on Bridge-aggregation 1 and the member port GigabitEthernet 1/0/3 succeeded; the configuration on GigabitEthernet 1/0/2 failed because GigabitEthernet 1/0/2 was not a trunk port.

**MAC Address-Based VLAN Configuration Commands**

display mac-vlan

**Syntax**

display mac-vlan { all | dynamic | mac-address mac-address | static | vlan vlan-id }

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

- **all**: Displays all the MAC address-to-VLAN entries.
- **dynamic**: Displays dynamically configured MAC address-to-VLAN entries.
- **mac-address mac-address**: Displays the MAC address-to-VLAN entry containing the specified MAC address.
- **static**: Displays the statically configured MAC address-to-VLAN entries.
- **vlan vlan-id**: Displays the MAC address-to-VLAN entries associated with the specified VLAN.

**Description**

Use the **display mac-vlan** command to display the specified MAC address-to-VLAN entries.
If **mac-address** `mac-addr` is specified while **mask** is not specified, only the MAC address-to-VLAN entry containing the specified MAC address is displayed.

**Examples**

# Display all the MAC address-to-VLAN entries.

```
<Sysname> display mac-vlan all
The following MAC-VLAN address exist:
S: Static D: Dynamic
MAC ADDR MASK VLAN ID PRIO STATE

0002-0001-0000 ffff-ffff-ffff 5 3 S&D
Total MAC VLAN address count:1
```

**Table 5-4 display mac-vlan** command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S: Static</td>
<td>The character <code>S</code> stands for the MAC address-to-VLAN entries that are configured statically.</td>
</tr>
<tr>
<td>D: Dynamic</td>
<td>The character <code>D</code> stands for the MAC address-to-VLAN entries that are configured dynamically.</td>
</tr>
<tr>
<td>MAC ADDR</td>
<td>MAC address of a MAC address-to-VLAN entry</td>
</tr>
<tr>
<td>MASK</td>
<td>Mask of the MAC address of a MAC address-to-VLAN entry</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>VLAN ID of a MAC address-to-VLAN entry</td>
</tr>
<tr>
<td>PRIO</td>
<td>802.1p priority corresponding to the MAC address of a MAC address-to-VLAN entry</td>
</tr>
<tr>
<td>STATE</td>
<td>The state of a MAC address-to-VLAN entry, which can be:</td>
</tr>
<tr>
<td></td>
<td>- <code>S</code>, indicating that the MAC address-to-VLAN entry is configured statically.</td>
</tr>
<tr>
<td></td>
<td>- <code>D</code>, indicating that the MAC address-to-VLAN entry is configured automatically through the authentication server</td>
</tr>
<tr>
<td></td>
<td>- <code>S&amp;D</code>, indicating that the MAC address-to-VLAN entry is configured both statically and dynamically</td>
</tr>
</tbody>
</table>

**display mac-vlan interface**

**Syntax**

```
display mac-vlan interface
```

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

None
**Description**

Use the `display mac-vlan interface` command to display all the ports with MAC address-based VLAN enabled.

Related commands: `mac-vlan enable`.

**Examples**

```
Display all the interfaces with MAC address-based VLAN enabled.
<Sysname> display mac-vlan interface
MAC VLAN is enabled on following ports:

GigabitEthernet1/0/1 GigabitEthernet1/0/2 GigabitEthernet1/0/3
```

**mac-vlan enable**

**Syntax**

```
mac-vlan enable
undo mac-vlan enable
```

**View**

Ethernet port view

**Default Level**

2: System level

**Parameters**

None

**Description**

Use the `mac-vlan enable` command to enable MAC address-based VLAN on a port.

Use the `undo mac-vlan enable` command to disable MAC address-based VLAN on a port.

By default, MAC address-based VLAN is disabled on a port.

**Examples**

```
Enable MAC address-based VLAN on GigabitEthernet 1/0/1.
<Sysname> system-view
<Sysname> interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] mac-vlan enable
```

**mac-vlan mac-address**

**Syntax**

```
mac-vlan mac-address mac-address vlan vlan-id [priority pri]
undo mac-vlan { all | mac-address mac-address | vlan vlan-id }
```
View

System view

Default Level

2: System level

Parameters

mac-address mac-address: Specifies a MAC address.
vlan vlan-id: Specifies a VLAN ID, in the range of 1 to 4094.
priority pri: Specifies the 802.1p priority value corresponding to the specified MAC address. This argument is in the range of 0 to 7.
all: Removes all the static MAC address-to-VLAN entries.

Description

Use the mac-vlan mac-address command to associate the specified VLAN and priority value with the specified MAC addresses.
Use the undo mac-vlan command to remove the association.

Examples

# Associate a single MAC address 0-1-1 with VLAN 100 and 802.1p priority 7.
<Sysname> system-view
[Sysname] mac-vlan mac-address 0-1-1 vlan 100 priority 7

vlan precedence

Syntax

vlan precedence { mac-vlan | ip-subnet-vlan }
undo vlan precedence

View

Ethernet port view

Default Level

2: System level

Parameters

mac-vlan: Specifies to match VLANs based on MAC addresses preferentially.
ip-subnet-vlan: Specifies to match VLANs based on IP subnet settings preferentially.

Description

Use the vlan precedence command to set the order of VLAN matching.
Use the undo vlan precedence command to restore the default.
By default, VLANs are matched based on MAC addresses preferentially.
Note that this command only applies to VLANs based on a single MAC address and IP subnet-based VLANs. If both the MAC address-based VLAN function and the IP subnet-based VLAN function are
created on a port, MAC address-to-VLAN entries configured with the **mask** keyword specified are matched preferentially, and the left VLAN entries (VLAN entries based on a single MAC address and IP subnet-based VLANs) are matched as configured by the **vlan precedence** command.

**Examples**

```bash
Configure to match VLANs based on MAC addresses preferentially on GigabitEthernet 1/0/1.
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] vlan precedence mac-vlan
```

**Protocol-Based VLAN Configuration Commands**

display protocol-vlan interface

**Syntax**

```bash
display protocol-vlan interface { interface-type interface-number1 [to interface-type interface-number2] | all }
```

**View**

Any view

**Default Level**

2: System level

**Parameters**

- `interface-type interface-number1`: Specifies an interface by its type and number.
- `interface-type interface-number1 to interface-type interface-number2`: Specifies an interface range.
- `all`: Displays information about protocol-based VLANs on all ports.

**Description**

Use the **display protocol-vlan interface** command to display information about protocol-based VLANs for the specified port(s).

**Examples**

```bash
Display protocol-based VLAN information on GigabitEthernet 1/0/1.
<Sysname> display protocol-vlan interface gigabitethernet 1/0/1
Interface: GigabitEthernet1/0/1
VLAN ID Protocol Index Protocol Type
--
 3 0 ipv4
```

**Table 5-5** display protocol-vlan interface command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Interface of which you want to view the information</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>ID of the protocol-based VLAN bound with the port</td>
</tr>
<tr>
<td>Protocol Index</td>
<td>Protocol template index</td>
</tr>
</tbody>
</table>
display protocol-vlan vlan

Syntax

display protocol-vlan vlan { vlan-id1 [ to vlan-id2 ] | all }  

View

Any view

Default Level

2: System level

Parameters

vlan-id1: ID of the protocol-based VLAN for which information is to be displayed, in the range of 1 to 4094.

vlan-id1 to vlan-id2: Displays protocol-based VLAN information of a VLAN range from vlan-id1 to vlan-id2. The vlan-id2 argument specifies a protocol-based VLAN ID in the range of 1 to 4094, but you must ensure that its value is greater than or equal to that of vlan-id1.

all: Displays information about all protocol-based VLANs.

Description

Use the display protocol-vlan vlan command to display the protocols and protocol indexes configured on the specified VLAN(s).

Related commands: display vlan.

Examples

# Display the protocols and protocol indexes configured on all protocol-based-VLANs.

<Sysname> display protocol-vlan vlan all

VLAN ID:2

<table>
<thead>
<tr>
<th>Protocol Index</th>
<th>Protocol Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ipv4</td>
</tr>
</tbody>
</table>

VLAN ID:3

<table>
<thead>
<tr>
<th>Protocol Index</th>
<th>Protocol Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ipv4</td>
</tr>
<tr>
<td>1</td>
<td>ipx snap</td>
</tr>
</tbody>
</table>

Refer to Table 5-5 for description of the output.
port hybrid protocol-vlan

Syntax

```
port hybrid protocol-vlan vlan vlan-id { protocol-index [to protocol-end] | all }
undo port hybrid protocol-vlan { vlan vlan-id { protocol-index [to protocol-end] | all } | all }
```

View

Ethernet interface view, port group view, Layer-2 aggregate interface view

Default Level

2: System level

Parameters

- **vlan vlan-id**: Specifies a VLAN ID, in the range 1 to 4094.
- **protocol-index**: Protocol index, ranging from 0 to 15, specified by the users or assigned by the system automatically when the protocol-based VLAN is created. You can use the `display protocol-vlan vlan all` command to display the protocol indexes.
- **to protocol-end**: Specifies the end protocol index, ranging from 0 to 15. The `protocol-end` argument must be greater than or equal to the beginning protocol index.
- **all**: Specifies all protocols bound with `vlan-id`.

Description

Use the `port hybrid protocol-vlan vlan` command to associate the hybrid port(s) with a protocol-based VLAN.

Use the `undo port hybrid protocol-vlan` command to remove the association.

- In port group view, this command applies to all ports in the port group. For information about port groups, refer to *Ethernet Interface Configuration* in the Access Volume.
- In Layer-2 aggregate interface view, this command applies to the Layer-2 aggregate interface and all its member ports. After you perform the configuration, the system starts applying the configuration to the aggregate interface and its aggregation member ports. If the system fails to do that on the aggregate interface, it stops applying the configuration to the aggregation member ports. If it fails to do that on an aggregation member port, it simply skips the port and moves to the next port. For information about Layer-2 aggregate interfaces, refer to *Link Aggregation Configuration* in the Access Volume.

Before issuing this command, make sure that you have made the following configurations:

- Create a VLAN and associate it with specified protocols.
- Configure the link type as hybrid.
- Configure the port to allow the protocol-based VLAN to pass through.

Related commands: `display protocol-vlan interface`.

Examples

```
Associate the hybrid port GigabitEthernet 1/0/1 with protocol 0 (IPv4) in VLAN 2.
<Sysname> system-view
[Sysname] vlan 2
[Sysname-vlan2] protocol-vlan ipv4
```
[Sysname-vlan2] quit
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] port link-type hybrid
[Sysname-GigabitEthernet1/0/1] port hybrid vlan 2 untagged
    Please wait... Done
[Sysname-GigabitEthernet1/0/1] port hybrid protocol-vlan vlan 2 0

# Associate the hybrid Layer-2 aggregate interface Bridge-aggregation 1 with protocol 0 in VLAN 2, assuming that Bridge-aggregation 1 does not have member ports.

<Sysname> system-view
[Sysname] vlan 2
[Sysname-Vlan2] protocol-vlan ipv4
[Sysname-Vlan2] quit
[Sysname] interface bridge-aggregation 1
[Sysname-Bridge-Aggregation1] port link-type hybrid
[Sysname-Bridge-Aggregation1] port hybrid vlan 2 untagged
    Please wait... Done
[Sysname-Bridge-Aggregation1] port hybrid protocol-vlan vlan 2 0

# Associate the hybrid Layer-2 aggregate interface Bridge-aggregation 1 with protocol 0 in VLAN 2. Among the member ports of the aggregation group corresponding to Bridge-aggregation 1, GigabitEthernet 1/0/2 is an access port and GigabitEthernet 1/0/3 is a trunk port.

<Sysname> system-view
[Sysname] vlan 2
[Sysname-Vlan2] protocol-vlan at
[Sysname-Vlan2] quit
[Sysname] interface bridge-aggregation 1
[Sysname-Bridge-Aggregation2] port link-type access
    Please wait... Done.
    Configuring GigabitEthernet1/0/2... Done.
    Configuring GigabitEthernet1/0/3........................................... Done.
[Sysname-Bridge-Aggregation1] port link-type hybrid
[Sysname-Bridge-Aggregation1] port hybrid vlan 2 untagged
    Please wait... Done.
    Configuring GigabitEthernet1/0/2... Done.
    Configuring GigabitEthernet1/0/3... Done.
[Sysname-Bridge-Aggregation1] port hybrid protocol-vlan vlan 2 0

protocol-vlan

Syntax

```
protocol-vlan [protocol-index] { at | ipv4 | ipv6 | ipx { ethernetii | llc | raw | snap } | mode { ethernetii etype etype-id | llc { dsap dsap-id [ssap ssap-id] | ssap ssap-id } | snap etype etype-id } }
undo protocol-vlan { protocol-index [to protocol-end] | all }
```

View

VLAN view
Default Level

2: System level

Parameters

at: Specifies the AppleTalk based VLAN.
ipv4: Specifies the IPv4 based VLAN.
ipv6: Specifies the IPv6 based VLAN.
ipx: Specifies the IPX based VLAN. The keywords ethernetii, llc, raw, and snap are encapsulation formats for IPX.

mode: Configures a user-defined protocol template for the VLAN, which could also have four encapsulation formats, namely, ethernetii, llc, raw, and snap.

ethernetii etype etype-id: Specifies to match Ethernet II encapsulation format and the corresponding protocol type values. The etype-id argument is the protocol type ID of inbound packets, in the range 0x0600 to 0xffff (excluding 0x0800, 0x809b, 0x8137, and 0x86dd).
llc: Specifies to match the llc encapsulation format.
dsap dsap-id: Specifies the destination service access point, in the range of 00 to 0xff.
ssap ssap-id: Specifies the source service access point, in the range of 00 to 0xff.
snap etype-id: Specifies to match SNAP encapsulation format and the corresponding protocol type values. The etype-id argument is the Ethernet type of inbound packets, in the range 0x0600 to 0xffff (excluding ipx snap under the snap encapsulation format).

protocol-index: Protocol index, ranging from 0 to 15, which specifies the protocol template to be bound with the current VLAN. System will automatically assign an index if this parameter is not specified.
to protocol-end: Specifies the end protocol index, ranging from 0 to 15. The protocol-end argument must be greater than or equal to the protocol-index argument.
all: Specifies to remove all the protocols bound with the current VLAN.

Caution

- Do not configure both the dsap-id and ssap-id arguments in the protocol-vlan command as 0xe0 or 0xff when configuring the user-defined template for llc encapsulation. Otherwise, the encapsulation format of the matching packets will be the same as that of the ipx llc or ipx raw packets respectively. When either of the dsap-id and ssap-id arguments is configured, the system assigns aa to the other argument.

- When you use the mode keyword to configure a user-defined protocol template, do not set etype-id in ethernetii etype etype-id to 0x0800, 0x8137, 0x809b, or 0x86dd. Otherwise, the encapsulation format of the matching packets will be the same as that of the IPv4, IPX, AppleTalk, and IPv6 packets respectively.

Description

Use the protocol-vlan command to configure the VLAN as a protocol based VLAN and configure the protocol template for the VLAN.
Use the **undo protocol-vlan** command to remove the configured protocol template.

By default, no VLAN is bound with any protocol template.

Related commands: **display protocol-vlan vlan**.

---

**Note**

Do not configure a VLAN as both a protocol-based VLAN and a voice VLAN.

---

**Examples**

# Configure VLAN 3 as an IPv4 based VLAN.

```
<Sysname> system-view
[Sysname] vlan 3
[Sysname-vlan3] protocol-vlan ipv4
```

---

**Caution**

Because IP depends on ARP for address resolution in Ethernet, you are recommended to configure the IP and ARP templates in the same VLAN and associate them with the same port to prevent communication failure.

---

# Create an ARP protocol template for VLAN 3 (ARP code is 0x0806) to make VLAN 3 transmit ARP packets.

- To use Ethernet encapsulation, use the command:
  ```
 [Sysname-vlan3] protocol-vlan mode ethernetii etype 0806
  ```
- To use 802.3 encapsulation, use the command:
  ```
 [Sysname-vlan3] protocol-vlan mode snap etype 0806
  ```

---

**IP Subnet-Based VLAN Configuration Commands**

**display ip-subnet-vlan interface**

**Syntax**

```
display ip-subnet-vlan interface { interface-list | all }
```

**View**

Any view

**Default Level**

2: System level
Parameters

*interface-list*: Specifies an Ethernet port list in the format of \(\text{interface-list} = \{ \text{interface-type interface-number [ to interface-type interface-number ] } \}^{1-10}\), where \text{interface-type} represents the port type and port number and \(1-10\) indicates that you can specify up to 10 ports or port ranges.

*all*: Displays IP subnet-based VLAN information about all the ports with IP subnet-based VLAN configured.

Description

Use the `display ip-subnet-vlan interface` command to display IP subnet-based VLANs and IP subnet indexes on the specified port(s).

Examples

```
Display IP subnet-based VLANs and IP subnet indexes on GigabitEthernet 1/0/1.
<Sysname> system-view
>Sysname]display ip-subnet-vlan interface gigabitethernet 1/0/1
Interface: GigabitEthernet1/0/1
VLAN ID Subnet-Index IP ADDRESS NET MASK

3 0 192.168.1.0 255.255.255.0
```

Table 5-6 display ip-subnet-vlan interface command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Interface of which you want to view the information</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>VLAN ID</td>
</tr>
<tr>
<td>Subnet-Index</td>
<td>Index of the IP subnet</td>
</tr>
<tr>
<td>IP ADDRESS</td>
<td>IP address of the subnet (either an IP address or a network address)</td>
</tr>
<tr>
<td>NET MASK</td>
<td>Mask of the IP subnet</td>
</tr>
</tbody>
</table>

**display ip-subnet-vlan vlan**

Syntax

```
display ip-subnet-vlan vlan { vlan-id [to vlan-id] | all }
```

View

Any view

Default Level

2: System level

Parameters

*vlan-id*: VLAN ID, in the range 1 to 4094.

to*: Specifies a VLAN ID range. The argument after this keyword must be greater than or equal to the one before this keyword.
all: Specifies all the VLANs.

Description

Use the `display ip-subnet-vlan vlan` command to display the IP subnet information and IP subnet indexes on the specified VLAN(s).

Related commands: `display vlan`.

Examples

```
Display the IP subnet information of all VLANs.
<Sysname> display ip-subnet-vlan vlan all
VLAN ID: 3
Subnet Index IP Address Subnet Mask
======================================
0 192.168.1.0 255.255.255.0
```

Table 5-7 `display ip-subnet-vlan vlan` command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>VLAN ID</td>
</tr>
<tr>
<td>Subnet Index</td>
<td>IP subnet index</td>
</tr>
<tr>
<td>IP Address</td>
<td>IP address of the subnet (can be an IP address or a network address)</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>Mask of the IP subnet</td>
</tr>
</tbody>
</table>

`ip-subnet-vlan`

Syntax

```
ip-subnet-vlan [ip-subnet-index] ip ip-address [mask]
undo ip-subnet-vlan { ip-subnet-index [to ip-subnet-end] | all }
```

View

VLAN view

Default Level

2: System level

Parameters

`ip-subnet-index`: Beginning IP subnet Index, in the range of 0 to 11. This value can be configured by users, or automatically numbered by system based on the order in which the IP subnets or IP addresses are associated with the VLAN.

`ip ip-address [mask]`: Specifies the source IP address or network address based on which the subnet-based VLANs are classified, in dotted decimal notation. The `mask` argument is the subnet mask of the source IP address or network address, in dotted decimal notation with a default value of 255.255.255.0.

to: Specifies an IP subnet index range.
ip-subnet-end: End IP subnet index, in the range of 0 to 11. This argument must be greater than or equal to the beginning IP subnet index.

all: Removes all the associations between VLANs and IP subnets or IP addresses.

**Description**

Use the `ip-subnet-vlan` command to associate the current VLAN with a specified IP subnet or IP address.

Use the `undo ip-subnet-vlan` command to remove the association.

Note that the IP subnet or IP address cannot be a multicast network segment or a multicast address.

Related commands: `display ip-subnet-vlan vlan`.

**Examples**

```plaintext
Configure VLAN 3 as an IP subnet-based VLAN and associate it with the 192.168.1.0/24 network segment.
<Sysname> system-view
[Sysname] vlan 3
[Sysname-vlan3] ip-subnet-vlan ip 192.168.1.0 255.255.255.0
```

**port hybrid ip-subnet-vlan vlan**

**Syntax**

```
port hybrid ip-subnet-vlan vlan vlan-id
undo port hybrid ip-subnet-vlan { vlan vlan-id | all }
```

**View**

Ethernet interface view, port group view, Layer-2 aggregate interface view

**Default Level**

2: System level

**Parameters**

- `vlan-id`: VLAN ID, in the range of 1 to 4094.
- `all`: Specifies all VLANs.

**Description**

Use the `port hybrid ip-subnet-vlan vlan` command to associate the current Ethernet port with the specified IP subnet-based VLAN.

Use the `undo port hybrid ip-subnet-vlan vlan` command to remove the association.

On an Ethernet port associated with an IP subnet-based VLAN, if the source IP address of a received untagged packet belongs to the corresponding IP subnet, the port tags the packet with the corresponding VLAN tag.

- In port group view, this command applies to all ports in the port group. For information about port groups, refer to *Ethernet Interface Configuration* in the *Access Volume*.
- In Layer-2 aggregate interface view, this command applies to the Layer-2 aggregate interface and all its member ports. After you perform the configuration, the system starts applying the
configuration to the aggregate interface and its aggregation member ports. If the system fails to do
that on the aggregate interface, it stops applying the configuration to the aggregation member
ports. If it fails to do that on an aggregation member port, it simply skips the port and moves to the
next port. For information about Layer-2 aggregate interfaces, refer to Link Aggregation
Configuration in the Access Volume.

Currently, only hybrid ports support this feature. Before issuing this command, make sure that you
have assigned the port to the IP subnet-based VLAN to be associated with.

Related commands: display ip-subnet-vlan interface.

Examples

# Associate GigabitEthernet 1/0/1 with the IP subnet-based VLAN 3.

<Sysname> system-view
[Sysname] vlan 3
[Sysname-vlan3] ip-subnet-vlan ip 192.168.1.0 255.255.255.0
[Sysname-vlan3] quit
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] port link-type hybrid
[Sysname-GigabitEthernet1/0/1] port hybrid vlan 3 untagged
Please wait... Done.
[Sysname-GigabitEthernet1/0/1] port hybrid ip-subnet-vlan vlan 3

# Associate the hybrid Layer-2 aggregate interface Bridge-aggregation 1 with the IP subnet-based
VLAN 3 (assuming that Bridge-aggregation 1 does not have member ports).

<Sysname> system-view
[Sysname] vlan 3
[Sysname-vlan3] ip-subnet-vlan ip 192.168.1.0 255.255.255.0
[Sysname-vlan3] quit
[Sysname] interface bridge-aggregation 1
[Sysname-Bridge-Aggregation1] port link-type hybrid
[Sysname-Bridge-Aggregation1] port hybrid vlan 3 untagged
Please wait... Done.
[Sysname-Bridge-Aggregation1] port hybrid ip-subnet-vlan vlan 3

# Associate the hybrid Layer-2 aggregate interface Bridge-aggregation 1 with the IP subnet-based
VLAN 3. Among the member ports of the aggregation group corresponding to Bridge-aggregation 1,
GigabitEthernet 1/0/2 is an access port and GigabitEthernet 1/0/3 is a trunk port.

<Sysname> system-view
[Sysname] vlan 3
[Sysname-vlan3] ip-subnet-vlan ip 192.168.1.0 255.255.255.0
[Sysname-vlan3] quit
[Sysname] interface bridge-aggregation 1
[Sysname-Bridge-Aggregation1] port link-type access
Please wait... Done.
Configuring GigabitEthernet1/0/2... Done.
Configuring GigabitEthernet1/0/3........................................... Done.
[Sysname-Bridge-Aggregation1] port link-type hybrid
[Sysname-Bridge-Aggregation1] port hybrid vlan 3 untagged
Please wait... Done.
Configuring GigabitEthernet1/0/2... Done.
Configuring GigabitEthernet1/0/3... Done.
[Sysname-Bridge-Aggregation1] port hybrid ip-subnet-vlan vlan 3
Isolate-User-VLAN Configuration Commands

display isolate-user-vlan

Syntax

display isolate-user-vlan [isolate-user-vlan-id]

View

Any view

Default Level

1: Monitor level

Parameters

isolate-user-vlan-id: Isolate-user-VLAN ID, in the range of 1 to 4094.

Description

Use the display isolate-user-vlan command to display the mapping between an isolate-user-vlan and secondary VLAN(s), and the information of these VLANs.

Related commands: isolate-user-vlan, isolate-user-vlan enable.

Examples

# Display the mapping between an isolate-user-vlan and secondary VLANs.

<Sysname> display isolate-user-vlan
Isolate-user-VLAN VLAN ID : 2
Secondary VLAN ID : 3 4

VLAN ID: 2
VLAN Type: static
Isolate-user-VLAN type : isolate-user-VLAN
Route Interface: configured
IP Address: 1.1.1.1
Subnet Mask: 255.255.255.0
Description: VLAN 0002
Name: VLAN 0002
Tagged Ports: none
Untagged Ports:
    GigabitEthernet1/0/2   GigabitEthernet1/0/3   GigabitEthernet1/0/4

VLAN ID: 3
VLAN Type: static
Isolate-user-VLAN type : secondary
Route Interface: configured
IP Address: 2.2.2.2
Subnet Mask: 255.255.255.0
Description: VLAN 0003
Name: VLAN 0003
Tagged Ports: none
Untagged Ports:
  GigabitEthernet1/0/2  GigabitEthernet1/0/3

VLAN ID: 4
VLAN Type: static
Isolate-user-VLAN type : secondary
Route Interface: not configured
Description: VLAN 0004
Name: VLAN 0004
Tagged Ports: none
Untagged Ports:
  GigabitEthernet1/0/2  GigabitEthernet1/0/4

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolate-user-VLAN VLAN ID</td>
<td>Isolate-user-VLAN ID</td>
</tr>
<tr>
<td>Secondary VLAN ID</td>
<td>Secondary VLAN ID</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>VLAN ID</td>
</tr>
<tr>
<td>VLAN Type</td>
<td>VLAN type, static or dynamic</td>
</tr>
<tr>
<td>Isolate-user-VLAN type</td>
<td>Current VLAN type, isolate-user-VLAN or secondary VLAN</td>
</tr>
<tr>
<td>Route Interface</td>
<td>Whether a VLAN interface is configured for the VLAN</td>
</tr>
<tr>
<td>IP Address</td>
<td>IP address of the VLAN interface, if configured. This field is not displayed if no IP address is configured for the VLAN interface.</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>Subnet mask of the VLAN interface, if configured. This field is not displayed if no mask is configured for the VLAN interface.</td>
</tr>
<tr>
<td>Description</td>
<td>VLAN description</td>
</tr>
<tr>
<td>Name</td>
<td>Name configured for the VLAN</td>
</tr>
<tr>
<td>Tagged Ports</td>
<td>Ports through which packets of this VLAN are sent tagged</td>
</tr>
<tr>
<td>Untagged Ports</td>
<td>Ports through which packets of this VLAN are sent untagged</td>
</tr>
</tbody>
</table>

**isolate-user-vlan**

**Syntax**

```
isolate-user-vlan isolate-user-vlan-id secondary secondary-vlan-id [to secondary-vlan-id]
undo isolate-user-vlan isolate-user-vlan-id [secondary secondary-vlan-id [to secondary-vlan-id]]
```
View

System view

Default Level

2: System level

Parameters

\textit{isolate-user-vlan-id}: Isolate-user-VLAN ID, in the range 1 to 4094.

\textit{secondary secondary-vlan-id} [to secondary-vlan-id]: Specifies a secondary VLAN ID or a secondary VLAN ID range. The \textit{secondary-vlan-id} argument is a secondary VLAN ID, in the range 1 to 4094.

Description

Use the \texttt{isolate-user-vlan} command to associate an isolate-user-VLAN with the specified secondary VLAN(s).

Use the \texttt{undo isolate-user-vlan} command to remove the association.

By default, an isolate-user-VLAN is not associated with any secondary VLAN.

Note that:

- To use the \texttt{isolate-user-vlan} command, each of the isolate-user-VLAN and the secondary VLAN(s) must have at least one port which allows its isolate-user-VLAN or secondary VLAN to pass through, and the default VLAN of the port must be its isolate-user-VLAN or secondary VLAN.

- The \texttt{undo isolate-user-vlan} command without the \texttt{secondary secondary-vlan-id} parameter specified removes the association between the specified isolate-user-VLAN and all its secondary VLANs, while the \texttt{undo isolate-user-vlan} command with the \texttt{secondary secondary-vlan-id} parameter specified only removes the association between the specified isolate-user-VLAN and the specified secondary VLANs.

\begin{itemize}
  \item After associating an isolate-user-VLAN with the specified secondary VLANs, you cannot add/remove a port to/from each involved VLAN or remove each involved VLAN. To do that, you must cancel the association first.
\end{itemize}

Related commands: \texttt{display isolate-user-vlan}.

Examples

\# Associate isolate-user-VLAN 2 with the secondary VLANs VLAN 3 and VLAN 4.

\<Sysname> system-view
\[Sysname] vlan 2
\[Sysname-vlan2] isolate-user-vlan enable
\[Sysname-vlan2] port gigabitethernet 1/0/2
\[Sysname-vlan2] vlan 3
\[Sysname-vlan3] port gigabitethernet 1/0/3
\[Sysname-vlan3] vlan 4
isolate-user-vlan enable

Syntax

 isolate-user-vlan enable
 undo isolate-user-vlan enable

View

 VLAN view

Default Level

 2: System level

Parameters

 None

Description

 Use the isolate-user-vlan enable command to configure the current VLAN as an isolate-user-VLAN.
 Use the undo isolate-user-vlan enable command to remove the isolate-user-VLAN configuration for the current VLAN.
 By default, no VLAN is an isolate-user-VLAN.
 An isolate-user-VLAN may include multiple ports, including the one connected to the upstream device.
 Related commands: display isolate-user-vlan.

Examples

 # Configure VLAN 5 as an isolate-user-VLAN.
 <Sysname> system-view
 [Sysname] vlan 5
 [Sysname-vlan5] isolate-user-vlan enable
Voice VLAN Configuration Commands

display voice vlan oui

Syntax

display voice vlan oui

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the `display voice vlan oui` command to display the currently supported organizationally unique identifier (OUI) addresses, the OUI address masks, and the description strings.

Related commands: `voice vlan mac-address`.

Note

In general, as the first 24 bits of a MAC address (in binary format), an OUI address is a globally unique identifier assigned to a vendor by IEEE. OUI addresses mentioned in this document, however, are different from those in common sense. OUI addresses in this document are used to determine whether a received packet is a voice packet. They are the results of the AND operation of the two arguments `mac-address` and `oui-mask` in the `voice vlan mac-address` command.

Examples

# Display the currently supported OUI addresses.

```bash
<Sysname> display voice vlan oui
Oui Address Mask Description
0001-e300-0000 ffff-ff00-0000 Siemens phone
0003-6b00-0000 ffff-ff00-0000 Cisco phone
0004-0d00-0000 ffff-ff00-0000 Avaya phone
0060-b900-0000 ffff-ff00-0000 Philips/NEC phone
```
Table 7-1 display voice vlan oui command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oui Address</td>
<td>OUI addresses supported</td>
</tr>
<tr>
<td>Mask</td>
<td>Masks of the OUI addresses supported</td>
</tr>
<tr>
<td>Description</td>
<td>Description strings of the OUI addresses supported</td>
</tr>
</tbody>
</table>

**display voice vlan state**

**Syntax**

```
display voice vlan state
```

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

None

**Description**

Use the `display voice vlan state` command to display voice VLAN configuration.

Related commands: `voice vlan vlan-id enable`, `voice vlan enable`.

**Examples**

```
Display voice VLAN configurations.
<Sysname> display voice vlan state
Maximum of Voice VLANS: 8
Current Voice VLANS: 2
Voice VLAN security mode: Security
Voice VLAN aging time: 1440 minutes
Voice VLAN enabled port and its mode:

<table>
<thead>
<tr>
<th>PORT</th>
<th>VLAN</th>
<th>MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GigabitEthernet1/0/1</td>
<td>2</td>
<td>AUTO</td>
</tr>
<tr>
<td>GigabitEthernet1/0/2</td>
<td>3</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
```
### Table 7-2 display voice vlan state command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum of Voice VLANS</td>
<td>Maximum number of voice VLANS supported by the system</td>
</tr>
<tr>
<td>Current Voice VLANS</td>
<td>Number of existing voice VLANS</td>
</tr>
<tr>
<td>Voice VLAN security mode</td>
<td>Security mode of the voice VLAN: Security for security mode; Normal for normal mode</td>
</tr>
<tr>
<td>Voice VLAN aging time</td>
<td>Aging time of the voice VLAN</td>
</tr>
<tr>
<td>Voice VLAN enabled port and its mode</td>
<td>Voice VLAN-enabled port and its voice VLAN assignment mode</td>
</tr>
<tr>
<td>PORT</td>
<td>Voice VLAN-enabled port name</td>
</tr>
<tr>
<td>VLAN</td>
<td>ID of the voice VLAN enabled on the port</td>
</tr>
<tr>
<td>MODE</td>
<td>Voice VLAN assignment mode of the port: manual or automatic.</td>
</tr>
</tbody>
</table>

### voice vlan aging

**Syntax**

`voice vlan aging minutes`

`undo voice vlan aging`

**View**

System view

**Default Level**

2: System level

**Parameters**

`minutes`: Voice VLAN aging time, in the range 5 to 43200 minutes.

**Description**

Use the `voice vlan aging` command to configure the voice VLAN aging time.

Use the `undo voice vlan aging` command to restore the default.

By default, the voice VLAN aging time is 1440 minutes.

When a port in automatic voice VLAN assignment mode receives a voice packet, the system decides whether to assign the port to the voice VLAN based on the source MAC address of the voice packet. Upon assigning the port to the voice VLAN, the system starts the aging timer. If no voice packets are received on the port until the aging time expires, the system automatically removes the port from the voice VLAN. This aging time only applies to the ports in automatic voice VLAN assignment mode.

Related commands: `display voice vlan state`.

**Examples**

# Configure the voice VLAN aging time as 100 minutes.

```bash
<Sysname> system-view
```
voice vlan enable

Syntax

voice vlan vlan-id enable
undo voice vlan enable

View

Ethernet interface view

Default Level

2: System level

Parameters

vlan-id: VLAN to be configured as the voice VLAN for the current port.

Description

Use the voice vlan enable command to enable the voice VLAN feature and configure a VLAN as the voice VLAN for the current Ethernet port. Use the undo voice vlan enable command to disable the voice VLAN feature on an Ethernet port. By default, the voice VLAN feature is disabled on ports.

You can enable the voice VLAN feature on a hybrid or trunk port operating in automatic voice VLAN assignment mode but not on an access port operating in automatic voice VLAN assignment mode.

You can configure different voice VLANs for different ports. An Switch 4210G ts up to eight voice VLANs globally.

Examples

# Enable the voice VLAN feature on GigabitEthernet 1/0/1.
<Sysname> system-view
<Sysname> interface gigabitethernet 1/0/1
<Sysname-GigabitEthernet1/0/1> voice vlan 2 enable

voice vlan mac-address

Syntax

voice vlan mac-address mac-address mask oui-mask [ description text ]
undo voice vlan mac-address oui

View

System view

Default Level

2: System level
Parameters

*mac-address*: Source MAC address of voice traffic, in the format of H-H-H, such as 1234-1234-1234.

*mask oui-mask*: Specifies the valid length of the OUI address by a mask in the format of H-H-H, formed by consecutive Fs and 0s, for example, FFFF-0000-0000. To filter the voice device of a specific vendor, set the mask to FFFF-FF00-0000.

*description text*: Specifies a string that describes the OUI address. The string is of 1 to 30 case-sensitive characters.

*oui*: Specifies the OUI address to be removed, in the format of H-H-H, such as 1234-1200-0000. An OUI address is the logic AND result of *mac-address* and *oui-mask*. An OUI address cannot be a broadcast address, a multicast address, or an address of all 0s or all Fs. You can use the **display voice vlan oui** command to display the OUI addresses supported currently.

Description

Use the **voice vlan mac-address** command to add a recognizable OUI address.

Use the **undo voice vlan mac-address** command to remove a recognizable OUI address.

The system supports up to 16 OUI addresses.

By default, the system is configured with the default OUI addresses, as illustrated in Table 7-3. You can remove the default OUI addresses and then add recognizable OUI addresses manually.

Table 7-3 Default OUI addresses

<table>
<thead>
<tr>
<th>Number</th>
<th>OUI</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0001-e300-0000</td>
<td>Siemens phone</td>
</tr>
<tr>
<td>2</td>
<td>0003-6b00-0000</td>
<td>Cisco phone</td>
</tr>
<tr>
<td>3</td>
<td>0004-0d00-0000</td>
<td>Avaya phone</td>
</tr>
<tr>
<td>4</td>
<td>00d0-1e00-0000</td>
<td>Pingtel phone</td>
</tr>
<tr>
<td>5</td>
<td>0060-b900-0000</td>
<td>Philips/NEC phone</td>
</tr>
<tr>
<td>6</td>
<td>00e0-7500-0000</td>
<td>Polycom phone</td>
</tr>
<tr>
<td>7</td>
<td>00e0-bb00-0000</td>
<td>3com phone</td>
</tr>
</tbody>
</table>

Related commands: **display voice vlan oui**.

Examples

# Add a recognizable OUI address 1234-1200-0000 by specifying the MAC address as 1234-1234-1234 and the mask as fff-ff00-0000, and configure its description string as PhoneA.

```
<Sysname> system-view
[Sysname] voice vlan mac-address 1234-1234-1234 mask ffff-ff00-0000 description PhoneA
```

# Display the supported OUI addresses to verify the above configuration.

```
<Sysname> display voice vlan oui
Oui Address Mask Description
0001-e300-0000 ffff-ff00-0000 Siemens phone
0003-6b00-0000 ffff-ff00-0000 Cisco phone
0004-0d00-0000 ffff-ff00-0000 Avaya phone
```
voice vlan mode auto

Syntax

voice vlan mode auto
undo voice vlan mode auto

View

Ethernet interface view

Default Level

2: System level

Parameters

None

Description

Use the **voice vlan mode auto** command to configure the current port to operate in automatic voice VLAN assignment mode.

Use the **undo voice vlan mode auto** command to configure the current port to operate in manual voice VLAN assignment mode.

By default, a port operates in automatic voice VLAN assignment mode.

The voice VLAN modes of different ports are independent of one another.

To make voice VLAN take effect on a port which is enabled with voice VLAN and operates in manual voice VLAN assignment mode, you need to assign the port to the voice VLAN manually.

Examples

# Configure GigabitEthernet 1/0/1 to operate in manual voice VLAN assignment mode.

```
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] undo voice vlan mode auto
```

voice vlan security enable

Syntax

voice vlan security enable
undo voice vlan security enable
View

System view

Default Level

2: System level

Parameters

None

Description

Use the **voice vlan security enable** command to enable voice VLAN security mode.

Use the **undo voice vlan security enable** command to disable voice VLAN security mode.

By default, voice VLAN security mode is not enabled.

Examples

```
Disable voice VLAN security mode.
<Sysname> system-view
<Sysname> undo voice vlan security enable
```
GVRP Configuration Commands

display garp statistics

Syntax

display garp statistics [ interface interface-list ]

View

Any view

Default Level

1: Monitor level

Parameters

interface interface-list: Defines one or multiple Ethernet ports for which the GARP statistics will be displayed. You can provide up to 10 Ethernet port lists, by each of which you can specify an individual port in the form of interface-type interface-number, or a port range in the form of interface-type interface-number1 to interface-type interface-number2, where the end-port number specified by interface-number2 must be greater than the start-port number specified by interface-number1. If no ports are specified, this command displays the GARP statistics for all ports.

Description

Use the display garp statistics command to display the GARP statistics of the specified port(s) or all ports if no ports are specified.

This command displays the statistics about GVRP packets received, transmitted, and dropped on GVRP-enabled ports. When the system is restarted or after you perform the reset garp statistics command, the existing packet statistics are cleared and the system starts to collect new GARP statistics. With the statistics, you can judge whether a GVRP-enabled port is operating normally.

- If the number of received and transmitted GVRP packets on the port is the same as that on the remote port, it indicates that the two ends are transmitting and receiving GVRP packets normally and no registration information is lost.
- If there are dropped GVRP packets on the port, check its registration mode. GVRP packets are likely to be dropped if the registration mode is fixed or forbidden, because dynamic VLANs cannot be registered in either of the modes.

Related commands: reset garp statistics.

Examples

# Display GARP statistics on ports GigabitEthernet 1/0/1 and GigabitEthernet 1/0/2.

<Sysname> display garp statistics interface gigabitethernet 1/0/1 to gigabitethernet 1/0/2
GARP statistics on port GigabitEthernet1/0/1

Number of GVRP Frames Received          : 0
Number of GVRP Frames Transmitted       : 0
Number of Frames Discarded              : 0

GARP statistics on port GigabitEthernet1/0/2

Number of GVRP Frames Received          : 0
Number of GVRP Frames Transmitted       : 0
Number of Frames Discarded              : 0

display garp timer

Syntax

display garp timer [ interface interface-list ]

View

Any view

Default Level

1: Monitor level

Parameters

interface interface-list: Defines one or multiple Ethernet ports. You can provide up to 10 Ethernet port lists, by each of which you can specify an individual port in the form of interface-type interface-number, or a port range in the form of interface-type interface-number1 to interface-type interface-number2, where the end-port number specified by interface-number2 must be greater than the start-port number specified by interface-number1. If no ports are specified, this command displays the GARP timer settings on all ports.

Description

Use the display garp timer command to display GARP timer settings of specific ports.

Related commands: garp timer hold, garp timer join, garp timer leave, garp timer leaveall.

Examples

# Display GARP timers on port GigabitEthernet 1/0/1.

<Sysname> display garp timer interface gigabitethernet 1/0/1

GARP timers on port GigabitEthernet1/0/1

    Garp Join Time          : 20 centiseconds
    Garp Leave Time         : 60 centiseconds
    Garp LeaveAll Time      : 1000 centiseconds
    Garp Hold Time          : 10 centiseconds
**display gvrp local-vlan interface**

**Syntax**

```
display gvrp local-vlan interface interface-type interface-number
```

**View**

Any view

**Default Level**

0: Visit level

**Parameters**

```
interface interface-type interface-number: Specifies an interface by its type and number.
```

**Description**

Use the `display gvrp local-vlan interface` command to display the local VLAN information maintained by GVRP on the specified port.

**Examples**

```
Display the local VLAN information maintained by GVRP on GigabitEthernet 1/0/1.
<Sysname> display gvrp local-vlan interface gigabitethernet 1/0/1
Following VLANs exist in GVRP local database:
 1(default),2-500
```

**display gvrp state**

**Syntax**

```
display gvrp state interface interface-type interface-number vlan vlan-id
```

**View**

Any view

**Default Level**

0: Visit level

**Parameters**

```
interface interface-type interface-number: Specifies an interface by its type and number.
 vlan vlan-id: Specifies a VLAN ID, in the range of 1 to 4094.
```

**Description**

Use the `display gvrp state` command to display the current GVRP state.

**Examples**

```
Display the GVRP state of VLAN 2, which GigabitEthernet 1/0/1 belongs to.
<Sysname> display gvrp state interface gigabitethernet 1/0/1 vlan 2
```
GVRP state of VLAN 2 on port GigabitEthernet1/0/1

Applicant state machine : VP
Registrar state machine : MTR

display gvrp statistics

Syntax

display gvrp statistics [ interface interface-list ]

View

Any view

Default Level

1: Monitor level

Parameters

interface interface-list: Defines one or multiple Ethernet ports. You can provide up to 10 Ethernet port lists, by each of which you can specify an individual port in the form of interface-type interface-number, or a port range in the form of interface-type interface-number1 to interface-type interface-number2, where the end-port number specified by interface-number2 must be greater than the start-port number specified by interface-number1. If no ports are specified, this command displays the GVRP statistics for all trunk ports.

Description

Use the display gvrp statistics command to display the GVRP statistics of specified or all trunk ports.

Examples

# Display statistics about GVRP for trunk port GigabitEthernet 1/0/1.
<Sysname> display gvrp statistics interface gigabitethernet 1/0/1

GVRP statistics on port GigabitEthernet1/0/1

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GVRP Status</td>
<td>Indicates whether GVRP is enabled or disabled.</td>
</tr>
<tr>
<td>GVRP Running</td>
<td>Indicates whether GVRP is running.</td>
</tr>
<tr>
<td>GVRP Failed Registrations</td>
<td>Indicates the number of GVRP registration failures.</td>
</tr>
<tr>
<td>GVRP Last Pdu Origin</td>
<td>Indicates the source MAC address in the last GVRP PDU.</td>
</tr>
<tr>
<td>GVRP Registration Type</td>
<td>Indicates the GVRP registration type on the port.</td>
</tr>
</tbody>
</table>
display gvrp status

Syntax

display gvrp status

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the display gvrp status command to display the global enable/disable state of GVRP.

Examples

# Display the global GVRP enable/disable state.

<Sysname> display gvrp status

GVRP is enabled

display gvrp vlan-operation interface

Syntax

display gvrp vlan-operation interface interface-type interface-number

View

Any view

Default Level

0: Visit level

Parameters

interface interface-type interface-number: Specifies an interface by its type and number.

Description

Use the display gvrp vlan-operation interface command to display the information about dynamic VLAN operations performed on a port.

Examples

# Display the information about dynamic VLAN operations performed on GigabitEthernet 1/0/1.

<Sysname> display gvrp vlan-operation interface gigabitethernet 1/0/1

Dynamic VLAN operations on port GigabitEthernet1/0/1

Operations of creating VLAN : 2-100
Operations of deleting VLAN : none
garp timer hold

Syntax

```
garp timer hold timer-value
undo garp timer hold
```

View

Ethernet interface view, Layer-2 aggregate interface view, port group view

Default Level

2: System level

Parameters

```
timer-value: Hold timer setting (in centiseconds), which must be a multiple of 5 in the range of 10 (inclusive) and half of the Join timer setting (inclusive). When the Join timer is set to the default, the value range for the Hold timer is 10 (inclusive) to 10 (inclusive).
```

Note

One second equals 100 centiseconds.

Description

Use the `garp timer hold` command to set the GARP Hold timer for an Ethernet port, Layer-2 aggregate interface, or all ports in a port group.

Use the `undo garp timer hold` command to restore the default of the GARP Hold timer. This may fail if the default is beyond the valid value range for the Hold timer.

By default, the hold timer is set to 10 centiseconds.

Related commands: `display garp timer`, `garp timer join`.

Examples

```
Set the GARP Hold timer to 15 centiseconds, assuming that the Join timer is 30 centiseconds.
<Sysname> system-view
<Sysname> interface gigabitethernet 1/0/1
<Sysname-GigabitEthernet1/0/1] garp timer hold 15
```

garp timer join

Syntax

```
garp timer join timer-value
undo garp timer join
```
View
Ethernet interface view, Layer-2 aggregate interface view, port group view

Default Level
2: System level

Parameters

timer-value: Join timer setting (in centiseconds), which must be a multiple of 5 in the range of two times the Hold timer (inclusive) and half of the Leave timer (inclusive). When the Hold timer and the Leave timer are set to their default, the value range for the Join timer is 20 (inclusive) to 25 (inclusive).

Description
Use the **garp timer join** command to set the GARP Join timer for an Ethernet port, Layer-2 aggregate interface, or all ports in a port group.

Use the **undo garp timer join** command to restore the default of the GARP Join timer. This may fail if the default is beyond the valid value range for the Join timer.

By default, the Join timer is set to 20 centiseconds.

Related commands: **display garp timer**, **garp timer hold**, **garp timer leave**.

Examples

```
Set the GARP Join timer to 25 centiseconds, assuming that both the Hold timer and the Leave timer are using the default.
<Sysname> system-view
<Sysname> interface gigabitethernet 1/0/1
<Sysname-GigabitEthernet1/0/1] garp timer join 25
```

**garp timer leave**

Syntax

```
garp timer leave timer-value
undo garp timer leave
```

View
Ethernet interface view, Layer-2 aggregate interface view, port group view

Default Level
2: System level

Parameters

**timer-value**: Leave timer setting (in centiseconds), which must be a multiple of 5 between two times the Join timer (exclusive) and the LeaveAll timer setting (exclusive). When the Join timer and the LeaveAll timer are set to their default, the value range for the Leave timer is 45 (inclusive) to 995 (inclusive).

Description
Use the **garp timer leave** command to set the GARP Leave timer for an Ethernet port, Layer-2
aggregate interface, or all ports in a port group.

Use the **undo garp timer leave** command to restore the default of the GARP Leave timer. This may fail if the default is beyond the valid value range for the Leave timer.

By default, the Leave timer is set to 60 centiseconds.

Related commands: **display garp timer**, **garp timer join**, **garp timer leaveall**.

**Examples**

# Set the GARP Leave timer to 100 centiseconds, assuming that both the Join timer and the LeaveAll timer are using the default.

```plaintext
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] garp timer leave 100
```

garp timer leaveall

**Syntax**

```plaintext
garp timer leaveall timer-value
undo garp timer leaveall
```

**View**

System view

**Default Level**

2: System level

**Parameters**

`timer-value`: Leaveall timer setting (in centiseconds), which must be a multiple of 5 in the range of the maximum Leave timer on the device (exclusive) and 32765 (inclusive). When the Leave timers on all ports are set to the default, the value range for the LeaveAll timer is 65 (inclusive) to 32765 (inclusive).

**Description**

Use the **garp timer leaveall** command to set the GARP LeaveAll timer.

Use the **undo garp timer leaveall** command to restore the default. This may fail if the default is beyond the valid value range for the LeaveAll timer.

By default, the setting of the LeaveAll timer is 1000 centiseconds.

Related commands: **display garp timer**, **garp timer leave**.

**Examples**

# Set the leaveall timer to 100 centiseconds, assuming that the Leave timer on every port is set to 60 centiseconds.

```plaintext
<Sysname> system-view
[Sysname] garp timer leaveall 100
```
**gvrp**

**Syntax**

```
gvrp
undo gvrp
```

**View**

System view, Ethernet interface view, Layer-2 aggregate interface view, port group view

**Default Level**

2: System level

**Parameters**

None

**Description**

Use the `gvrp` command to enable GVRP globally (in system view), on a port (in Ethernet or Layer-2 aggregate interface view), or on all ports in a port group (in port group view).

Use the `undo gvrp` command to disable GVRP globally, on a port, or on all ports in a port group depending on the view where the command is executed.

By default, GVRP is disabled.

Note that:

- To enable GVRP on a port, you need to enable it globally first and then on the port.
- You can use this command on trunk ports only.
- You cannot change the link type of a GVRP-enabled trunk port.

Related commands: `display gvrp status`.

**Examples**

```
Enable GVRP globally.
<Sysname> system-view
[Sysname] gvrp
GVRP is enabled globally.
```

**gvrp registration**

**Syntax**

```
gvrp registration { fixed | forbidden | normal }
undo gvrp registration
```

**View**

Ethernet interface view, Layer-2 aggregate interface view, port group view

**Default Level**

2: System level
Parameters

- **fixed**: Sets the registration type to fixed.
- **forbidden**: Sets the registration type to forbidden.
- **normal**: Sets the registration type to normal.

Description

Use the `gvrp registration` command to configure the GVRP registration type on a port (in Ethernet or Layer-2 aggregate interface view) or all ports in a port group (in port group view).

Use the `undo gvrp registration` command to restore the default on a port, or on all ports in a port group depending on the view the command is executed.

The default GVRP registration type is normal.

Note that, this command is only available on trunk ports.

Related commands: `display garp statistics`.

Examples

```
Set the GVRP registration type to fixed on port GigabitEthernet 1/0/1.
<Sysname> system-view
<Sysname> interface gigabitethernet 1/0/1
<Sysname-GigabitEthernet1/0/1> port link-type trunk
[Sysname-GigabitEthernet1/0/1] gvrp registration fixed
```

reset garp statistics

Syntax

```
reset garp statistics [interface interface-list]
```

View

User view

Default Level

2: System level

Parameters

- `interface interface-list`: Defines one or multiple Ethernet ports for which the GARP statistics are to be cleared. You can provide up to 10 Ethernet port lists, by each of which you can specify an individual port in the form of `interface-type interface-number`, or a port range in the form of `interface-type interface-number1 to interface-type interface-number2`, where the end-port number specified by `interface-number2` must be greater than the start-port number specified by `interface-number1`. If no ports are specified, this command clears the GARP statistics on all ports.

Description

Use the `reset garp statistics` command to clear the GARP statistics on specified ports or all ports if no ports are specified.
The cleared statistics include the statistics about GVRP packets sent, received and dropped. You can use this command in conjunction with the `display garp statistics` command to display GARP statistics.

Related commands: `display gvrp statistics`.

**Examples**

# Clear the GARP statistics on all ports.

`<Sysname> reset garp statistics`
QinQ Configuration Commands

**nest**

**Syntax**

```
nest top-most vlan-id vlan-id
undo nest top-most
```

**View**

Traffic behavior view

**Default Level**

2: System Level

**Parameters**

- `vlan-id vlan-id`: ID of the VLAN. The `vlan-id` argument is in the range 1 to 4094.

**Description**

Use the `nest` command to configure an outer VLAN tag for a traffic behavior.

Use the `undo nest` command to remove the outer VLAN tag.

Note that:

- The action of creating an outer VLAN tag cannot be configured simultaneously with any other action except the traffic filtering action or the action of setting 802.1p precedence in the same traffic behavior. And the action of creating an outer VLAN tag must be applied to basic QinQ-enabled ports or port groups. Otherwise, the corresponding QoS policy cannot be applied successfully.
- The **nest** action cannot be applied to a VLAN or globally.

Related commands: **qos policy**, **traffic behavior**, **classifier behavior**.

**Examples**

```
Configure an outer VLAN tag for a traffic behavior.
<Sysname> system-view
 [Sysname] traffic behavior database
 [Sysname-behavior-database] nest top-most vlan-id 100
```

**raw-vlan-id inbound**

**Syntax**

```
raw-vlan-id inbound { all | vlan-list }
undo raw-vlan-id inbound { all | vlan-list }
```

**View**

QinQ view

**Default Level**

2: System level

**Parameters**

`vlan-list`: Specifies one or multiple CVLANs in the format of `vlan-list = { vlan-id | to vlan-id }&<1-10>`. You can provide up to 10 VLAN ID lists, by each of which you can specify an individual VLAN ID in the form of `vlan-id`, or a VLAN ID range in the form of `vlan-id to vlan-id`, where the VLAN ID after `to` must be greater than the VLAN ID before `to`. The `vlan-id` argument ranges from 1 to 4094.

- **all**: Specifies all VLAN IDs.

**Description**

Use the **raw-vlan-id inbound** command to tag frames of the specified CVLANs with the current SVLAN.

Use the **undo raw-vlan-id inbound** command to remove the configuration.

---

**Caution**

- You can run this command in the same view many times. A new configuration does not overwrite the previous ones and the configured values are arranged in an ascending order automatically.
- An inner VLAN tag corresponds to only one outer VLAN tag.
- If you want to change the outer VLAN tag, you need to delete the old outer tag configuration and then configure a new outer VLAN tag.

---

Related commands: **qinq vid**.
Examples

# Configure GigabitEthernet 1/0/1 to tag frames of VLAN 3, VLAN 5, and VLAN 20 through VLAN 100 with SVLAN 100.

<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] qinq vid 100
[Sysname-GigabitEthernet1/0/1-vid-100] raw-vlan-id inbound 3 5 20 to 100

qinq enable

Syntax

qinq enable
undo qinq enable

View

Ethernet interface view, Layer-2 aggregate interface view, port group view

Default Level

2: System level

Parameters

None

Description

Use the qinq enable command to enable basic QinQ on the current Ethernet port(s).

Use the undo qinq enable command to disable basic QinQ on the current Ethernet port(s).

By default, basic QinQ is disabled on Ethernet ports.

A basic QinQ-enabled port tags received frames with the port's default VLAN tag.

Note that:

- Configuration made in Ethernet interface view takes effect on the current port only. Configuration made in Layer-2 aggregate interface view takes effect on the Layer-2 aggregate interface and the member ports in its aggregation group. Configuration made in port group view takes effect on all ports in the port group.
- You can configure this command on a Layer-2 aggregate interface and its member ports separately. Configuration made on an aggregation member port takes effect immediately. For detailed information about link aggregation, refer to Link Aggregation Configuration in the Access Volume.

Examples

# Enable basic QinQ on GigabitEthernet 1/0/1.

<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] qinq enable

# Enable basic QinQ on port group 1.

<Sysname> system-view
qinq ethernet-type

Syntax

qinq ethernet-type hex-value
undo qinq ethernet-type

View

System view

Default Level

2: System level

Parameters

hex-value: Hexadecimal protocol type value, in the range of 0x0001 to 0xFFFF. However, do not set it to any of the protocol type values listed in Table 9-1.

Table 9-1 Common protocol type values

<table>
<thead>
<tr>
<th>Protocol type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP</td>
<td>0x0806</td>
</tr>
<tr>
<td>PUP</td>
<td>0x0200</td>
</tr>
<tr>
<td>RARP</td>
<td>0x8035</td>
</tr>
<tr>
<td>IP</td>
<td>0x0800</td>
</tr>
<tr>
<td>IPv6</td>
<td>0x86DD</td>
</tr>
<tr>
<td>PPPoE</td>
<td>0x8863/0x8864</td>
</tr>
<tr>
<td>MPLS</td>
<td>0x8847/0x8848</td>
</tr>
<tr>
<td>IPX/SPX</td>
<td>0x8137</td>
</tr>
<tr>
<td>IS-IS</td>
<td>0x8000</td>
</tr>
<tr>
<td>LACP</td>
<td>0x8809</td>
</tr>
<tr>
<td>802.1x</td>
<td>0x888E</td>
</tr>
<tr>
<td>Cluster</td>
<td>0x88A7</td>
</tr>
<tr>
<td>Reserved</td>
<td>0xFFFD/0xFFFE/0xFFFF</td>
</tr>
</tbody>
</table>

Description

Use the qinq ethernet-type command to configure the TPID value in VLAN tags.

Use the undo qinq ethernet-type command to restore the TPID value in VLAN tags to the system default.

By default, the TPID value is 0x8100.

Note that:
Configuration made in system view takes effect on all ports.

Examples

# Set the TPID value to 0x8200 globally.
<Sysname> system-view
<Sysname] qinq ethernet-type 8200

qinq vid

Syntax

qinq vid vlan-id
undo qinq vid vlan-id

View

Ethernet interface view, Layer-2 aggregate interface view, port group view

Default Level

2: System level

Parameters

vlan-id: Outer VLAN ID, in the range of 1 to 4094.

Description

Use the qinq vid command to enter QinQ view and configure the outer VLAN tag for the port to add. Use the undo qinq vid command to remove all configurations corresponding to the outer VLAN ID performed in QinQ view.

By default, the outer VLAN tag is the port’s default VLAN tag.

Note that:

- Configuration made in Ethernet interface view takes effect on the current port only. Configuration made in Layer-2 aggregate interface view takes effect on the Layer-2 aggregate interface and the member ports in its aggregation group. Configuration made in port group view takes effect on all ports in the port group.
- You can configure this command on a Layer-2 aggregate interface and its member ports separately. Configuration made on an aggregation member port takes effect immediately. For detailed information about link aggregation, refer to Link Aggregation Configuration in the Access Volume.

Related commands: raw-vlan-id inbound.

Examples

# Configure GigabitEthernet 1/0/1 to tag frames with outer VLAN 10.
<Sysname> system-view
<Sysname] interface gigabitethernet 1/0/1
<Sysname-GigabitEthernet1/0/1] qinq vid 10

# Configure all the ports in port group 1 to tag frames with outer VLAN 10.
<Sysname> system-view
[Sysname] port-group manual 1

[Sysname-port-group-manual-1] group-member gigabitethernet 1/0/1 to gigabitethernet 1/0/6

[Sysname-port-group-manual-1] qinq vid 10
BPDU Tunneling Configuration Commands

bpdu-tunnel dot1q

Syntax

In Ethernet interface view or port group view:

```
bpdu-tunnel dot1q { cdp | dldp | eoam | gvrp | hgmp | lacp | lldp | pagp | pvst | stp | udld | vtp }
undo bpdu-tunnel dot1q { cdp | dldp | eoam | gvrp | hgmp | lacp | lldp | pagp | pvst | stp | udld | vtp }
```

In Layer 2 aggregate interface view:

```
bpdu-tunnel dot1q { cdp | gvrp | hgmp | pvst | stp | vtp }
undo bpdu-tunnel dot1q { cdp | gvrp | hgmp | pvst | stp | vtp }
```

View

Ethernet interface view, Layer 2 aggregate interface view, port group view

Default Level

2: System level

Parameters

- **cdp**: Specifies to enable BPDU tunneling for the Cisco Discovery Protocol (CDP)
- **dldp**: Specifies to enable BPDU tunneling for the Device Link Detection Protocol (DLDP)
- **eoam**: Specifies to enable BPDU tunneling for Ethernet Operation, Administration and Maintenance (EOAM)
- **gvrp**: Specifies to enable BPDU tunneling for the GARP VLAN Registration Protocol (GVRP)
- **hgmp**: Specifies to enable BPDU tunneling for the HW Group Management Protocol (HGMP)
- **lacp**: Specifies to enable BPDU tunneling for the Link Aggregation Control Protocol (LACP)
- **lldp**: Specifies to enable BPDU tunneling for the Link Layer Discovery Protocol (LLDP)
- **pagp**: Specifies to enable BPDU tunneling for the Port Aggregation Protocol (PAGP)
- **pvst**: Specifies to enable BPDU tunneling for Per VLAN Spanning Tree (PVST)
- **stp**: Specifies to enable BPDU tunneling for the Spanning Tree Protocol (STP)
- **udld**: Specifies to enable BPDU tunneling for Uni-directional Link Direction (UDLD)
- **vtp**: Specifies to enable BPDU tunneling for the VLAN Trunking Protocol (VTP)

Description

Use the `bpdu-tunnel dot1q` command to enable BPDU tunneling for a protocol on the current port or ports.
Use the `undo bpdu-tunnel dot1q` command to disable BPDU tunneling for a protocol on the port or ports.

By default, BPDU tunneling for any protocol is disabled.

Note that:

- Settings made in Ethernet interface view or Layer 2 aggregate interface view take effect only on the current port; settings made in port group view take effect on all ports in the port group.
- You cannot enable BPDU tunneling on a member port of a service loopback group.
- Before enabling BPDU tunneling for DLDP, EOAM, GVRP, HGMP, LLDP, or STP on a port, disable the protocol on the port first. Because PVST is a special STP protocol, before enabling BPDU tunneling for PVST on a port, you need to disable STP and then enable BPDU tunneling for STP on the port first.
- Before enabling BPDU tunneling for LACP on a dynamic aggregation group member port, remove the port from the dynamic aggregation group first.

**Examples**

# Disable STP on GigabitEthernet1/0/1, and then enable BPDU tunneling for STP on the port.

```
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] undo stp enable
[Sysname-GigabitEthernet1/0/1] bpdu-tunnel dot1q stp
```

# Disable STP for port group 1, and then enable BPDU tunneling for STP on all the ports in the port group.

```
<Sysname> system-view
[Sysname] port-group manual 1
[Sysname-port-group-manual-1] group-member gigabitethernet 1/0/1 to gigabitethernet 1/0/6
[Sysname-port-group-manual-1] undo stp enable
[Sysname-port-group-manual-1] bpdu-tunnel dot1q stp
```

# Disable STP on Layer 2 aggregate interface 1, and then enable BPDU tunneling for STP on the port.

```
<Sysname> system-view
[Sysname] interface bridge-aggregation 1
[Sysname-Bridge-Aggregation1] undo stp enable
[Sysname-Bridge-Aggregation1] bpdu-tunnel dot1q stp
```

**bpdu-tunnel tunnel-dmac**

**Syntax**

```
bpdu-tunnel tunnel-dmac mac-address
undo bpdu-tunnel tunnel-dmac
```

**View**

- System view

**Default Level**

- 2: System level
Parameters

mac-address: Destination multicast MAC address for BPDUs, in the format of H-H-H. The allowed values are 0x0100-0CCD-CDD0, 0x0100-0CCD-CDD1, 0x0100-0CCD-CDD2, and 0x010F-E200-0003.

Description

Use the bpdu-tunnel tunnel-dmac command to configure the destination multicast MAC address for BPDUs.

Use the undo bpdu-tunnel tunnel-dmac command to restore the default value.

By default, the destination multicast MAC address for BPDUs is 0x010F-E200-0003.

Examples

# Set the destination multicast MAC address for BPDUs to 0x0100-0CCD-CDD0.
<Sysname> system-view

[Sysname] bpdu-tunnel tunnel-dmac 0100-0ccd-cdd0
Port Mirroring Configuration Commands

display mirroring-group

Syntax

display mirroring-group { groupid | all | local | remote-destination | remote-source }

View

Any view

Default Level

2: System level

Parameters

groupid: Number of the port mirroring group to be displayed, in the range of 1 to 4.
all: Displays all port mirroring groups.
local: Displays local mirroring groups.
remote-destination: Displays remote destination mirroring groups.
remote-source: Displays remote source port mirroring groups.

Description

Use the display mirroring-group command to display information about the specified port mirroring group or groups.

The output varies by port mirroring group type and is sorted by mirroring group number.

Examples

# Display information about all the port mirroring groups.
<Sysname> display mirroring-group all
mirroring-group 1:
  type: local
  status: active
  mirroring port:
    GigabitEthernet1/0/1 both
  monitor port: GigabitEthernet1/0/10
mirroring-group 2:
  type: remote-source
  status: active
  mirroring port:
    GigabitEthernet1/0/3 both
**monitor egress port**: GigabitEthernet1/0/11
**remote-probe vlan**: 200

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mirroring-group</td>
<td>Number of the port mirroring group</td>
</tr>
<tr>
<td>type</td>
<td>Type of the port mirroring group, which can be one of the following: local, remote-source, or remote-destination.</td>
</tr>
<tr>
<td>status</td>
<td>Status of the port mirroring group, which can be active or inactive.</td>
</tr>
<tr>
<td>mirroring port</td>
<td>Source mirroring port</td>
</tr>
<tr>
<td>monitor port</td>
<td>Destination mirroring port</td>
</tr>
<tr>
<td>monitor egress port</td>
<td>Outbound mirroring port</td>
</tr>
<tr>
<td>remote-probe vlan</td>
<td>Remote mirroring VLAN</td>
</tr>
</tbody>
</table>

**mirroring-group**

**Syntax**

```
mirroring-group groupid { local | remote-destination | remote-source }
undo mirroring-group { groupid | all | local | remote-destination | remote-source }
```

**View**

System view

**Default Level**

2: System level

**Parameters**

- **groupid**: Specifies the number of the port mirroring group to be created or removed, in the range of 1 to 4.
- **all**: Removes all port mirroring groups.
- **local**: Creates a local mirroring group or removes all local mirroring groups with the `undo` command.
- **remote-destination**: Creates a remote destination mirroring group or removes all remote destination mirroring groups with the `undo` command.
- **remote-source**: Creates a remote source mirroring group or removes all remote source mirroring groups with the `undo` command.

**Description**

Use the `mirroring-group` command to create a port mirroring group.

Use the `undo mirroring-group` command to remove the specified port mirroring group or groups.

To mirror packets from a port to another port on the same device, create a local mirroring group.

To mirror packets from a port (a mirroring port) on the current device to another port (the monitor port) either on the same device or on a different device, create remote mirroring groups. When doing that,
create the remote source mirroring group on the device where the mirroring port is located and create the remote destination mirroring group on the device where the monitor port is located.

Examples

# Create a local port mirroring group numbered 1.
<Sysname> system-view
[Sysname] mirroring-group 1 local

# Create remote destination mirroring group numbered 2.
<Sysname> system-view
[Sysname] mirroring-group 2 remote-destination

**mirroring-group mirroring-port**

**Syntax**

```
mirroring-group groupid mirroring-port mirroring-port-list { both | inbound | outbound }
undo mirroring-group groupid mirroring-port mirroring-port-list { both | inbound | outbound }
```

**View**

System view

**Default Level**

2: System level

**Parameters**

- **groupid**: Number of a local or remote source mirroring group, in the range of 1 to 4.
- **mirroring-port-list**: A list of ports/port ranges to be assigned to or removed from the port mirroring group specified by **groupid**. The total number of single ports plus port ranges cannot exceed eight. In the list, a single port takes the form of **interface-type interface-number**. A port range takes the form **interface-type start-interface-number to interface-type end-interface-number**, where the end port number must be greater than the start port number.
- **both**: Mirrors both inbound and outbound packets on the specified port(s).
- **inbound**: Mirrors only inbound packets on the specified port(s).
- **outbound**: Mirrors only outbound packets on the specified port(s).

**Description**

Use the **mirroring-group mirroring-port** command to assign ports to a local or remote source mirroring group as mirroring ports.

Use the **undo mirroring-group mirroring-port** command to remove mirroring ports from the mirroring group.

By configuring a port as a mirroring port, you can track the packets received from or/and sent out the port.

Before you can assign a port to a mirroring group, create the mirroring group first.

Note that:

- A mirroring port cannot be a member port of an existing port mirroring group.
You cannot add a mirroring port for a remote destination mirroring group.

When removing a mirroring port from a mirroring group, make sure the traffic direction you specified in the `undo mirroring-group mirroring-port` command matches the actual monitored direction of the port.

**Examples**

```bash
Configure mirroring ports in port mirroring group 1, assuming that the mirroring group already exists.
<Sysname> system-view
[Sysname] mirroring-group 1 mirroring-port GigabitEthernet 1/0/1 to GigabitEthernet 1/0/5 both

Remove source mirroring ports from port mirroring group 1.
[Sysname] undo mirroring-group 1 mirroring-port GigabitEthernet 1/0/1 to GigabitEthernet 1/0/3 both
```

**mirroring-group monitor-egress**

**Syntax**

In system view:

```
mirroring-group groupid monitor-egress monitor-egress-port-id
undo mirroring-group groupid monitor-egress monitor-egress-port-id
```

In Ethernet port view:

```
mirroring-group groupid monitor-egress
undo mirroring-group groupid monitor-egress
```

**View**

System view, Ethernet port view

**Default Level**

2: System level

**Parameters**

- `groupid`: Number of a remote source mirroring group, in the range of 1 to 4.
- `monitor-egress-port-id`: Port to be configured as the egress port. It takes the form of `interface-type interface-number`, where `interface-type` specifies the port type and `interface-number` specifies the port number.

**Description**

Use the `mirroring-group monitor-egress` command to configure a port as the egress port in a remote source mirroring group.

Use the `undo mirroring-group monitor-egress` command to remove the egress port from the mirroring group.

Note that:

- Only remote source port mirroring groups can have outbound mirroring ports. A port mirroring group can have only one outbound mirroring port.
The outbound port cannot be a member port of the current mirroring group.

It is not recommended to configure STP, RSTP, MSTP, 802.1X, IGMP Snooping, static ARP and MAC address learning on the outbound mirroring port; otherwise, the mirroring function may be affected.

Examples

# Configure port GigabitEthernet 1/0/1 as the egress port of remote source mirroring group 1 in system view.
<Sysname> system-view
[Sysname] mirroring-group 1 remote-source
[Sysname] mirroring-group 1 monitor-egress GigabitEthernet 1/0/1

# Configure port GigabitEthernet 1/0/2 as the egress port of remote source mirroring group 2 in Ethernet port view.
<Sysname> system-view
[Sysname] mirroring-group 2 remote-source
[Sysname] interface GigabitEthernet 1/0/2
[Sysname-GigabitEthernet1/0/2] mirroring-group 2 monitor-egress

mirroring-group monitor-port

Syntax

mirroring-group groupid monitor-port monitor-port-id
undo mirroring-group groupid monitor-port monitor-port-id

View

System view

Default Level

2: System level

Parameters

groupid: Number of a local or remote destination mirroring group, in the range of 1 to 4.

monitor-port-id: Port to be assigned to the specified mirroring group as the monitor port. The argument takes the form of interface-type interface-number, where interface-type specifies the port type and interface-number specifies the port number.

Description

Use the mirroring-group monitor-port command to assign a port to a local or remote destination mirroring group as the monitor port.

Use the undo mirroring-group monitor-port command to remove the monitor port from the local or remote destination mirroring group.

Note that:

- Before assigning a port to a mirroring group, make sure that the group already exists.
- A port mirroring group can contain only one destination port.
- The destination port cannot be a member port of the current mirroring group.
The destination mirroring port can be an access, trunk, or hybrid port. It must be assigned to the remote mirroring VLAN.

A remote source port mirroring group cannot contain destination ports.

Before configuring the destination port for a port mirroring group, make sure the port mirroring group exists.

Do not enable STP, RSTP, or MSTP on the destination port. Otherwise, the mirroring function may be affected.

Do not use the destination mirroring port for any purpose other than port mirroring.

Examples

# Configure GigabitEthernet 1/0/1 as the monitor port in remote destination mirroring group 1.

```
<Sysname> system-view

<Sysname> mirroring-group 1 remote-destination
<Sysname> mirroring-group 1 monitor-port GigabitEthernet 1/0/1
```

**mirroring-group remote-probe vlan**

**Syntax**

```
mirroring-group groupid remote-probe vlan rprobe-vlan-id
undo mirroring-group groupid remote-probe vlan rprobe-vlan-id
```

**View**

System view

**Default Level**

2: System level

**Parameters**

- `groupid`: Number of a remote source or destination mirroring group, in the range of 1 to 4.
- `rprobe-vlan-id`: ID of the VLAN to be configured as the remote probe VLAN. This VLAN must be a static VLAN that already exists.

**Description**

Use the `mirroring-group remote-probe vlan` command to specify a VLAN as the remote probe VLAN for a remote source or destination mirroring group.

Use the `undo mirroring-group remote-probe vlan` command to remove the remote probe VLAN from the remote source or destination mirroring group.

Note that:

- Only remote source port mirroring groups or remote destination port mirroring groups can have remote mirroring VLANS. A port mirroring group can have only one remote mirroring VLAN.
- To remove a VLAN operating as a remote port mirroring VLAN, you need to restore it to a normal VLAN first. A remote port mirroring group gets invalid if the corresponding remote port mirroring VLAN is removed.
- You are recommended to use a remote mirroring VLAN for remote mirroring only.
Examples

# Specify VLAN 2 as the remote probe VLAN of port mirroring group 1, assuming that VLAN 2 already exists.

<Sysname> system-view
[Sysname] mirroring-group 1 remote-source
[Sysname] mirroring-group 1 remote-probe vlan 2

mirroring-port

Syntax

[ mirroring-group groupid ] mirroring-port { inbound | outbound | both }
undo [ mirroring-group groupid ] mirroring-port { inbound | outbound | both }

View

Ethernet port view

Default Level

2: System level

Parameters

groupid: Number of a local or remote source mirroring group, in the range of 1 to 4.
both: Mirrors both inbound and outbound packets on the current port.
inbound: Mirrors only inbound packets on the current port.
outbound: Mirrors only outbound packets on the current port.

Description

Use the mirroring-port command to assign the current port to a local or remote source mirroring group as a mirroring port.

Use the undo mirroring-port command to remove the current port from the port mirroring group.

When assigning a port to a mirroring group as a mirroring port, note that:

- If no mirroring group is specified, the port is assigned to port mirroring group 1.
- Whether you assign the port to port mirroring group 1 or any other mirroring group, ensure that the mirroring group already exists.
- A mirroring port cannot be a member port of an existing port mirroring group.
- You cannot add a mirroring port for a remote destination mirroring group.
- When removing a mirroring port from a mirroring group, make sure the traffic direction you specified in the undo [ mirroring-group groupid ] mirroring-port command matches the actual monitored direction of the port.

Examples

# Configure GigabitEthernet 1/0/1 as a source mirroring port of remote source port mirroring group 2.

<Sysname> system-view
[Sysname] mirroring-group 2 remote-source
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] mirroring-group 2 mirroring-port both
monitor-port

Syntax

[ mirroring-group groupid ] monitor-port
undo [ mirroring-group groupid ] monitor-port

View

Ethernet port view

Default Level

2: System level

Parameters

  groupid: Number of a local or remote destination mirroring group, in the range of 1 to 4.

Description

Use the monitor-port command to assign the current port to a local or remote destination mirroring group as the monitor port.

Use the undo monitor-port command to remove the current port from the mirroring group.

When assigning a port to a mirroring group as the monitor port, note that:

- If no mirroring group is specified, the port is assigned to port mirroring group 1.
- The port cannot belong to any other mirroring group.
- Whether you assign the port to port mirroring group 1 or any other mirroring group, ensure that the mirroring group already exists.
- The remote destination mirroring port can be an access, trunk, or hybrid port. It must be assigned to the remote mirroring VLAN.
- Do not enable STP, RSTP, or MSTP on the destination port. Otherwise, the mirroring function may be affected.
- Do not use the destination mirroring port for any purpose other than port mirroring.

Examples

# Configure GigabitEthernet 1/0/1 as the monitor port in local mirroring group numbered 1.
<Sysname> system-view
[Sysname] mirroring-group 1 local
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] monitor-port
Table of Contents

1 IP Addressing Configuration Commands ........................................................................... 1-1
   IP Addressing Configuration Commands ......................................................................... 1-1
      display ip interface ........................................................................................................ 1-1
      display ip interface brief ............................................................................................... 1-3
      ip address ...................................................................................................................... 1-4

2 ARP Configuration Commands ......................................................................................... 2-1
   ARP Configuration Commands ......................................................................................... 2-1
      arp check enable ............................................................................................................ 2-1
      arp max-learning-num ................................................................................................. 2-1
      arp static ...................................................................................................................... 2-2
      arp timer aging ............................................................................................................ 2-3
      display arp .................................................................................................................. 2-3
      display arp ip-address ................................................................................................. 2-5
      display arp timer aging ............................................................................................... 2-6
      reset arp ...................................................................................................................... 2-6
   Gratuitous ARP Configuration Commands ....................................................................... 2-7
      gratuitous-arp-sending enable ....................................................................................... 2-7
      gratuitous-arp-learning enable .................................................................................... 2-7

3 Proxy ARP Configuration Commands ................................................................................ 3-1
   Proxy ARP Configuration Commands .............................................................................. 3-1
      display local-proxy-arp ................................................................................................. 3-1
      display proxy-arp ......................................................................................................... 3-1
      local-proxy-arp enable ................................................................................................. 3-2
      proxy-arp enable ......................................................................................................... 3-2

4 ARP Attack Defense Configuration Commands .................................................................. 4-1
   ARP Source Suppression Configuration Commands .......................................................... 4-1
      arp source-suppression enable .................................................................................... 4-1
      arp source-suppression limit ....................................................................................... 4-1
      display arp source-suppression ................................................................................. 4-2
   ARP Defense Against IP Packet Attack Configuration Commands .................................... 4-3
      arp resolving-route enable ......................................................................................... 4-3
   ARP Active Acknowledgement Configuration Commands .................................................. 4-3
      arp anti-attack active-ack enable ................................................................................. 4-3
   Source MAC Address Based ARP Attack Detection Configuration Commands .................. 4-4
      arp anti-attack source-mac .......................................................................................... 4-4
      arp anti-attack source-mac aging-time ....................................................................... 4-5
      arp anti-attack source-mac exclude-mac ................................................................... 4-6
      arp anti-attack source-mac threshold ......................................................................... 4-6
      display arp anti-attack source-mac ............................................................................ 4-7
   ARP Packet Source MAC Address Consistency Check Configuration Commands .............. 4-8
      arp anti-attack valid-ack enable ................................................................................... 4-8
   ARP Packet Rate Limit Configuration Commands .............................................................. 4-8
arp rate-limit .......................................................... 4-8
ARP Detection Configuration Commands ........................................ 4-9
arp detection enable .................................................. 4-9
arp detection mode .................................................. 4-10
arp detection static-bind ........................................... 4-10
arp detection trust .................................................. 4-11
arp detection validate ............................................. 4-12
display arp detection .............................................. 4-13
display arp detection statistics .................................... 4-13
reset arp detection statistics ..................................... 4-14

5 DHCP Relay Agent Configuration Commands ........................................ 5-1
DHCP Relay Agent Configuration Commands ....................................... 5-1
dhcp relay address-check .......................................... 5-1
dhcp relay information circuit-id format-type ....................... 5-2
dhcp relay information circuit-id string .......................... 5-2
dhcp relay information enable .................................... 5-3
dhcp relay information format .................................... 5-4
dhcp relay information remote-id format-type ................. 5-5
dhcp relay information remote-id string ......................... 5-6
dhcp relay information strategy .................................. 5-7
dhcp relay release ip ............................................. 5-7
dhcp relay security static ........................................ 5-8
dhcp relay security tracker ....................................... 5-9
dhcp relay server-detect ........................................... 5-10
dhcp relay server-group .......................................... 5-10
dhcp relay server-select .......................................... 5-11
dhcp select relay .................................................. 5-12
display dhcp relay ................................................ 5-13
display dhcp relay information .................................... 5-13
display dhcp relay security ....................................... 5-14
display dhcp relay security statistics ........................... 5-15
display dhcp relay security tracker .............................. 5-16
display dhcp relay server-group ................................ 5-16
display dhcp relay statistics ..................................... 5-17
reset dhcp relay statistics ....................................... 5-19

6 DHCP Client Configuration Commands ........................................ 6-1
DHCP Client Configuration Commands ....................................... 6-1
display dhcp client ................................................ 6-1
ip address dhcp-alloc ............................................. 6-3

7 DHCP Snooping Configuration Commands ........................................ 7-1
DHCP Snooping Configuration Commands ...................................... 7-1
dhcp-snooping ...................................................... 7-1
dhcp-snooping information circuit-id format-type ............... 7-2
dhcp-snooping information circuit-id string ....................... 7-2
dhcp-snooping information enable .................................. 7-3
dhcp-snooping information format .................................. 7-4
dhcp-snooping information remote-id format-type ............... 7-5
8 BOOTP Client Configuration Commands ..................................................... 8-1
   BOOTP Client Configuration Commands ................................................. 8-1
      display bootp client ....................................................................... 8-1
      ip address bootp-alloc .................................................................. 8-2

9 DNS Configuration Commands .................................................................. 9-1
   DNS Configuration Commands ............................................................. 9-1
      display dns domain ....................................................................... 9-1
      display dns dynamic-host ............................................................. 9-2
      display dns server ....................................................................... 9-3
      display ip host ............................................................................. 9-4
      dns domain ................................................................................. 9-4
      dns proxy enable ......................................................................... 9-5
      dns resolve ............................................................................... 9-6
      dns server .................................................................................. 9-6
      ip host ....................................................................................... 9-7
      reset dns dynamic-host .............................................................. 9-7

10 IP Performance Optimization Configuration Commands ............................. 10-1
   IP Performance Optimization Configuration Commands .......................... 10-1
      display fib .................................................................................. 10-1
      display fib ip-address ................................................................. 10-3
      display icmp statistics ................................................................. 10-4
      display ip socket ....................................................................... 10-5
      display ip statistics ................................................................... 10-8
      display tcp statistics ................................................................. 10-10
      display tcp status ..................................................................... 10-12
      display udp statistics ................................................................. 10-13
      ip forward-broadcast (interface view) ............................................ 10-14
      ip forward-broadcast (system view) ............................................. 10-15
      ip redirects enable ..................................................................... 10-15
      ip ttl-expire enable ..................................................................... 10-16
      ip unreachable enable ............................................................... 10-16
      reset ip statistics ..................................................................... 10-17
      reset tcp statistics .................................................................... 10-17
      reset udp statistics .................................................................... 10-18
      tcp timer fin-timeout .................................................................. 10-18
      tcp timer syn-timeout ................................................................. 10-19
      tcp window ............................................................................... 10-20
11 UDP Helper Configuration Commands

UDP Helper Configuration Commands

- display udp-helper server
- reset udp-helper packet
- udp-helper enable
- udp-helper port
- udp-helper server

12 IPv6 Basics Configuration Commands

IPv6 Basics Configuration Commands

- display dns ipv6 dynamic-host
- display dns ipv6 server
- display ipv6 fib
- display ipv6 host
- display ipv6 interface
- display ipv6 neighbors
- display ipv6 neighbors count
- display ipv6 pathmtu
- display ipv6 socket
- display ipv6 statistics
- display tcp ipv6 statistics
- display tcp ipv6 status
- display udp ipv6 statistics
- dns server ipv6
- ipv6
- ipv6 address
- ipv6 address auto link-local
- ipv6 address eui-64
- ipv6 address link-local
- ipv6 hoplimit-expires enable
- ipv6 host
- ipv6 icmp-error
- ipv6 icmpv6 multicast-echo-reply enable
- ipv6 nd autoconfig managed-address-flag
- ipv6 nd autoconfig other-flag
- ipv6 nd dad attempts
- ipv6 nd hop-limit
- ipv6 nd ns retrans-timer
- ipv6 nd nud reachable-time
- ipv6 nd ra halt
- ipv6 nd ra interval
- ipv6 nd ra prefix
- ipv6 nd ra router-lifetime
- ipv6 neighbor
- ipv6 neighbors max-learning-num
- ipv6 pathmtu
- ipv6 pathmtu age
- reset dns ipv6 dynamic-host
- reset ipv6 neighbors
reset ipv6 pathmtu ........................................................................................................ 12-40
reset ipv6 statistics ...................................................................................................... 12-41
reset tcp ipv6 statistics ............................................................................................... 12-41
reset udp ipv6 statistics ............................................................................................... 12-42
tcp ipv6 timer fin-timeout .......................................................................................... 12-42
tcp ipv6 timer syn-timeout ......................................................................................... 12-43
tcp ipv6 window .......................................................................................................... 12-43

13 sFlow Configuration Commands .............................................................................. 13-1
sFlow Configuration Commands .................................................................................. 13-1
display sflow ............................................................................................................... 13-1
sflow agent ip ............................................................................................................... 13-2
sflow collector ip ......................................................................................................... 13-3
sflow enable ................................................................................................................ 13-3
sflow interval ............................................................................................................. 13-4
sflow sampling-mode ................................................................................................. 13-5
sflow sampling-rate ................................................................................................. 13-6
IP Addressing Configuration Commands

display ip interface

Syntax

display ip interface [ interface-type interface-number ]

View

Any view

Default Level

1: Monitor level

Parameters

interface-type interface-number: Specifies an interface by its type and number.

Description

Use the display ip interface command to display information about a specified or all Layer 3 interfaces.

Examples

# Display information about interface VLAN-interface 1.
<Sysname> display ip interface vlan-interface 1
Vlan-interface1 current state : DOWN
Line protocol current state : DOWN
Internet Address is 1.1.1.1/8 Primary
Broadcast address : 1.255.255.255
The Maximum Transmit Unit : 1500 bytes
input packets : 0, bytes : 0, multicasts : 0
output packets : 0, bytes : 0, multicasts : 0
ARP packet input number: 0
Request packet: 0
Reply packet: 0
Unknown packet: 0
TTL invalid packet number: 0
ICMP packet input number: 0
Echo reply: 0
Unreachable: 0
Source quench: 0
Routing redirect: 0
Echo request: 0
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| current state                 | Current physical state of the interface, which can be  
|                               | • Administrative DOWN: Indicates that the interface is administratively down; that is, the interface is shut down with the **shutdown** command.  
|                               | • DOWN: Indicates that the interface is administratively up but its physical state is down, which may be caused by a connection or link failure.  
|                               | • UP: Indicates that both the administrative and physical states of the interface are up.  |
| Line protocol current state   | Current state of the link layer protocol, which can be  
|                               | • DOWN: Indicates that the protocol state of the interface is down, which is usually because that no IP address is assigned to the interface.  
|                               | • UP: Indicates that the protocol state of the interface is up.  |
| Internet Address              | IP address of an interface followed by:  
|                               | • Primary: Identifies a primary IP address, or  
|                               | • Sub: Identifies a secondary IP address.  |
| Broadcast address             | Broadcast address of the subnet attached to an interface  |
| The Maximum Transmit Unit     | Maximum transmission units on the interface, in bytes  |
| input packets, bytes, multicasts | Unicast packets, bytes, and multicast packets received on an interface (the statistics start at the device startup)  |
| output packets, bytes, multicasts |  |
| ARP packet input number:      | Total number of ARP packets received on the interface (the statistics start at the device startup), including  
| Request packet:               | • ARP request packets  
| Reply packet:                 | • ARP reply packets  
<p>| Unknown packet:               | • Unknown packets  |
| TTL invalid packet number     | Number of TTL-invalid packets received on the interface (the statistics start at the device startup) |</p>
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICMP packet input number:</td>
<td></td>
</tr>
<tr>
<td>Echo reply:</td>
<td></td>
</tr>
<tr>
<td>Unreachable:</td>
<td></td>
</tr>
<tr>
<td>Source quench:</td>
<td></td>
</tr>
<tr>
<td>Routing redirect:</td>
<td></td>
</tr>
<tr>
<td>Echo request:</td>
<td></td>
</tr>
<tr>
<td>Router advert:</td>
<td></td>
</tr>
<tr>
<td>Router solicit:</td>
<td></td>
</tr>
<tr>
<td>Time exceed:</td>
<td></td>
</tr>
<tr>
<td>IP header bad:</td>
<td></td>
</tr>
<tr>
<td>Timestamp request:</td>
<td></td>
</tr>
<tr>
<td>Timestamp reply:</td>
<td></td>
</tr>
<tr>
<td>Information request:</td>
<td></td>
</tr>
<tr>
<td>Information reply:</td>
<td></td>
</tr>
<tr>
<td>Netmask request:</td>
<td></td>
</tr>
<tr>
<td>Netmask reply:</td>
<td></td>
</tr>
<tr>
<td>Unknown type:</td>
<td></td>
</tr>
</tbody>
</table>

Total number of ICMP packets received on the interface (the statistics start at the device startup), including the following packets:

- Echo reply packet
- Unreachable packets
- Source quench packets
- Routing redirect packets
- Echo request packets
- Router advertisement packets
- Router solicitation packets
- Time exceeded packets
- IP header bad packets
- Timestamp request packets
- Timestamp reply packets
- Information request packets
- Information reply packets
- Netmask request packets
- Netmask reply packets
- Unknown type packets

display ip interface brief

Syntax

```
display ip interface brief [interface-type [interface-number]]
```

View

Any view

Default Level

1: Monitor level

Parameters

- **interface-type**: Interface type.
- **interface-number**: Interface number.

Description

Use the `display ip interface brief` command to display brief information about a specified or all layer 3 interfaces.

Without the interface type and interface number specified, the information about all layer 3 interfaces is displayed; with only the interface type specified, the information about all layer 3 interfaces of the specified type is displayed; with both the interface type and interface number specified, only the information about the specified interface is displayed.

Related commands: `display ip interface`.

Examples

```
Display brief information about VLAN interfaces.
```
<Sysname> display ip interface brief vlan-interface
*down: administratively down
(s): spoofing

<table>
<thead>
<tr>
<th>Interface</th>
<th>Physical</th>
<th>Protocol</th>
<th>IP Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlan-interface1</td>
<td>up</td>
<td>up</td>
<td>6.6.6.6</td>
<td>Vlan-inte...</td>
</tr>
<tr>
<td>Vlan-interface2</td>
<td>up</td>
<td>up</td>
<td>7.7.7.7</td>
<td>Vlan-inte...</td>
</tr>
</tbody>
</table>

Table 1-2 display ip interface brief command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*down: administratively down</td>
<td>The interface is administratively shut down with the <code>shutdown</code> command.</td>
</tr>
<tr>
<td>(s): spoofing</td>
<td>Spoofing attribute of the interface. It indicates that an interface whose</td>
</tr>
<tr>
<td></td>
<td>network layer protocol is displayed up may have no link present or the link</td>
</tr>
<tr>
<td></td>
<td>is set up only on demand.</td>
</tr>
<tr>
<td>Interface</td>
<td>Interface name</td>
</tr>
<tr>
<td>Physical</td>
<td>Physical state of the interface, which can be</td>
</tr>
<tr>
<td></td>
<td>*down: Indicates that the interface is administratively down; that is, the</td>
</tr>
<tr>
<td></td>
<td>interface is shut down with the <code>shutdown</code> command.</td>
</tr>
<tr>
<td></td>
<td>down: Indicates that the interface is administratively up but its physical</td>
</tr>
<tr>
<td></td>
<td>state is down, which may be caused by a connection or link failure.</td>
</tr>
<tr>
<td></td>
<td>up: Indicates that both the administrative and physical states of the</td>
</tr>
<tr>
<td></td>
<td>interface are up.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Link layer protocol state of the interface, which can be</td>
</tr>
<tr>
<td></td>
<td>down: Indicates that the protocol state of the interface is down, which</td>
</tr>
<tr>
<td></td>
<td>is usually because that no IP address is assigned to the interface.</td>
</tr>
<tr>
<td></td>
<td>up: Indicates that the protocol state of the interface is up.</td>
</tr>
<tr>
<td>IP Address</td>
<td>IP address of the interface (If no IP address is configured, “unassigned” is</td>
</tr>
<tr>
<td></td>
<td>displayed.)</td>
</tr>
<tr>
<td>Description</td>
<td>Interface description information, for which at most 12 characters can be</td>
</tr>
<tr>
<td></td>
<td>displayed. If there are more that 12 characters, only the first nine</td>
</tr>
<tr>
<td></td>
<td>characters are displayed.</td>
</tr>
</tbody>
</table>

ip address

Syntax

```
ip address ip-address { mask | mask-length } [sub]
undo ip address [ip-address { mask | mask-length } [sub]]
```

View

Interface view

Default Level

2: System level

Parameters

- ip-address: IP address of interface, in dotted decimal notation.
- mask: Subnet mask in dotted decimal notation.
**Description**

Use the `ip address` command to assign an IP address and mask to the interface.

Use the `undo ip address` command to remove all IP addresses from the interface.

Use the `undo ip address ip-address { mask | mask-length }` command to remove the primary IP address.

Use the `undo ip address ip-address { mask | mask-length } sub` command to remove a secondary IP address.

By default, no IP address is assigned to any interface.

When assigning IP addresses to an interface, consider the following:

- You can assign only one primary IP address to an interface.
- The primary and secondary IP addresses can be located in the same network segment.
- Before removing the primary IP address, remove all secondary IP addresses.
- You cannot assign a secondary IP address to the interface that is configured to borrow an IP address through IP unnumbered or obtain one through BOOTP, or DHCP.

Related commands: `display ip interface`.

**Examples**

```
Assign VLAN-interface 1 a primary IP address 129.12.0.1 and a secondary IP address 202.38.160.1, with subnet masks being 255.255.255.0.

<Sysname> system-view
<Sysname> interface vlan-interface 1
<Sysname-Vlan-interface1> ip address 129.12.0.1 255.255.255.0
<Sysname-Vlan-interface1> ip address 202.38.160.1 255.255.255.0 sub
```
ARP Configuration Commands

arp check enable

Syntax

    arp check enable
    undo arp check enable

View

    System view

Default Level

    2: System level

Parameters

    None

Description

    Use the `arp check enable` command to enable ARP entry check. With this function enabled, the device cannot learn any ARP entry with a multicast MAC address. Configuring such a static ARP entry is not allowed either; otherwise, the system displays error messages.

    Use the `undo arp check enable` command to disable the function. After the ARP entry check is disabled, the device can learn the ARP entry with a multicast MAC address, and you can also configure such a static ARP entry on the device.

    By default, ARP entry check is enabled.

Examples

    # Enable ARP entry check.
    <Sysname> system-view
    [Sysname] arp check enable

arp max-learning-num

Syntax

    arp max-learning-num number
    undo arp max-learning-num

View

    Ethernet interface view, VLAN interface view, Layer-2 aggregate interface view
Default Level

2: System level

Parameters

number: Maximum number of dynamic ARP entries that a interface can learn. The value is in the range 0 to 256.

Description

Use the `arp max-learning-num` command to configure the maximum number of dynamic ARP entries that a interface can learn.

Use the `undo arp max-learning-num` command to restore the default.

By default, the maximum number of dynamic ARP entries that a interface can learn is 256.

Examples

# Specify VLAN-interface 40 to learn up to 200 dynamic ARP entries.

```plaintext
<Sysname> system-view
[Sysname] interface vlan-interface 40
[Sysname-Vlan-interface40] arp max-learning-num 200
```

arp static

Syntax

`arp static  ip-address mac-address [ vlan-id interface-type interface-number ]`

`undo arp ip-address`

View

System view

Default Level

2: System level

Parameters

`ip-address`: IP address in an ARP entry.

`mac-address`: MAC address in an ARP entry, in the format H-H-H.

`vlan-id`: ID of a VLAN to which a static ARP entry belongs to, in the range 1 to 4094.

`interface-type interface-number`: Interface type and interface number.

Description

Use the `arp static` command to configure a static ARP entry in the ARP mapping table.

Use the `undo arp` command to remove an ARP entry.

Note that:

- A static ARP entry is effective when the device works normally. However, when the VLAN or VLAN interface to which an ARP entry corresponds is deleted, the entry, if permanent, will be deleted, and if non-permanent and resolved, will become unresolved.
The vlan-id argument is used to specify the corresponding VLAN of an ARP entry and must be the ID of an existing VLAN. In addition, the Ethernet interface following the argument must belong to that VLAN. The VLAN interface of the VLAN must have been created.

Related commands: **reset arp, display arp**.

**Examples**

```
Configure a static ARP entry, with the IP address being 202.38.10.2, the MAC address being 000f-e201-0000, and the outbound interface being GigabitEthernet 1/0/1 of VLAN 10.
<Sysname> system-view
[Sysname] arp static 202.38.10.2 000f-e201-0000 10 gigabitethernet 1/0/1
```

**arp timer aging**

**Syntax**

```
arp timer aging aging-time
undo arp timer aging
```

**View**

System view

**Default Level**

2: System level

**Parameters**

`aging-time`: Aging time for dynamic ARP entries in minutes, in the range 1 to 1,440.

**Description**

Use the **arp timer aging** command to set aging time for dynamic ARP entries.

Use the **undo arp timer aging** command to restore the default.

By default, the aging time for dynamic ARP entries is 20 minutes.

Related commands: **display arp timer aging**.

**Examples**

```
Set aging time for dynamic ARP entries to 10 minutes.
<Sysname> system-view
[Sysname] arp timer aging 10
```

**display arp**

**Syntax**

```
display arp [[all | dynamic | static] [slot slot-number] | vlan vlan-id | interface interface-type interface-number] [[| { begin | exclude | include } regular-expression] | count]
```

**View**

Any view
Default Level

1: Monitor level

Parameters

**all:** Displays all ARP entries.

**dynamic:** Displays dynamic ARP entries.

**static:** Displays static ARP entries.

**slot slot-number:** Displays the ARP entries for the specified device. If the device is in an IRF, the `slot-number` argument represents the member ID of the device; if the device is not in any IRF, the `slot-number` argument represents the device ID.

**vlan vlan-id:** Displays the ARP entries of the specified VLAN. The VLAN ID ranges from 1 to 4,094.

**interface interface-type interface-number:** Displays the ARP entries of the interface specified by the `interface-type interface-number` argument.

`|:` Uses a regular expression to specify the ARP entries to be displayed. For detailed information about regular expressions, refer to *Basic System Configuration* in the *System Volume*.

**begin:** Displays ARP entries from the first one containing the specified string.

**exclude:** Displays the ARP entries that do not contain the specified string.

**include:** Displays the ARP entries containing the specified string.

**regular-expression:** A case-sensitive string for matching, consisting of 1 to 256 characters.

**count:** Displays the number of ARP entries.

Description

Use the `display arp` command to display ARP entries in the ARP mapping table.

If no parameter is specified, all ARP entries are displayed.

Related commands: *arp static, reset arp*.

Examples

```
Display the detailed information of all ARP entries.
<Sysname> display arp all
```

<table>
<thead>
<tr>
<th>Type: S-Static</th>
<th>D-Dynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>MAC Address</td>
</tr>
<tr>
<td>192.168.0.18</td>
<td>000f-3d80-2b38</td>
</tr>
<tr>
<td>192.168.0.57</td>
<td>00e0-fc00-000b</td>
</tr>
<tr>
<td>192.168.0.56</td>
<td>000f-cb00-5601</td>
</tr>
<tr>
<td>192.168.0.6</td>
<td>0015-e943-712f</td>
</tr>
</tbody>
</table>

Table 2-1 `display arp` command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>IP address in an ARP entry</td>
</tr>
<tr>
<td>MAC Address</td>
<td>MAC address in an ARP entry</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>VLAN ID contained a static ARP entry</td>
</tr>
<tr>
<td>Interface</td>
<td>Outbound interface in an ARP entry</td>
</tr>
</tbody>
</table>
### Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aging</td>
<td>Aging time for a dynamic ARP entry in minutes (&quot;N/A&quot; means unknown aging time or no aging time)</td>
</tr>
<tr>
<td>Type</td>
<td>ARP entry type: D for dynamic, S for static</td>
</tr>
<tr>
<td>Vpn-instance Name</td>
<td>Name of VPN instance. [No Vrf] means no VPN instance is configured for the corresponding ARP.</td>
</tr>
</tbody>
</table>

# Display the number of all ARP entries.

```
<Sysname> display arp all count
Total entry(ies): 4
```

## display arp ip-address

**Syntax**

```
display arp ip-address [slot slot-number] [| { begin | exclude | include } regular-expression]
```

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

- **ip-address**: Displays the ARP entry for the specified IP address.
- **slot slot-number**: Displays the ARP entry for the specified device. If the device is in an IRF, the `slot-number` argument represents the member ID of the device; if the device is not in any IRF, the `slot-number` argument represents the device ID.
- \[\]: Uses a regular expression to specify the ARP entries to be displayed. For detailed information about regular expressions, refer to *Basic System Configuration* in the *System Volume*.
- **begin**: Displays the ARP entries from the first one containing the specified string.
- **exclude**: Displays the ARP entries that do not contain the specified string.
- **include**: Displays the ARP entries that contain the specified string.
- **regular-expression**: A case-sensitive string for matching, consisting of 1 to 256 characters.

**Description**

Use the `display arp ip-address` command to display the ARP entry for a specified IP address.

Related commands: `arp static`, `reset arp`.

**Examples**

# Display the corresponding ARP entry for the IP address 20.1.1.1.

```
<Sysname> display arp 20.1.1.1
Type: S-Static D-Dynamic
IP Address MAC Address VLAN ID Interface Aging Type
20.1.1.1 00e0-fc00-0001 N/A N/A N/A S
```
display arp timer aging

Syntax

    display arp timer aging

View

    Any view

Default Level

    2: System level

Parameters

    None

Description

    Use the **display arp timer aging** command to display the aging time for dynamic ARP entries.

    Related commands: **arp timer aging**.

Examples

    # Display the aging time for dynamic ARP entries.
    <Sysname> display arp timer aging
    Current ARP aging time is 10 minute(s)

reset arp

Syntax

    reset arp { all | dynamic | slot slot-number | static | interface interface-type interface-number }

View

    User view

Default Level

    2: System level

Parameters

    **all**: Clears all ARP entries except authorized ARP entries.

    **dynamic**: Clears all dynamic ARP entries.

    **static**: Clears all static ARP entries.

    **slot slot-number**: Clears the ARP entries for the specified device. If the device is in an IRF, the **slot-number** argument represents the member ID of the device; if the device is not in any IRF, the **slot-number** argument represents the device ID.

    **interface interface-type interface-number**: Clears the ARP entries for the interface specified by the argument **interface-type interface-number**.
Description

Use the `reset arp` command to clear ARP entries except authorized ARP entries from the ARP mapping table.

With `interface interface-type interface-number` or `slot slot-number` specified, the command clears only dynamic ARP entries of the interface or the specified device in the IRF.

Related commands: `arp static`, `display arp`.

Examples

```
Clear all static ARP entries.
<Sysname> reset arp static
```

**Gratuitous ARP Configuration Commands**

**gratuitous-arp-sending enable**

**Syntax**

```
gratuitous-arp-sending enable
undo gratuitous-arp-sending enable
```

**View**

System view

**Default Level**

2: System level

**Parameters**

None

**Description**

Use the `gratuitous-arp-sending enable` command to enable a device to send gratuitous ARP packets when receiving ARP requests from another network segment.

Use the `undo gratuitous-arp-sending enable` command to restore the default.

By default, a device cannot send gratuitous ARP packets when receiving ARP requests from another network segment.

**Examples**

```
Disable a device from sending gratuitous ARP packets.
<Sysname> system-view
[Sysname] undo gratuitous-arp-sending enable
```

**gratuitous-arp-learning enable**

**Syntax**

```
gratuitous-arp-learning enable
undo gratuitous-arp-learning enable
```
View

System view

Default Level

2: System level

Parameters

None

Description

Use the **gratuitous-arp-learning enable** command to enable the gratuitous ARP packet learning function.

Use the **undo gratuitous-arp-learning enable** command to disable the function.

By default, the function is enabled.

With this function enabled, a device receiving a gratuitous ARP packet can add the source IP and MAC addresses carried in the packet to its own dynamic ARP table if it finds no ARP entry in the cache corresponding to the source IP address of the ARP packet exists; if the corresponding ARP entry exists in the cache, the device updates the ARP entry regardless of whether this function is enabled.

Examples

```
Enable the gratuitous ARP packet learning function.

<Sysname> system-view

<Sysname> gratuitous-arp-learning enable
```
Proxy ARP Configuration Commands

display local-proxy-arp

Syntax

display local-proxy-arp [ interface vlan-interface vlan-id ]

View

Any view

Default Level

2: System level

Parameters

interface vlan-interface vlan-id: Displays the local proxy ARP status of the specified VLAN interface.

Description

Use the display local-proxy-arp command to display the status of the local proxy ARP.

Related commands: local-proxy-arp enable.

Examples

# Display the status of the local proxy ARP on VLAN-interface 2.
<Sysname> display local-proxy-arp interface vlan-interface 2
Interface Vlan-interface2
Local Proxy ARP status: enabled

display proxy-arp

Syntax

display proxy-arp [ interface vlan-interface vlan-id ]

View

Any view

Default Level

2: System level

Parameters

interface vlan-interface vlan-id: Displays the proxy ARP status of the VLAN interface specified by the argument vlan-id.
Description

Use the `display proxy-arp` command to display the proxy ARP status.
If an interface is specified, proxy ARP status of the specified interface is displayed; if no interface is specified, proxy ARP status of all interfaces is displayed.
Related commands: `proxy-arp enable`.

Examples

```
Display the proxy ARP status on VLAN-interface 1.
<Sysname> display proxy-arp interface vlan-interface 1
Proxy ARP status: disabled
```

local-proxy-arp enable

Syntax

```
local-proxy-arp enable
undo local-proxy-arp enable
```

View

VLAN interface view

Default Level

2: System level

Parameters

None

Description

Use the `local-proxy-arp enable` command to enable local proxy ARP.
Use the `undo local-proxy-arp enable` command to disable local proxy ARP.
By default, local proxy ARP is disabled.
Related commands: `display local-proxy-arp`.

Examples

```
Enable local proxy ARP on VLAN-interface 2.
<Sysname> system-view
<Sysname> interface vlan-interface 2
<Sysname-Vlan-interface2> local-proxy-arp enable
```

proxy-arp enable

Syntax

```
proxy-arp enable
undo proxy-arp enable
```
View

VLAN interface view

Default Level

2: System level

Parameters

None

Description

Use the `proxy-arp enable` command to enable proxy ARP.

Use the `undo proxy-arp enable` command to disable proxy ARP.

By default, proxy ARP is disabled.

Related commands: `display proxy-arp`.

Examples

# Enable proxy ARP on VLAN-interface 2.

```bash
<Sysname> system-view
[Sysname] interface vlan-interface 2
[Sysname-Vlan-interface2] proxy-arp enable
```
ARP Attack Defense Configuration Commands

ARP Source Suppression Configuration Commands

arp source-suppression enable

Syntax

    arp source-suppression enable
    undo arp source-suppression enable

View

    System view

Default Level

    2: System level

Parameters

    None

Description

    Use the `arp source-suppression enable` command to enable the ARP source suppression function.
    Use the `undo arp source-suppression enable` command to disable the function.
    By default, the ARP source suppression function is disabled.
    Related commands: `display arp source-suppression`.

Examples

    # Enable the ARP source suppression function.
    <Sysname> system-view
    [Sysname] arp source-suppression enable

arp source-suppression limit

Syntax

    arp source-suppression limit limit-value
    undo arp source-suppression limit

View

    System view

Default Level

    2: System level
Parameters

*limit-value*: Specifies the maximum number of packets with the same source IP address but unresolvable destination IP addresses that the device can receive in five seconds. It ranges from 2 to 1024.

Description

Use the **arp source-suppression limit** command to set the maximum number of packets with the same source IP address but unresolvable destination IP addresses that the device can receive in five seconds.

Use the **undo arp source-suppression limit** command to restore the default value, which is 10.

With this feature configured, whenever the number of packets with unresolvable destination IP addresses from a host within five seconds exceeds the specified threshold, the device suppress the sending host from triggering any ARP requests within the following five seconds.

Related commands: **display arp source-suppression**.

Examples

```bash
Set the maximum number of packets with the same source address but unresolvable destination IP addresses that the device can receive in five seconds to 100.
<Sysname> system-view
[Sysname] arp source-suppression limit 100
```

**display arp source-suppression**

Syntax

```bash
display arp source-suppression
```

View

Any view

Default Level

2: System level

Parameters

None

Description

Use the **display arp source-suppression** command to display information about the current ARP source suppression configuration.

Examples

```bash
Display information about the current ARP source suppression configuration.
<Sysname> display arp source-suppression
ARP source suppression is enabled
Current suppression limit: 100
Current cache length: 16
```
Table 4-1 display arp source-suppression command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP source suppression is enabled</td>
<td>The ARP source suppression function is enabled</td>
</tr>
<tr>
<td>Current suppression limit</td>
<td>Maximum number of packets with the same source IP address but unresolvable IP addresses that the device can receive in five seconds</td>
</tr>
<tr>
<td>Current cache length</td>
<td>Size of cache used to record source suppression information</td>
</tr>
</tbody>
</table>

**ARP Defense Against IP Packet Attack Configuration Commands**

**arp resolving-route enable**

**Syntax**

```plaintext
arp resolving-route enable
undo arp resolving-route enable
```

**View**

System view

**Default Level**

2: System level

**Parameters**

None

**Description**

Use the `arp resolving-route enable` command to enable ARP defense against IP packet attacks. Use the `undo arp resolving-route enable` command to disable the function. By default, the function of ARP defense against IP packet attacks is enabled.

**Examples**

```
Disable ARP defense against IP packet attacks.
<Sysname> system-view
<Sysname> undo arp resolving-route enable
```

**ARP Active Acknowledgement Configuration Commands**

**arp anti-attack active-ack enable**

**Syntax**

```plaintext
arp anti-attack active-ack enable
undo arp anti-attack active-ack enable
```
View

System view

Default Level

2: System level

Parameters

None

Description

Use the **arp anti-attack active-ack enable** command to enable the ARP active acknowledgement function.

Use the **undo arp anti-attack active-ack enable** command to restore the default.

By default, the ARP active acknowledgement function is disabled.

Typically, this feature is configured on gateway devices to identify invalid ARP packets.

With this feature enabled, the gateway, upon receiving an ARP packet with a different source MAC address from that in the corresponding ARP entry, checks whether the ARP entry has been updated within the last minute:

- If yes, the ARP entry is not updated;
- If not, the gateway sends a unicast request to the source MAC address of the ARP entry.

Then,

- If a response is received within five seconds, the ARP packet is ignored;
- If no response is received, the gateway sends a unicast request to the source MAC address of the ARP packet.

Then,

- If a response is received within five seconds, the gateway updates the ARP entry;
- If not, the ARP entry is not updated.

Examples

# Enable the ARP active acknowledgement function.

```bash
<Sysname> system-view
<Sysname> [Sysname] arp anti-attack active-ack enable
```

**Source MAC Address Based ARP Attack Detection Configuration Commands**

**arp anti-attack source-mac**

**Syntax**

```
arp anti-attack source-mac { filter | monitor }
undo arp anti-attack source-mac [filter | monitor]
```

**View**

System view
Default Level

2: System level

Parameters

filter: Specifies the filter mode.

monitor: Specifies the monitor mode.

Description

Use the arp anti-attack source-mac command to enable source MAC address based ARP attack detection and specify the detection mode.

Use the undo arp anti-attack source-mac command to restore the default.

By default, source MAC address based ARP attack detection is disabled.

After you enable this feature, the device checks the source MAC address of ARP packets received from the VLAN. If the number of ARP packets received from a source MAC address within five seconds exceeds the specified threshold:

- In filter detection mode, the device displays an alarm and filters out the ARP packets from the MAC address.
- In monitor detection mode, the device only displays an alarm.

Note that: If no detection mode is specified in the undo arp anti-attack source-mac command, both detection modes are disabled.

Examples

# Enable filter-mode source MAC address based ARP attack detection
<Sysname> system-view
[Sysname] arp anti-attack source-mac filter

arp anti-attack source-mac aging-time

Syntax

arp anti-attack source-mac aging-time time

undo arp anti-attack source-mac aging-time

View

System view

Default Level

2: System level

Parameters

time: Aging timer for protected MAC addresses, in the range of 60 to 6000 seconds.

Description

Use the arp anti-attack source-mac aging-time command to configure the aging timer for protected MAC addresses.

Use the undo arp anti-attack source-mac aging-time command to restore the default.
By default, the aging timer for protected MAC addresses is 300 seconds (five minutes).

**Examples**

# Configure the aging timer for protected MAC addresses as 60 seconds.

```bash
<Sysname> system-view
[Sysname] arp anti-attack source-mac aging-time 60
```

**arp anti-attack source-mac exclude-mac**

**Syntax**

```
arp anti-attack source-mac exclude-mac mac-address&<1-n>
undo arp anti-attack source-mac exclude-mac [mac-address&<1-n>]
```

**View**

System view

**Default Level**

2: System level

**Parameters**

`mac-address&<1-n>`: MAC address list. The `mac-address` argument indicates a protected MAC address in the format H-H-H. &<1-n> indicates the number of protected MAC addresses that you can configure. The maximum of the n argument is 10.

**Description**

Use the `arp anti-attack source-mac exclude-mac` command to configure protected MAC addresses which will be excluded from ARP packet detection.

Use the `undo arp anti-attack source-mac exclude-mac` command to remove the configured protected MAC addresses.

By default, no protected MAC address is configured.

Note that: If no MAC address is specified in the `undo arp anti-attack source-mac exclude-mac` command, all the configured protected MAC addresses are removed.

**Examples**

# Configure a protected MAC address.

```bash
<Sysname> system-view
[Sysname] arp anti-attack source-mac exclude-mac 2-2-2
```

**arp anti-attack source-mac threshold**

**Syntax**

```
arp anti-attack source-mac threshold threshold-value
undo arp anti-attack source-mac threshold
```

**View**

System view
Default Level

2: System level

Parameters

threshold-value: Threshold for source MAC address based ARP attack detection, in the range 10 to 100.

Description

Use the arp anti-attack source-mac threshold command to configure the threshold for source MAC address based ARP attack detection. If the number of ARP packets sent from a MAC address within five seconds exceeds this threshold, the device considers this an attack.

Use the undo arp anti-attack source-mac threshold command to restore the default.

By default, the threshold for source MAC address based ARP attack detection is 50.

Examples

# Configure the threshold for source MAC address based ARP attack detection as 30.
<Sysname> system-view
[Sysname] arp anti-attack source-mac threshold 30

display arp anti-attack source-mac

Syntax

display arp anti-attack source-mac { slot slot-number | interface interface-type interface-number }

View

Any view

Default Level

1: Monitor level

Parameters

interface interface-type interface-number: Displays attacking MAC addresses detected on the interface.

slot slot-number: Displays attacking MAC addresses detected on the specified device. If the device is in an IRF, the slot-number argument represents the member ID of the device; if the device is not in any IRF, the slot-number argument represents the device ID.

Description

Use the display arp anti-attack source-mac command to display attacking MAC addresses detected by source MAC address based ARP attack detection.

On a device, if no interface is specified, the display arp anti-attack source-mac command displays attacking MAC addresses detected on all the interfaces.

Examples

# Display the attacking MAC addresses detected by source MAC address based ARP attack detection.
<Sysname> display arp anti-attack source-mac slot 1

<table>
<thead>
<tr>
<th>Source-MAC</th>
<th>VLAN-ID</th>
<th>Interface</th>
<th>Aging-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>23f3-1122-3344</td>
<td>4094</td>
<td>GE1/0/1</td>
<td>10</td>
</tr>
<tr>
<td>23f3-1122-3355</td>
<td>4094</td>
<td>GE1/0/2</td>
<td>30</td>
</tr>
<tr>
<td>23f3-1122-33ff</td>
<td>4094</td>
<td>GE1/0/3</td>
<td>25</td>
</tr>
<tr>
<td>23f3-1122-33ad</td>
<td>4094</td>
<td>GE1/0/4</td>
<td>30</td>
</tr>
<tr>
<td>23f3-1122-33ce</td>
<td>4094</td>
<td>GE1/0/5</td>
<td>2</td>
</tr>
</tbody>
</table>

**ARP Packet Source MAC Address Consistency Check Configuration Commands**

**arp anti-attack valid-ack enable**

**Syntax**

```
arp anti-attack valid-check enable
undo arp anti-attack valid-check enable
```

**View**

- System view

**Default Level**

- 2: System level

**Parameters**

- None

**Description**

Use the `arp anti-attack valid-check enable` command to enable ARP packet source MAC address consistency check on the gateway. After you execute this command, the gateway device can filter out ARP packets with the source MAC address in the Ethernet header different from the sender MAC address in the ARP message.

Use the `undo arp anti-attack valid-check enable` command to disable ARP packet source MAC address consistency check.

By default, ARP packet source MAC address consistency check is disabled.

**Examples**

```
Enable ARP packet source MAC address consistency check.
<Sysname> system-view
[Sysname] arp anti-attack valid-check enable
```

**ARP Packet Rate Limit Configuration Commands**

**arp rate-limit**

**Syntax**

```
arp rate-limit { disable | rate pps drop }
```
undo arp rate-limit

View

Layer 2 Ethernet port view

Default Level

2: System level

Parameters

disable: Disables ARP packet rate limit.
rate pps: ARP packet rate in pps, in the range 50 to 500.
drop: Discards the exceeded packets.

Description

Use the arp rate-limit command to configure or disable ARP packet rate limit. If a rate is specified, exceeded packets are discarded.

Use the undo arp rate-limit command to restore the default.

By default, ARP packet rate limit is enabled, and the ARP packet rate limit is 100 pps.

Examples

# Specify the ARP packet rate on GigabitEthernet 1/0/1 as 60 pps, and exceeded packets are discarded.
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] arp rate-limit rate 60 drop

ARP Detection Configuration Commands

arp detection enable

Syntax

arp detection enable
undo arp detection enable

View

VLAN view

Default Level

2: System level

Parameters

None

Description

Use the arp detection enable command to enable ARP detection for the VLAN.

Use the undo arp detection enable command to disable ARP detection for the VLAN.
By default, ARP detection is disabled for a VLAN.

Examples

# Enable ARP detection for VLAN 1.
<Sysname> system-view
[Sysname] vlan 1
[Sysname-Vlan1] arp detection enable

arp detection mode

Syntax

arp detection mode { dhcp-snooping | dot1x | static-bind }
undo arp detection mode { dhcp-snooping | dot1x | static-bind }

View

System view

Default Level

2: System level

Parameters

dhcp-snooping: Implements ARP attack detection based on DHCP snooping entries. This mode is mainly used to prevent source address spoofing attacks.
dot1x: Implements ARP attack detection based on 802.1X security entries. This mode is mainly used to prevent source address spoofing attacks.
static-bind: Implements ARP attack detection based on static IP-to-MAC binding entries. This mode is mainly used to prevent gateway spoofing attacks.

Description

Use the arp detection mode command to specify an ARP attack detection mode.
Use the undo arp detection mode command to cancel the specified ARP detection mode.
By default, no ARP detection mode is specified, that is, all packets are considered to be invalid.
Note that, if you specify the three modes at the same time, the system uses static IP-to-MAC bindings first, then DHCP snooping entries, and then 802.1X security entries.

Examples

# Enable ARP detection based on both DHCP snooping entries and 802.1X security entries.
<Sysname> system-view
[Sysname] arp detection mode dhcp-snooping
[Sysname] arp detection mode dot1x

arp detection static-bind

Syntax

arp detection static-bind ip-address mac-address
undo arp detection static-bind [ ip-address ]

View
System view

Default Level
2: System level

Parameters

ip-address: IP address of the static binding.
mac-address: MAC address of the static binding, in the format of H-H-H.

Description

Use the arp detection static-bind command to configure a static IP-to-MAC binding.
Use the undo arp detection static-bind command to remove the configure static binding.
By default, no static IP-to-MAC binding is configured.
With ARP detection based on static IP-to-MAC bindings configured, the device, upon receiving an ARP packet from an ARP trusted/untrusted port, compares the source IP and MAC addresses of the ARP packet against the static IP-to-MAC bindings.
- If an entry with a matching IP address but different MAC address is found, the ARP packet is considered invalid and discarded.
- If an entry with both matching IP and MAC addresses is found, the ARP packet is considered valid and can pass the detection.
- If no match is found, the ARP packet is considered valid and can pass the detection.

Note that: If no IP address is specified in the undo arp detection static-bind command, all configured static IP-to-MAC bindings are removed.

Examples

# Configure a static IP-to-MAC binding.
<Sysname> system-view
[Sysname] arp detection static-bind 192.168.1.2 2-1-201

arp detection trust

Syntax

arp detection trust
undo arp detection trust

View
Layer 2 Ethernet port view

Default Level
2: System level
Parameters

None

Description

Use the **arp detection trust** command to configure the port as an ARP trusted port.

Use the **undo arp detection trust** command to configure the port as an ARP untrusted port.

By default, the port is an ARP untrusted port.

Examples

```plaintext
Configure GigabitEthernet 1/0/1 as an ARP trusted port.
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] arp detection trust
```

**arp detection validate**

**Syntax**

```plaintext
arp detection validate { dst-mac | ip | src-mac } *
undo arp detection validate [dst-mac | ip | src-mac] *
```

**View**

System view

**Default Level**

2: System level

**Parameters**

**dst-mac**: Checks the target MAC address of ARP responses. If the target MAC address is all-zero, all-one, or inconsistent with the destination MAC address in the Ethernet header, the packet is considered invalid and discarded.

**ip**: Checks the source and destination IP addresses of ARP packets. The all-zero, all-one or multicast IP addresses are considered invalid and the corresponding packets are discarded. With this keyword specified, the source and destination IP addresses of ARP replies, and the source IP address of ARP requests will be checked.

**src-mac**: Checks whether the source MAC address of an ARP packet is identical to that in its Ethernet header. If they are identical, the packet is considered valid; otherwise, the packet is discarded.

**Description**

Use the **arp detection validate** command to configure ARP detection based on specified objects. You can specify one or more objects in one command line.

Use the **undo arp detection validate** command to remove detected objects. If no keyword is specified, all the detected objects are removed.

By default, ARP detection based on specified objects is disabled.
Examples

# Enable the checking of the MAC addresses and IP addresses of ARP packets.
<Sysname> system-view
[Sysname] arp detection validate dst-mac src-mac ip

display arp detection

Syntax

display arp detection

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the **display arp detection** command to display the VLAN(s) enabled with ARP detection.

Related commands: **arp detection enable**.

Examples

# Display the VLANs enabled with ARP detection.
<Sysname> display arp detection
ARP detection is enabled in the following VLANs:
1, 2, 4-5

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP detection is enabled in the following VLANs</td>
<td>VLANs that are enabled with ARP detection</td>
</tr>
</tbody>
</table>

**Table 4-2 display arp detection command output description**

display arp detection statistics

Syntax

display arp detection statistics [ interface interface-type interface-number ]

View

Any view

Default Level

1: Monitor level
Parameters

interface interface-type interface-number: Displays the ARP detection statistics of a specified interface.

Description

Use the display arp detection statistics command to display statistics about ARP detection. This command only displays numbers of discarded packets. If no interface is specified, the statistics of all the interfaces will be displayed.

Examples

# Display the ARP detection statistics of all the interfaces.
<Sysname> display arp detection statistics
State: U-Untrusted  T-Trusted
ARP packets dropped by ARP inspect checking:
<table>
<thead>
<tr>
<th>Interface(State)</th>
<th>IP</th>
<th>Src-MAC</th>
<th>Dst-MAC</th>
<th>Inspect</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE1/0/1 (U)</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>78</td>
</tr>
<tr>
<td>GE1/0/2 (U)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GE1/0/3 (T)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GE1/0/4 (U)</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 4-3 display arp detection statistics command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface(State)</td>
<td>State T or U identifies a trusted or untrusted port.</td>
</tr>
<tr>
<td>IP</td>
<td>Number of ARP packets discarded due to invalid source and destination IP addresses</td>
</tr>
<tr>
<td>Src-MAC</td>
<td>Number of ARP packets discarded due to invalid source MAC address</td>
</tr>
<tr>
<td>Dst-MAC</td>
<td>Number of ARP packets discarded due to invalid destination MAC address</td>
</tr>
<tr>
<td>Inspect</td>
<td>Number of ARP packets that failed to pass ARP detection (based on DHCP snooping entries/802.1X security entries/static IP-to-MAC bindings)</td>
</tr>
</tbody>
</table>

reset arp detection statistics

Syntax

reset arp detection statistics [ interface interface-type interface-number ]

View

User view

Default Level

2: System level

Parameters

interface interface-type interface-number: Clears the ARP detection statistics of a specified interface.
Description

Use the **reset arp detection statistics** command to clear ARP detection statistics of a specified interface. If no interface is specified, the statistics of all the interfaces will be cleared.

Examples

# Clear the ARP detection statistics of all the interfaces.

```
<Sysname> reset arp detection statistics
```
5 DHCP Relay Agent Configuration Commands

Note
The DHCP relay agent configuration is supported only on VLAN interfaces.

DHCP Relay Agent Configuration Commands
dhcp relay address-check
Syntax
    dhcp relay address-check { disable | enable }
View
    Interface view
Default Level
    2: System level
Parameters
    disable: Disables IP address match check on the relay agent.
    enable: Enables IP address match check on the relay agent.
Description
    Use the dhcp relay address-check enable command to enable IP address match check on the relay agent.
    Use the dhcp relay address-check disable command to disable IP address match check on the relay agent.
    By default, the function is disabled.
    If a requesting client's IP and MAC addresses do not match any binding (both dynamic and static bindings) on the DHCP relay agent, the client cannot access external networks via the DHCP relay agent.
    Note that: The dhcp relay address-check enable command only checks IP and MAC addresses of clients.
Examples
    # Enable IP address match check on the DHCP relay agent.
    <Sysname> system-view
dhcp relay information circuit-id format-type

Syntax

dhcp relay information circuit-id format-type { ascii | hex }
undo dhcp relay information circuit-id format-type

View

Interface view

Default Level

2: System level

Parameters

ascii: Specifies the code type for the circuit ID sub-option as ascii.
hex: Specifies the code type for the circuit ID sub-option as hex.

Description

Use the dhcp relay information circuit-id format-type command to configure the code type for the non-user-defined circuit ID sub-option.

Use the undo dhcp relay information circuit-id format-type command to restore the default.

By default, the code type for the circuit ID sub-option depends on the specified padding format of Option 82. Each field has its own code type.

Note that:
This command applies to configuring the non-user-defined circuit ID sub-option only. After you configure the padding content for the circuit ID sub-option using the dhcp relay information circuit-id string command, ASCII is adopted as the code type.

Examples

# Configure the code type for the non-user-defined circuit ID sub-option as ascii.
<Sysname> system-view
<Sysname> interface vlan-interface 1
<Sysname-Vlan-interface1] dhcp relay information circuit-id format-type ascii

dhcp relay information circuit-id string

Syntax

dhcp relay information circuit-id string circuit-id
undo dhcp relay information circuit-id string

View

Interface view
Default Level

2: System level

Parameters

circuit-id: Padding content for the user-defined circuit ID sub-option, a case-sensitive string of 3 to 63 characters.

Description

Use the `dhcp relay information circuit-id string` command to configure the padding content for the user-defined circuit ID sub-option.

Use the `undo dhcp relay information circuit-id string` command to restore the default.

By default, the padding content for the circuit ID sub-option depends on the padding format of Option 82.

Note that:

After you configure the padding content for the circuit ID sub-option using this command, ASCII is adopted as the code type.

Related commands: `dhcp relay information format`.

Examples

```bash
Configure the padding content for the circuit ID sub-option as company001.
<Sysname> system-view
<Sysname> interface vlan-interface 1
<Sysname-Vlan-interface1> dhcp relay information circuit-id string company001
```

dhcp relay information enable

Syntax

dhcp relay information enable

undo dhcp relay information enable

View

Interface view

Default Level

2: System level

Parameters

None

Description

Use the `dhcp relay information enable` command to enable the relay agent to support Option 82.

Use the `undo dhcp relay information enable` command to disable Option 82 support.

By default, Option 82 support is disabled on DHCP relay agent.
Examples

# Enable Option 82 support on the relay agent.
<Sysname> system-view
<Sysname> interface vlan-interface 1
<Sysname-Vlan-interface1> dhcp relay information enable

**dhcp relay information format**

**Syntax**

```
dhcp relay information format { normal | verbose [node-identifier { mac | sysname | user-defined node-identifier }] }
```

**undo dhcp relay information format [ verbose node-identifier ]**

**View**

Interface view

**Default Level**

2: System level

**Parameters**

- **normal**: Specifies the normal padding format.
- **verbose**: Specifies the verbose padding format.
- **node-identifier { mac | sysname | user-defined node-identifier }**: Specifies access node identifier. By default, the node MAC address is used as the node identifier.
  - **mac**: indicates using MAC address as the node identifier.
  - **sysname**: indicates using the device name of a node as the node identifier.
  - **user-defined node-identifier**: indicates using a specified character string as the node identifier, in which `node-identifier` is a string with 1 to 50 characters.

**Description**

Use the `dhcp relay information format` command to specify a padding format for Option 82.
Use the `undo dhcp relay information format` command to restore the default padding format.
The Option 82 padding format defaults to **normal**.
Using the `undo dhcp relay information format` command without the keyword `verbose node-identifier` restores the default `normal` padding format, or with the keyword `verbose node-identifier` restores the `mac` mode of the `verbose` padding format.

- If configuring the handling strategy of the DHCP relay agent as `replace`, you need to configure a padding format of Option 82. If the handling strategy is `keep` or `drop`, you need not configure any padding format.
- If sub-option 1 (node identifier) of Option 82 is padded with the device name (sysname) of a node, the device name must contain no spaces. Otherwise, the DHCP relay agent will drop the message.

### Examples

```bash
Specify the verbose padding format for Option 82.
<Sysname> system-view
[Sysname] interface vlan-interface 1
[Sysname-Vlan-interface1] dhcp relay information enable
[Sysname-Vlan-interface1] dhcp relay information strategy replace
[Sysname-Vlan-interface1] dhcp relay information format verbose
```

**dhcp relay information remote-id format-type**

**Syntax**

```
dhcp relay information remote-id format-type { ascii | hex }
undo dhcp relay information remote-id format-type
```

**View**

Interface view

**Default Level**

2: System view

**Parameters**

- **ascii**: Specifies the code type for the remote ID sub-option as `ascii`.
- **hex**: Specifies the code type for the remote ID sub-option as `hex`.

**Description**

Use the `dhcp relay information remote-id format-type` command to configure the code type for the non-user-defined remote ID sub-option.

Use the `undo dhcp relay information remote-id format-type` command to restore the default.

By default, the code type for the remote ID sub-option is `HEX`.

Note that:
This command applies to configuring the non-user-defined remote ID sub-option only. After you configure the padding content for the remote ID sub-option using the `dhcp relay information remote-id string` command, ASCII is adopted as the code type.

**Examples**

```
Configure the code type for the non-user-defined remote ID sub-option as ascii.
<Sysname> system-view
[Sysname] interface vlan-interface 1
[Sysname-Vlan-interface1] dhcp relay information remote-id format-type ascii
```

dhcp relay information remote-id string

**Syntax**

```
dhcp relay information remote-id string { remote-id | sysname }
undo dhcp relay information remote-id string
```

**View**

Interface view

**Default Level**

2: System level

**Parameters**

- `remote-id`: Padding content for the user-defined remote ID sub-option, a case sensitive string of 1 to 63 characters.
- `sysname`: Specifies the device name as the padding content for the remote ID sub-option.

**Description**

Use the `dhcp relay information remote-id string` command to configure the padding content for the user-defined remote ID sub-option.

Use the `undo dhcp relay information remote-id string` command to restore the default.

By default, the padding content for the remote ID sub-option depends on the padding format of Option 82.

Note that: After you configure the padding content for the remote ID sub-option using this command, ASCII is adopted as the code type.

Related commands: `dhcp relay information format`.

---

**Note**

If you want to specify the character string `sysname` (a case-insensitive character string) as the padding content for the remote ID sub-option, you need to use quotation marks to make it take effect. For example, if you want to specify `Sysname` as the padding content for the remote ID sub-option, you need to enter the `dhcp relay information remote-id string "Sysname"` command.
Examples

# Configure the padding content for the remote ID sub-option as device001.
<Sysname> system-view
[Sysname] interface vlan-interface 1
[Sysname-Vlan-interface1] dhcp relay information remote-id string device001

dhcp relay information strategy

Syntax

dhcp relay information strategy { drop | keep | replace }
undo dhcp relay information strategy

View

Interface view

Default Level

2: System level

Parameters

- **drop**: Specifies to drop messages containing Option 82.
- **keep**: Specifies to forward messages containing Option 82 without any change.
- **replace**: Specifies to forward messages containing Option 82 after replacing the original Option 82 with the Option 82 padded in the specified padding format.

Description

Use the dhcp relay information strategy command to configure DHCP relay agent handling strategy for messages containing Option 82.

Use the undo dhcp relay information strategy command to restore the default handling strategy.

The handling strategy for messages containing Option 82 defaults to **replace**.

Examples

# Configure the DHCP relay agent handling strategy for messages containing Option 82 as keep.
<Sysname> system-view
[Sysname] interface vlan-interface 1
[Sysname-Vlan-interface1] dhcp relay information enable
[Sysname-Vlan-interface1] dhcp relay information strategy keep

dhcp relay release ip

Syntax

dhcp relay release ip client-ip

View

System view
Default Level
2: System level

Parameters

client-ip: DHCP client IP address.

Description
Use the dhcp relay release ip command to request the DHCP server to release a specified client IP address.

Examples

# Request the DHCP server to release the IP address 1.1.1.1.
<Sysname> system-view
<Sysname> dhcp relay release ip 1.1.1.1

dhcp relay security static

Syntax

dhcp relay security static ip-address mac-address [ interface interface-type interface-number ]
undo dhcp relay security { ip-address | all | dynamic | interface interface-type interface-number | static }

View
System view

Default Level
2: System level

Parameters

ip-address: Client IP address for creating a static binding.
mac-address: Client MAC address for creating a static binding, in the format H-H-H.
interface interface-type interface-number: Specifies a Layer 3 interface connecting to the DHCP client. interface-type interface-number specifies the interface type and interface number.
all: Specifies all client entries to be removed.
dynamic: Specifies dynamic client entries to be removed.
static: Specifies manual client entries to be removed.

Description
Use the dhcp relay security static command to configure a static client entry, that is, the binding between IP address, MAC address, and Layer 3 interface on the relay agent.
Use the undo dhcp relay security command to remove specified client entries from the relay agent.
No manual client entry is configured on the DHCP relay agent by default.
Note that:
When using the `dhcp relay security static` command to bind an interface to a static client entry, make sure that the interface is configured as a DHCP relay agent; otherwise, entry conflicts may occur.

The `undo dhcp relay security interface` command is used to remove all the dynamic client entries from the interface.

Related commands: `display dhcp relay security`.

**Examples**

```
Bind DHCP relay interface VLAN-interface 2 to IP address 10.10.1.1 and MAC address 0005-5d02-f2b3 of the client.
<Sysname> system-view
[Sysname] dhcp relay security static 10.10.1.1 0005-5d02-f2b3 interface vlan-interface 2
```

**dhcp relay security tracker**

**Syntax**

```
dhcp relay security tracker { interval | auto }
undo dhcp relay security tracker [interval]
```

**View**

System view

**Default Level**

2: System level

**Parameters**

- `interval`: Refreshing interval in seconds, in the range of 1 to 120.
- `auto`: Specifies the `auto` refreshing interval, which is the value of 60 seconds divided by the number of binding entries. Thus, the more entries are, the shorter interval is, but the shortest interval is no less than 500 ms.

**Description**

Use the `dhcp relay security tracker` command to set a refreshing interval at which the relay agent contacts the DHCP server for refreshing dynamic bindings.

Use the `undo dhcp relay security tracker` command to restore the default interval.

The default refreshing interval is `auto`, the value of 60 seconds divided by the number of binding entries.

**Examples**

```
Set the refreshing interval as 100 seconds.
<Sysname> system-view
[Sysname] dhcp relay security tracker 100
```
**dhcp relay server-detect**

**Syntax**

```
dhcp relay server-detect
undo dhcp relay server-detect
```

**View**

System view

**Default Level**

2: System level

**Parameters**

None

**Description**

Use the `dhcp relay server-detect` command to enable unauthorized DHCP server detection.

Use the `undo dhcp relay server-detect` command to disable unauthorized DHCP server detection.

By default, unauthorized DHCP server detection is disabled.

With this function enabled, upon receiving a DHCP request, the DHCP relay agent will record the IP addresses of all DHCP servers which ever offered IP addresses to the DHCP client and the receiving interface. Each server detected is recorded only once. The administrator can get this information from logs to check out unauthorized DHCP servers.

After the information of recorded DHCP servers is cleared, the relay agent will re-record server information following this mechanism.

**Examples**

```
Enable unauthorized DHCP server detection.
<Sysname> system-view
[Sysname] dhcp relay server-detect
```

**dhcp relay server-group**

**Syntax**

```
dhcp relay server-group group-id ip ip-address
undo dhcp relay server-group group-id [ip ip-address]
```

**View**

System view

**Default Level**

2: System level

**Parameters**

`group-id`: DHCP server group number, in the range of 0 to 19.
ip ip-address: DHCP server IP address.

**Description**

Use the **dhcp relay server-group** command to specify a DHCP server for a DHCP server group.

Use the **undo dhcp relay server-group** command to remove a DHCP server from a DHCP server group, if no ip ip-address is specified, all servers in the DHCP server group and the server group itself will be removed.

By default, no DHCP server is specified for a DHCP server group.

Note that:

- The IP address of any DHCP server and any interface’s IP address of the DHCP relay agent cannot be in the same network segment. Otherwise, the client may fail to obtain an IP address.

- If a server group has been correlated to multiple interfaces, you need to cancel these correlations before removing the server group.

Related commands: **display dhcp relay server-group**.

**Examples**

# Specify DHCP server 1.1.1.1 for DHCP server group 1 on the relay agent.

```
<Sysname> system-view
[Sysname] dhcp relay server-group 1 ip 1.1.1.1
```

**dhcp relay server-select**

**Syntax**

```
dhcp relay server-select group-id
undo dhcp relay server-select
```

**View**

Interface view

**Default Level**

2: System level

**Parameters**

- **group-id**: DHCP server group number to be correlated, in the range of 0 to 19.

**Description**

Use the **dhcp relay server-select** command to correlate specified interface(s) to a specified DHCP server group.

Use the **undo dhcp relay server-select** command to remove a configured correlation.

By default, no DHCP server group is correlated with an interface on the relay agent.

Note that:

- A DHCP server group can correlate with one or multiple DHCP relay agent interfaces.

- A relay agent interface can only correlate with one DHCP server group, and a newly configured correlation overwrites the previous one. If the server group in the new correlation does not exist, the new configuration will not work. The interface still maintains the previous correlation.
• The DHCP server group referenced in this command should have been configured by using the dhcp relay server-group command.

Related commands: dhcp relay server-group.

Examples

# Correlate VLAN-interface 1 to DHCP server group 1.
<Sysname> system-view
[Sysname] interface vlan-interface 1
[Sysname-Vlan-interface1] dhcp relay server-select 1

dhcp select relay

Syntax

   dhcp select relay

   undo dhcp select relay

View

   Interface view

Default Level

   2: System level

Parameters

   None

Description

   Use the dhcp select relay command to enable the relay agent on the current interface. Upon receiving requests from an enabled interface, the relay agent will forward these requests to outside DHCP servers for IP address allocation.

   Use the undo dhcp select relay command to restore the default.

   After DHCP is enabled, the DHCP server is enabled on an interface by default. That is, upon receiving a client's request from the interface, the DHCP server allocates an IP address from the DHCP address pool to the client.

   When the working mode of the interface is changed from DHCP server to DHCP relay agent, neither the IP address leases nor the authorized ARP entries will be deleted. However, these ARP entries may conflict with new ARP entries generated on the DHCP relay agent; therefore, you are recommended to delete the existing IP address leases when changing the interface working mode to DHCP relay agent.

Examples

# Enable the DHCP relay agent on VLAN-interface 1.
<Sysname> system-view
[Sysname] interface vlan-interface 1
[Sysname-Vlan-interface1] dhcp select relay
display dhcp relay

Syntax

    display dhcp relay { all | interface interface-type interface-number }

View

    Any view

Default Level

    1: Monitor level

Parameters

    all: Displays information of DHCP server groups that all interfaces correspond to.
    interface interface-type interface-number: Displays information of the DHCP server group that a specified interface corresponds to.

Description

    Use the display dhcp relay command to display information about DHCP server groups correlated to an interface or all interfaces.

Examples

    # Display information about DHCP server groups correlated to all interfaces.
    <Sysname> display dhcp relay all
    Interface name      Server-group
    Vlan-interface1     2

    Table 5-1 display dhcp relay all command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface name</td>
<td>Interface name</td>
</tr>
<tr>
<td>Server-group</td>
<td>DHCP server group number correlated to the interface.</td>
</tr>
</tbody>
</table>

display dhcp relay information

Syntax

    display dhcp relay information { all | interface interface-type interface-number }

View

    Any view

Default Level

    1: Monitor level

Parameters

    all: Displays the Option 82 configuration information of all interfaces.
**interface interface-type interface-number**: Displays the Option 82 configuration information of a specified interface.

**Description**

Use the **display dhcp relay information** command to display Option 82 configuration information on the DHCP relay agent.

**Examples**

# Display the Option 82 configuration information of all interfaces.

```bash
<Sysname> display dhcp relay information all

Interface: Vlan-interface100
 Status: Enable
 Strategy: Replace
 Format: Verbose
 Circuit ID format-type: HEX
 Remote ID format-type: ASCII
 Node identifier: abaci
 User defined:
 Circuit ID: company001

Interface: Vlan-interface200
 Status: Enable
 Strategy: Keep
 Format: Normal
 Circuit ID format-type: HEX
 Remote ID format-type: ASCII
 User defined:
 Remote ID: device001
```

**display dhcp relay security**

**Syntax**

```bash
display dhcp relay security [ip-address | dynamic | static]
```

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

- **ip-address**: Displays the binding information of an IP address.
- **dynamic**: Displays information about dynamic bindings.
- **static**: Displays information about static bindings.

**Description**

Use the **display dhcp relay security** command to display information about bindings of DHCP relay agents. If no parameter is specified, information about all bindings will be displayed.
Examples

# Display information about all bindings.
<Sysname> display dhcp relay security
IP Address      MAC Address     Type       Interface
10.1.1.1       00e0-0000-0001  Static     Vlan1
10.1.1.5       00e0-0000-0000  Static     Vlan2
---   2 dhcp-security item(s) found   ---

Table 5-2 display dhcp relay security command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>Client IP address</td>
</tr>
<tr>
<td>MAC Address</td>
<td>Client MAC address</td>
</tr>
<tr>
<td>Type</td>
<td>Type of binding, including dynamic, static, and temporary.</td>
</tr>
<tr>
<td>Interface</td>
<td>Layer 3 interface connecting to the DHCP client. If no interface is recorded in the binding entry, “N/A” is displayed.</td>
</tr>
</tbody>
</table>

display dhcp relay security statistics

Syntax

display dhcp relay security statistics

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the display dhcp relay security statistics command to display statistics information about bindings of DHCP relay agents.

Examples

# Display statistics about bindings of DHCP relay agents.
<Sysname> display dhcp relay security statistics
Static Items :1
Dynamic Items :0
Temporary Items :0
All Items :1
Table 5-3 display dhcp relay security statistics command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Items</td>
<td>Static binding items</td>
</tr>
<tr>
<td>Dynamic Items</td>
<td>Dynamic binding items</td>
</tr>
<tr>
<td>Temporary Items</td>
<td>Temporary binding items</td>
</tr>
<tr>
<td>All Items</td>
<td>All binding items</td>
</tr>
</tbody>
</table>

display dhcp relay security tracker

Syntax

display dhcp relay security tracker

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the `display dhcp relay security tracker` command to display the interval for refreshing dynamic bindings on the relay agent.

Examples

# Display the interval for refreshing dynamic bindings on the relay agent.

<Sysname> display dhcp relay security tracker

Current tracker interval : 10s

The interval is 10 seconds.

display dhcp relay server-group

Syntax

`display dhcp relay server-group` { group-id | all }

View

Any view

Default Level

1: Monitor level

Parameters

`group-id`: Displays the information of the specified DHCP server group numbered from 0 to 19.
all: Displays the information of all DHCP server groups.

**Description**

Use the `display dhcp relay server-group` command to display the configuration information of a specified or all DHCP server groups.

**Examples**

```
Display IP addresses of DHCP servers in DHCP server group 1.
<Sysname> display dhcp relay server-group 1
```

<table>
<thead>
<tr>
<th>No.</th>
<th>Group IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1.1.1</td>
</tr>
<tr>
<td>2</td>
<td>1.1.1.2</td>
</tr>
</tbody>
</table>

**Table 5-4** display dhcp relay server-group command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Sequence number</td>
</tr>
<tr>
<td>Group IP</td>
<td>IP address in the server group</td>
</tr>
</tbody>
</table>

**display dhcp relay statistics**

**Syntax**

```
display dhcp relay statistics [server-group { group-id | all }]
```

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

- `group-id`: Specifies a server group number in the range of 0 to 19 about which to display DHCP packet statistics.
- `all`: Specifies all server groups about which to display DHCP packet statistics. Information for each group will be displayed.

**Description**

Use the `display dhcp relay statistics` command to display DHCP packet statistics related to a specified or all DHCP server groups.

Note that if no parameter (server-group and all) is specified, all DHCP packet statistics on the relay agent will be displayed.

**Examples**

```
Display all DHCP packet statistics on the relay agent.
<Sysname> display dhcp relay statistics
```
Bad packets received: 0

DHCP packets received from clients: 0
   DHCPDISCOVER packets received: 0
   DHCPREQUEST packets received: 0
   DHCPINFORM packets received: 0
   DHCPRELEASE packets received: 0
   DHCPDECLINE packets received: 0
   BOOTPREQUEST packets received: 0

DHCP packets received from servers: 0
   DHCPOFFER packets received: 0
   DHCPACK packets received: 0
   DHCPNAK packets received: 0
   BOOTPREPLY packets received: 0

DHCP packets relayed to servers: 0
   DHCPDISCOVER packets relayed: 0
   DHCPREQUEST packets relayed: 0
   DHCPINFORM packets relayed: 0
   DHCPRELEASE packets relayed: 0
   DHCPDECLINE packets relayed: 0
   BOOTPREQUEST packets relayed: 0

DHCP packets relayed to clients: 0
   DHCPOFFER packets relayed: 0
   DHCPACK packets relayed: 0
   DHCPNAK packets relayed: 0
   BOOTPREPLY packets relayed: 0

DHCP packets sent to servers: 0
   DHCPDISCOVER packets sent: 0
   DHCPREQUEST packets sent: 0
   DHCPINFORM packets sent: 0
   DHCPRELEASE packets sent: 0
   DHCPDECLINE packets sent: 0
   BOOTPREQUEST packets sent: 0

DHCP packets sent to clients: 0
   DHCPOFFER packets sent: 0
   DHCPACK packets sent: 0
   DHCPNAK packets sent: 0
   BOOTPREPLY packets sent: 0

# Display DHCP packet statistics related to every server group on the relay agent.

<Sysname> display dhcp relay statistics server-group all

DHCP relay server-group #0

<table>
<thead>
<tr>
<th>Packet type</th>
<th>Packet number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client -&gt; Server:</td>
<td></td>
</tr>
<tr>
<td>DHCPDISCOVER</td>
<td>0</td>
</tr>
<tr>
<td>DHCPREQUEST</td>
<td>0</td>
</tr>
<tr>
<td>DHCPINFORM</td>
<td>0</td>
</tr>
<tr>
<td>DHCPRELEASE</td>
<td>0</td>
</tr>
<tr>
<td>DHCPDECLINE</td>
<td>0</td>
</tr>
</tbody>
</table>

5-18
reset dhcp relay statistics

Syntax

reset dhcp relay statistics [ server-group group-id ]

View

User view

Default Level

1: Monitor level

Parameters

server-group group-id: Specifies a server group ID (in the range of 0 to 19) about which to remove statistics from the relay agent.

Description

Use the reset dhcp relay statistics command to remove statistics from the relay agent.

If no server-group is specified, all statistics will be removed from the relay agent.

Related commands: display dhcp relay statistics.

Examples

# Remove all statistics from the DHCP relay agent.

<Sysname> reset dhcp relay statistics
The DHCP client configuration is supported only on VLAN interfaces.

- When multiple VLAN interfaces having the same MAC address use DHCP for IP address acquisition via a relay agent, the DHCP server cannot be the Windows 2000 Server or Windows 2003 Server.
- You are not recommended to enable both the DHCP client and the DHCP snooping on the same device. Otherwise, DHCP snooping entries may fail to be generated, or the DHCP client may fail to obtain an IP address.

### DHCP Client Configuration Commands

**display dhcp client**

#### Syntax

```
display dhcp client [verbose] [interface interface-type interface-number]
```

#### View

Any view

#### Default Level

1: Monitor level

#### Parameters

- **verbose**: Specifies verbose DHCP client information to be displayed.
- **interface interface-type interface-number**: Specifies an interface of which to display DHCP client information.

#### Description

Use the `display dhcp client` command to display DHCP client information. If no `interface interface-type interface-number` is specified, DHCP client information of all interfaces will be displayed.

#### Examples

```
Display DHCP client information of all interfaces.
<Sysname> display dhcp client
Vlan-interface1 DHCP client information:
```
Current machine state: BOUND
Allocated IP: 40.1.1.20 255.255.255.0
Allocated lease: 259200 seconds, T1: 129600 seconds, T2: 226800 seconds
DHCP server: 40.1.1.2

# Display verbose DHCP client information.
<Sysname> display dhcp client verbose
Vlan-interface1 DHCP client information:
  Current machine state: BOUND
  Allocated IP: 40.1.1.20 255.255.255.0
  Allocated lease: 259200 seconds, T1: 129600 seconds, T2: 226800 seconds
  Lease from 2005.08.13 15:37:59 to 2005.08.16 15:37:59
  DHCP server: 40.1.1.2
  Transaction ID: 0x1c09322d
  Default router: 40.1.1.2
  Classless static route:
    Destination: 1.1.0.1, Mask: 255.0.0.0, NextHop: 192.168.40.16
    Destination: 10.198.122.63, Mask: 255.255.255.255, NextHop: 192.168.40.16
  DNS server: 44.1.1.11
  DNS server: 44.1.1.12
  Domain name: ddd.com
  Boot server: 200.200.200.200 1.1.1.1
  Client ID: 3030-3066-2e65-3234-
            392e-3830-3438-2d56-
            6c61-6e2d-696e-7465-
            7266-6163-6531
  T1 will timeout in 1 day 11 hours 58 minutes 52 seconds.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlan-interface1 DHCP client info</td>
<td>Information of the interface acting as the DHCP client</td>
</tr>
<tr>
<td>Current machine state</td>
<td>DHCP client current machine state</td>
</tr>
<tr>
<td>Allocated IP</td>
<td>The IP address allocated by the DHCP server</td>
</tr>
<tr>
<td>Allocated lease</td>
<td>The allocated lease time</td>
</tr>
<tr>
<td>T1</td>
<td>The 1/2 lease time (in seconds) of the DHCP client IP address</td>
</tr>
<tr>
<td>T2</td>
<td>The 7/8 lease time (in seconds) of the DHCP client IP address</td>
</tr>
<tr>
<td>Lease from....to....</td>
<td>The start and end time of the lease.</td>
</tr>
<tr>
<td>DHCP Server</td>
<td>DHCP server IP address that assigned the IP address</td>
</tr>
<tr>
<td>Transaction ID</td>
<td>Transaction ID, a random number chosen by the client to identify an IP address allocation.</td>
</tr>
<tr>
<td>Default router</td>
<td>The gateway address assigned to the client</td>
</tr>
<tr>
<td>Classless static route</td>
<td>Classless static routes assigned to the client</td>
</tr>
<tr>
<td>Static route</td>
<td>Classful static routes assigned to the client</td>
</tr>
</tbody>
</table>
### Field | Description
--- | ---
DNS server | The DNS server address assigned to the client
Domain name | The domain name suffix assigned to the client
Boot server | PXE server addresses (up to 16 addresses) specified for the DHCP client, which are obtained through Option 43.
Client ID | Client ID
T1 will timeout in 1 day 11 hours 58 minutes 52 seconds. | How long the T1 (1/2 lease time) timer will timeout.

### ip address dhcp-alloc

**Syntax**

```
ip address dhcp-alloc [client-identifier mac interface-type interface-number]
undo ip address dhcp-alloc
```

**View**

Interface view

**Default Level**

2: System level

**Parameters**

- **client-identifier mac interface-type interface-number**: Specifies the MAC address of an interface using which as the client ID to obtain an IP address.

**Description**

Use the `ip address dhcp-alloc` command to configure an interface to use DHCP for IP address acquisition.

Use the `undo ip address dhcp-alloc` command to cancel an interface from using DHCP.

By default, an interface does not use DHCP for IP address acquisition.

Note that:

- If no parameter is specified, the client uses a character string comprised of the current interface name and MAC address as its ID for address acquisition.
- The DHCP client sends a DHCP-RELEASE message for releasing the IP address obtained via DHCP, if the interface of the client is down, the message cannot be sent.
- For a sub interface that obtained an IP address via DHCP, using the `shutdown` command on its primary interface does not make the DHCP client send a DHCP-RELEASE message for releasing the sub interface’s IP address.

**Examples**

```
Configure VLAN-interface 1 to use DHCP for IP address acquisition.
<Sysname> system-view
```
[Sysname] interface vlan-interface 1

[Sysname-Vlan-interface1] ip address dhcp-alloc
The DHCP snooping enabled device does not work if it is between the DHCP relay agent and DHCP server, and it can work when it is between the DHCP client and relay agent or between the DHCP client and server.

You are not recommended to enable the DHCP client, BOOTP client, and DHCP snooping on the same device. Otherwise, DHCP snooping entries may fail to be generated, or the BOOTP client/DHCP client may fail to obtain an IP address.

### DHCP Snooping Configuration Commands

**dhcp-snooping**

**Syntax**

```
dhcp-snooping
undo dhcp-snooping
```

**View**

System view

**Default Level**

2: System level

**Parameters**

None

**Description**

Use the `dhcp-snooping` command to enable DHCP snooping.

Use the `undo dhcp-snooping` command to disable DHCP snooping.

With DHCP snooping disabled, all ports can forward responses from any DHCP servers and does not record binding information about MAC addresses of DHCP clients and the obtained IP addresses.

By default, DHCP snooping is disabled.

Related commands: `display dhcp-snooping`.

**Examples**

```
Enable DHCP snooping.
```
dhcp-snooping information circuit-id format-type

Syntax

dhcp-snooping information circuit-id format-type \{ ascii | hex \}
undo dhcp-snooping information circuit-id format-type

View

Layer 2 Ethernet port view

Default Level

2: System level

Parameters

ascii: Specifies the code type for the circuit ID sub-option as ascii.
hex: Specifies the code type for the circuit ID sub-option as hex.

Description

Use the dhcp-snooping information circuit-id format-type command to configure the code type for the non-user-defined circuit ID sub-option.

Use the undo dhcp-snooping information circuit-id format-type command to restore the default.

By default, the code type for the circuit ID sub-option depends on the padding format of Option 82. Each field has its own code type.

Note that:

This command applies to configuring the non-user-defined circuit ID sub-option only. After you configure the padding content for the circuit ID sub-option using the dhcp-snooping information circuit-id string command, ASCII is adopted as the code type.

Examples

# Configure the padding format for the non-user-defined circuit ID sub-option as ascii.
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabiEthernet1/0/1] dhcp-snooping information circuit-id format-type ascii

dhcp-snooping information circuit-id string

Syntax

dhcp-snooping information [ vlan vlan-id ] circuit-id string circuit-id
undo dhcp-snooping information [ vlan vlan-id ] circuit-id string

View

Layer 2 Ethernet port view
Default Level

2: System level

Parameters

- **vlan vlan-id**: Specifies a VLAN ID, in the range of 1 to 4094.
- **circuit-id**: Padding content for the user-defined circuit ID sub-option, a case-sensitive string of 3 to 63 characters.

Description

Use the `dhcp-snooping information circuit-id string` command to configure the padding content for the user-defined circuit ID sub-option.

Use the `undo dhcp-snooping information circuit-id string` command to restore the default.

By default, the padding content for the circuit ID sub-option depends on the padding format of Option 82.

Note that:

- After you configure the padding content for the circuit ID sub-option using this command, ASCII is adopted as the code type.
- If a VLAN is specified, the configured circuit ID sub-option only takes effect within the VLAN; if no VLAN is specified, the configured circuit ID sub-option takes effect in all VLANs. The former case has a higher priority; that is, the circuit ID sub-option specified for a VLAN will be padded for packets within the VLAN.

Related commands: `dhcp-snooping information format`.

Examples

```
Configure the global padding content for the user-defined circuit ID sub-option as company001.
<Sysname> system-view
<Sysname> interface gigabitethernet 1/0/1
<Sysname-GigabitEthernet1/0/1] dhcp-snooping information circuit-id string company001
```

dhcp-snooping information enable

Syntax

```
dhcp-snooping information enable
undo dhcp-snooping information enable
```

View

Layer 2 Ethernet interface view

Default Level

2: System level

Parameters

None
Description

Use the **dhcp-snooping information enable** command to configure DHCP snooping to support Option 82.

Use the **undo dhcp-snooping information enable** command to disable this function.

By default, DHCP snooping does not support Option 82.

Examples

```
Configure DHCP snooping to support Option 82.
<Sysname> system-view
<Sysname> interface gigabitethernet1/0/1
<Sysname-GigabitEthernet1/0/1] dhcp-snooping information enable
```

dhcp-snooping information format

Syntax

```
dhcp-snooping information format { normal | verbose [node-identifier { mac | sysname | user-defined node-identifier }] }
undo dhcp-snooping information format [verbose node-identifier]
```

View

Layer 2 Ethernet interface view

Default Level

2: System level

Parameters

- **normal**: Specifies the normal padding format.
- **verbose**: Specifies the verbose padding format.
- **node-identifier**: Specifies access node identifier. By default, the node MAC address is used as the node identifier.
  - **mac**: indicates using MAC address as the node identifier.
  - **sysname**: indicates using the device name of a node as the node identifier.
  - **user-defined**: indicates using a specified character string as the node identifier, in which **node-identifier** is a string of 1 to 50 characters.

Description

Use the **dhcp-snooping information format** command to specify the padding format for Option 82.

Use the **undo dhcp-snooping information format** command to restore the default.

By default, the padding format for Option 82 is **normal**.
Note that when you use the `undo dhcp-snooping information format` command, if the `verbose node-identifier` argument is not specified, the padding format will be restored to `normal`; if the `verbose node-identifier` argument is specified, the padding format will be restored to `verbose` with MAC address as the node identifier.

Examples

```bash
Specify the padding format as `verbose` for Option 82.
<Sysname> system-view
<Sysname> interface gigabitethernet1/0/1
<Sysname-GigabiEthernet1/0/1> dhcp-snooping information enable
<Sysname-GigabiEthernet1/0/1> dhcp-snooping information strategy replace
<Sysname-GigabiEthernet1/0/1> dhcp-snooping information format verbose
dhcp-snooping information remote-id format-type
```

**dhcp-snooping information remote-id format-type**

**Syntax**

```bash
dhcp-snooping information remote-id format-type { ascii | hex }
undo dhcp-snooping information remote-id format-type
```

**View**

Layer 2 Ethernet port view

**Default Level**

2: System level

**Parameters**

- **ascii**: Specifies the code type for the remote ID sub-option as `ascii`.
- **hex**: Specifies the code type for the remote ID sub-option as `hex`.

**Description**

Use the `dhcp-snooping information remote-id format-type` command to configure the code type for the non-user-defined remote ID sub-option.

Use the `undo dhcp-snooping information remote-id format-type` command to restore the default.

By default, the code type for the remote ID sub-option is `HEX`.

Note that:

This command applies to configuring a non-user-defined remote ID sub-option only. After you configure the padding content for the remote ID sub-option using the `dhcp-snooping information remote-id string` command, ASCII is adopted as the code type.

**Examples**

```bash
Configure the code type for the non-user-defined remote ID sub-option as `ascii`.
<Sysname> system-view
<Sysname> interface gigabitethernet 1/0/1
[Sysname-GigabiEthernet1/0/1] dhcp-snooping information remote-id format-type ascii
```
dhcp-snooping information remote-id string

Syntax

    dhcp-snooping information [ vlan vlan-id ] remote-id string { remote-id | sysname }
    undo dhcp-snooping information [ vlan vlan-id ] remote-id string

View

    Layer 2 Ethernet port view

Default Level

    2: System level

Parameters

    vlan vlan-id: Specifies a VLAN ID, in the range of 1 to 4094.

    remote-id: Padding content for the user-defined circuit ID sub-option, a case-sensitive string of 1 to 63 characters.

    sysname: Specifies the device name as the padding content for the remote ID sub-option.

Description

Use the dhcp-snooping information remote-id string command to configure the padding content for the user-defined remote ID sub-option.

Use the undo dhcp-snooping information remote-id string command to restore the default.

By default, the padding content for the remote ID sub-option depends on the padding format of Option 82.

Note that:
- After you configure the padding content for the remote ID sub-option using this command, ASCII is adopted as the code type.
- If a VLAN is specified, the configured remote ID sub-option only takes effect within the VLAN; if no VLAN is specified, the configured remote ID sub-option takes effect in all VLANs. The former case has a higher priority; that is, the remote ID sub-option configured for a VLAN will be padded for the packets within the VLAN.

Related commands: dhcp-snooping information format.

Note

If you want to specify the character string sysname (a case-insensitive character string) as the padding content for the remote ID sub-option, you need to use quotation marks to make it take effect. For example, if you want to specify Sysname as the padding content for the remote ID sub-option, you need to enter the dhcp relay information remote-id string “Sysname” command.

Examples

    # Configure the padding content for the remote ID sub-option as device001.
dhcp-snooping information strategy

Syntax

dhcp-snooping information strategy { drop | keep | replace }
undo dhcp-snooping information strategy

View

Layer 2 Ethernet interface view

Default Level

2: System level

Parameters

drop: Drops the requesting message containing Option 82.
keep: Forwards the requesting message containing Option 82 without changing Option 82.
replace: Forwards the requesting message containing Option 82 after replacing the original Option 82 with the one padded in specified format.

Description

Use the dhcp-snooping information strategy command to configure the handling strategy for Option 82 in requesting messages.

Use the undo dhcp-snooping information strategy command to restore the default.

By default, the handling strategy for Option 82 in requesting messages is replace.

Examples

# Configure the handling strategy for Option 82 in requesting messages as keep.
<Sysname> system-view
<Sysname> interface gigabitethernet1/0/1
[Sysname-GigabiEthernet1/0/1] dhcp-snooping information enable
[Sysname-GigabiEthernet1/0/1] dhcp-snooping information strategy keep

dhcp-snooping trust

Syntax

dhcp-snooping trust [ no-user-binding ]
undo dhcp-snooping trust

View

Layer 2 Ethernet interface view, Layer 2 aggregate interface view
Default Level

2: System level

Parameters

no-user-binding: Specifies the port not to record the clients’ IP-to-MAC bindings in DHCP requests it receives. The command without this keyword records the IP-to-MAC bindings of clients.

Description

Use the dhcp-snooping trust command to configure a port as a trusted port.
Use the undo dhcp-snooping trust command to restore the default state of a port.
All ports are untrusted by default.
After enabling DHCP snooping, you need to specify the ports connected to the valid DHCP servers as trusted to ensure that DHCP clients can obtain valid IP addresses.
Related commands: display dhcp-snooping trust.

Examples

# Specify GigabitEthernet 1/0/1 as a trusted port and enable it to record the IP-to-MAC bindings of clients.
<Sysname> system-view
<Sysname> interface gigabitethernet 1/0/1
<Sysname-GigabitEthernet1/0/1> dhcp-snooping trust
display dhcp-snooping

Syntax
display dhcp-snooping [ ip ip-address ]

View
Any view

Default Level
1: Monitor level

Parameters

ip ip-address: Displays the DHCP snooping entries corresponding to the specified IP address.

Description

Use the display dhcp-snooping command to display DHCP snooping entries.

Note

Only the DHCP snooping entries containing IP-to-MAC bindings that are present both in the DHCP-ACK and DHCP-REQUEST messages are displayed by using the display dhcp-snooping command.
Examples

# Display all DHCP snooping entries.
<Sysname> display dhcp-snooping
DHCP Snooping is enabled.
The client binding table for all untrusted ports.
Type : D--Dynamic , S--Static

Type   IP Address   MAC Address   Lease       VLAN  Interface
==== ===============  ===============  ========== ==== =================
D     10.1.1.1        00e0-fc00-0006   286      1  GigabiEthernet1/0/1
---   1 dhcp-snooping item(s) found   ---

Table 7-1 display dhcp snooping command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Binding type</td>
</tr>
<tr>
<td>IP Address</td>
<td>IP address assigned to the DHCP client</td>
</tr>
<tr>
<td>MAC Address</td>
<td>MAC address of the DHCP client</td>
</tr>
<tr>
<td>Lease</td>
<td>Lease period left (in seconds)</td>
</tr>
<tr>
<td>VLAN</td>
<td>VLAN where the port connecting the DHCP client resides</td>
</tr>
<tr>
<td>Interface</td>
<td>Port to which the DHCP client is connected</td>
</tr>
</tbody>
</table>

display dhcp-snooping information

Syntax

display dhcp-snooping information { all | interface interface-type interface-number }

View

Any view

Default Level

1: Monitor level

Parameters

all: Displays the Option 82 configuration information of all Layer 2 Ethernet interfaces.

interface interface-type interface-number: Displays the Option 82 configuration information of a specified interface.

Description

Use the display dhcp-snooping information command to display Option 82 configuration information on the DHCP snooping device.

Examples

# Display the Option 82 configuration information of all interfaces.
display dhcp-snooping packet statistics

Syntax

display dhcp-snooping packet statistics [ slot slot-number ]

View

Any view

Default Level

1: Monitor level

Parameters

slot slot-number: Displays the DHCP packet statistics of the specified device. If the device is in an IRF, the slot-number argument represents the member ID of the device; if the device is not in any IRF, the slot-number argument represents the device ID.

Description

Use the display dhcp-snooping packet statistics command to display DHCP packet statistics on the DHCP snooping device.

On a device in IRF, executing the display dhcp-snooping packet statistics command without the slot keyword only displays DHCP packet statistics on the device where the command is executed.
Examples

# Display DHCP packet statistics on the DHCP snooping device.
<Sysname> display dhcp-snooping packet statistics
DHCP packets received : 100
DHCP packets sent : 200
Packets dropped due to rate limitation : 20
Dropped invalid packets : 0

display dhcp-snooping trust

Syntax

    display dhcp-snooping trust

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the display dhcp-snooping trust command to display information about trusted ports.

Related commands: dhcp-snooping trust.

Examples

# Display information about trusted ports.
<Sysname> display dhcp-snooping trust
DHCP Snooping is enabled.
DHCP Snooping trust becomes active.

<table>
<thead>
<tr>
<th>Interface</th>
<th>Trusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>GigabiEthernet1/0/1</td>
<td>Trusted</td>
</tr>
</tbody>
</table>

The above output shows that DHCP snooping is enabled, DHCP snooping trust is active, and port GigabiEthernet 1/0/1 is trusted.

reset dhcp-snooping

Syntax

    reset dhcp-snooping { all | ip ip-address }

View

User view
Default Level

1: Monitor level

Parameters

all: Clears all DHCP snooping entries.
ip ip-address: Clears the DHCP snooping entries of the specified IP address.

Description

Use the reset dhcp-snooping command to clear DHCP snooping entries.
For an IRF, DHCP snooping entries on all devices will be cleared after you execute this command.

Examples

# Clear all DHCP snooping entries.
<sysname> reset dhcp-snooping all

reset dhcp-snooping packet statistics

Syntax

reset dhcp-snooping packet statistics [ slot slot-number ]

View

User view

Default Level

2: System level

Parameters

slot slot-number: Clears the DHCP packet statistics of the specified device. If the device is in an IRF, the slot-number argument represents the member ID of the device; if the device is not in any IRF, the slot-number argument represents the device ID.

Description

Use the reset dhcp-snooping packet statistics command to clear DHCP packet statistics on the DHCP snooping device.
On a device in IRF, executing the reset dhcp-snooping packet statistics command without the slot keyword only clears DHCP packet statistics on the device where the command is executed.

Examples

# Clear DHCP packet statistics on the DHCP snooping device.
<sysname> reset dhcp-snooping packet statistics
BOOTP Client Configuration Commands

display bootp client

Syntax

display bootp client [ interface interface-type interface-number ]

View

Any view

Default Level

1: Monitor level

Parameters

interface interface-type interface-number: Displays the BOOTP client information of the interface.

Description

Use the display bootp client command to display related information about a BOOTP client.

Note:

- If interface interface-type interface-number is not specified, the command will display information about BOOTP clients on all interfaces.
- If interface interface-type interface-number is specified, the command will display information about the BOOTP client on the specified interface.

Examples

# Display related information of the BOOTP client on VLAN-interface 1.
<Sysname> display bootp client interface vlan-interface 1
Vlan-interface1 BOOTP client information:
Allocated IP: 169.254.0.2 255.255.0.0
Transaction ID = 0x3d8a7431
Mac Address 00e0-fc0a-c3ef

Table 8-1 display bootp client command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlan-interface1 BOOTP client information</td>
<td>Information of the interface serving as a BOOTP client</td>
</tr>
<tr>
<td>Allocated IP</td>
<td>BOOTP client’s IP address allocated by the BOOTP server</td>
</tr>
<tr>
<td>Transaction ID</td>
<td>Value of the XID field in a BOOTP message, namely, a random number chosen while the BOOTP client sends a BOOTP request to the BOOTP server. It is used to match a response message from the BOOTP server. If the values of the XID field are different in the BOOTP response and request, the BOOTP client will drop the BOOTP response.</td>
</tr>
<tr>
<td>Mac Address</td>
<td>MAC address of a BOOTP client</td>
</tr>
</tbody>
</table>

**ip address bootp-alloc**

**Syntax**

```
ip address bootp-alloc
undo ip address bootp-alloc
```

**View**

Interface view

**Default Level**

2: System level

**Parameters**

None

**Description**

Use the `ip address bootp-alloc` command to enable an interface to obtain an IP address through BOOTP.

Use the `undo ip address bootp-alloc` command to disable the interface from obtaining an IP address through BOOTP.

By default, an interface does not obtain an IP address through BOOTP.

**Related commands:** `display bootp client`.

**Examples**

```
Configure VLAN-interface 1 to obtain IP address through BOOTP protocol.
<Sysname> system-view
```
[Sysname] interface vlan-interface 1

[Sysname-Vlan-interface1] ip address bootp-alloc
DNS Configuration Commands

display dns domain

Syntax

display dns domain [ dynamic ]

View

Any view

Default Level

1: Monitor level

Parameters

dynamic: Displays the domain name suffixes dynamically obtained through DHCP or other protocols.

Description

Use the display dns domain command to display the domain name suffixes.

Related commands: dns domain.

Examples

# Display domain name suffixes.
<Sysname> display dns domain
Type:
D:Dynamic   S:Static

No. Type  Domain-name
1 S com
Table 9-1 display dns domain command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Sequence number</td>
</tr>
<tr>
<td>Type</td>
<td>Type of domain name suffix: S represents a statically configured domain name suffix, and D represents a domain name suffix obtained dynamically through DHCP.</td>
</tr>
<tr>
<td>Domain-name</td>
<td>Domain name suffix</td>
</tr>
</tbody>
</table>

**display dns dynamic-host**

**Syntax**

```plaintext
display dns dynamic-host
```

**View**

- Any view

**Default Level**

- 1: Monitor level

**Parameters**

- None

**Description**

Use the `display dns dynamic-host` command to display the information of the dynamic domain name resolution cache.

**Examples**

```
Display the information of the dynamic domain name resolution cache.
<Sysname> display dns dynamic-host
No. Host IP Address TTL
1 www.baidu.com 202.108.249.134 63000
2 www.yahoo.akadns.net 66.94.230.39 24
3 www.hotmail.com 207.68.172.239 3585
4 www.eyou.com 61.136.62.70 3591
```

Table 9-2 display dns dynamic-host command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Sequence number</td>
</tr>
<tr>
<td>Host</td>
<td>Domain name</td>
</tr>
<tr>
<td>IP Address</td>
<td>IP address for the corresponding domain name</td>
</tr>
<tr>
<td>TTL</td>
<td>Time that a mapping can be stored in the cache (in seconds).</td>
</tr>
</tbody>
</table>
A domain name in the `display dns dynamic-host` command contains 21 characters at most. If a domain name consists of more than 21 characters, only the first 21 characters are displayed.

### display dns server

**Syntax**

```plaintext
display dns server [dynamic]
```

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

- **dynamic**: Displays the DNS server information dynamically obtained through DHCP or other protocols

**Description**

Use the `display dns server` command to display the DNS server information.

Related commands: `dns server`.

**Examples**

```plaintext
Display the DNS server information.
<Sysname> display dns server
Type:
 D:Dynamic S:Static

DNS Server Type IP Address
 1 S 169.254.65.125
```

**Table 9-3 display dns server command output description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS Server</td>
<td>Sequence number of the DNS server, configured automatically by the device, starting from 1.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of domain name server: S represents a statically configured DNS server, and D represents a DNS server obtained dynamically through DHCP.</td>
</tr>
<tr>
<td>IP Address</td>
<td>IP address of the DNS server</td>
</tr>
</tbody>
</table>
display ip host

Syntax

display ip host

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the `display ip host` command to display the host names and corresponding IP addresses in the static domain name resolution table.

Examples

# Display the host names and corresponding IP addresses in the static domain name resolution table.

```bash
<Sysname> display ip host
```

<table>
<thead>
<tr>
<th>Host</th>
<th>Age</th>
<th>Flags</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>My</td>
<td>0</td>
<td>static</td>
<td>1.1.1.1</td>
</tr>
<tr>
<td>Aa</td>
<td>0</td>
<td>static</td>
<td>2.2.2.4</td>
</tr>
</tbody>
</table>

Table 9-4 display ip host command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host</td>
<td>Host name</td>
</tr>
<tr>
<td>Age</td>
<td>Time to live. 0 means that the static mapping will never age out. You can only manually remove the static mappings between host names and IP addresses.</td>
</tr>
<tr>
<td>Flags</td>
<td>Indicates the mapping type. Static represents static domain name resolution.</td>
</tr>
<tr>
<td>Address</td>
<td>Host IP address</td>
</tr>
</tbody>
</table>

dns domain

Syntax

```bash
dns domain domain-name
undo dns domain [domain-name]
```

View

System view
Default Level

2: System level

Parameters

*domain-name*: Domain name suffix, consisting of character strings separated by a dot (for example, aabbcc.com). Each separated string contains no more than 63 characters. A domain name suffix may include case-insensitive letters, digits, hyphens (-), underscores (_), and dots (.), with a total length of 238 characters.

Description

Use the `dns domain` command to configure a domain name suffix. The system can automatically add the suffix to part of the domain name you entered for resolution.

Use the `undo dns domain` command to delete a domain name suffix (with a domain name suffix specified) or all domain name suffixes (with no domain name suffix specified).

No domain name suffix is configured by default, that is, only the provided domain name is resolved.

You can configure a maximum of 10 domain name suffixes.

Related commands: `display dns domain`.

Examples

# Configure com as a DNS suffix.

```
<Sysname> system-view
<Sysname> dns domain com
```

dns proxy enable

Syntax

```
dns proxy enable
undo dns proxy enable
```

View

System view

Default Level

2: System level

Parameters

None

Description

Use the `dns proxy enable` command to enable DNS proxy.

Use the `undo dns proxy enable` command to disable DNS proxy.

By default, DNS proxy is disabled.

Examples

# Enable DNS proxy.
<Sysname> system-view

[Sysname] dns proxy enable

dns resolve

Syntax

dns resolve
undo dns resolve

View

System view

Default Level

2: System level

Parameters

None

Description

Use the **dns resolve** command to enable dynamic domain name resolution.
Use the **undo dns resolve** command to disable dynamic domain name resolution.
Dynamic domain name resolution is disabled by default.

Examples

# Enable dynamic domain name resolution.

```bash
<Sysname> system-view
[Sysname] dns resolve
```

dns server

Syntax

```text
dns server ip-address
undo dns server [ip-address]
```

View

System view

Default Level

2: System level

Parameters

*ip-address*: IP address of the DNS server.

Description

Use the **dns server** command to specify a DNS server.
Use the **undo dns server** to remove DNS server(s).
No DNS server is specified by default.
You can configure a maximum of six DNS servers, including those with IPv6 addresses.
Related commands: **display dns server**.

**Examples**

# Specify the DNS server 172.16.1.1.

```
<Sysname> system-view
[Sysname] dns server 172.16.1.1
```

**ip host**

**Syntax**

```
ip host hostname ip-address
undo ip host hostname [ip-address]
```

**View**

System view

**Default Level**

2: System level

**Parameters**

- **hostname**: Host name, consisting of 1 to 20 characters, including case-insensitive letters, numbers, hyphens (-), underlines (_), or dots (.). The host name must include at least one letter.
- **ip-address**: IP address of the specified host in dotted decimal notation.

**Description**

Use the **ip host** command to create a host name to IP address mapping in the static resolution table.

Use the **undo ip host** command to remove a mapping.

No mappings are created by default.

You can configure only one mapping for a host name. A mapping newly configured for the host name will overwrite the previous one if there is any.

Related commands: **display ip host**.

**Examples**

# Map the IP address 10.110.0.1 to the host name aaa.

```
<Sysname> system-view
[Sysname] ip host aaa 10.110.0.1
```

**reset dns dynamic-host**

**Syntax**

```
reset dns dynamic-host
```

9-7
View

User view

Default Level

2: System level

Parameters

None

Description

Use the `reset dns dynamic-host` command to clear the dynamic domain name resolution information.

Related commands: `display dns dynamic-host`.

Examples

# Clear the dynamic domain name resolution information.

```plaintext
<Sysname> reset dns dynamic-host
```
IP Performance Optimization Configuration Commands

display fib

Syntax

display fib [ | { begin | include | exclude } regular-expression | acl acl-number | ip-prefix ip-prefix-name ]

View

Any view

Default Level

1: Monitor level

Parameters

|: Uses a regular expression to match FIB entries. For detailed information about regular expression, refer to CLI display in Basic System Configuration in the System Volume.

begin: Displays the first entry that matches the specified regular expression and all the FIB entries following it.

exclude: Displays the FIB entries that do not match the specified regular expression.

include: Displays the FIB entries that match the specified regular expression.

regular-expression: A case-sensitive string of 1 to 256 characters, excluding spaces.

acl acl-number: Displays FIB entries matching a specified ACL numbered from 2000 to 2999. If the specified ACL does not exist, all FIB entries are displayed.

ip-prefix ip-prefix-name: Displays FIB entries matching a specified IP prefix list, a string of 1 to 19 characters. If the specified IP prefix list does not exist, all FIB entries are displayed.

Description

Use the display fib command to display FIB entries. If no parameters are specified, all FIB entries will be displayed.

Examples

# Display all FIB entries.

<Sysname> display fib

Destination count: 4   FIB entry count: 4

Flag:
<table>
<thead>
<tr>
<th>Destination/Mask</th>
<th>Nexthop</th>
<th>Flag</th>
<th>OutInterface</th>
<th>InnerLabel</th>
<th>Token</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2.0.0/16</td>
<td>10.2.1.1</td>
<td>U</td>
<td>VLAN1</td>
<td>Null</td>
<td>Invalid</td>
</tr>
<tr>
<td>10.2.1.1/32</td>
<td>127.0.0.1</td>
<td>UH</td>
<td>InLoop0</td>
<td>Null</td>
<td>Invalid</td>
</tr>
<tr>
<td>127.0.0.0/8</td>
<td>127.0.0.1</td>
<td>U</td>
<td>InLoop0</td>
<td>Null</td>
<td>Invalid</td>
</tr>
<tr>
<td>127.0.0.1/32</td>
<td>127.0.0.1</td>
<td>UH</td>
<td>InLoop0</td>
<td>Null</td>
<td>Invalid</td>
</tr>
</tbody>
</table>

# Display FIB information passing ACL 2000.

```bash
<Sysname> system-view
[Sysname] acl number 2000
[Sysname-acl-basic-2000] rule permit source 10.2.0.0 0.0.255.255
[Sysname-acl-basic-2000] display fib acl 2000
```

Flag:
- U: Useable
- G: Gateway
- H: Host
- B: Blackhole
- D: Dynamic
- S: Static
- R: Relay

<table>
<thead>
<tr>
<th>Destination/Mask</th>
<th>Nexthop</th>
<th>Flag</th>
<th>OutInterface</th>
<th>InnerLabel</th>
<th>Token</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2.0.0/16</td>
<td>10.2.1.1</td>
<td>U</td>
<td>VLAN1</td>
<td>Null</td>
<td>Invalid</td>
</tr>
<tr>
<td>10.2.1.1/32</td>
<td>127.0.0.1</td>
<td>UH</td>
<td>InLoop0</td>
<td>Null</td>
<td>Invalid</td>
</tr>
</tbody>
</table>

# Display all entries that contain the string 127 and start from the first one.

```bash
<Sysname> display fib | begin 127
```

Flag:
- U: Useable
- G: Gateway
- H: Host
- B: Blackhole
- D: Dynamic
- S: Static
- R: Relay

<table>
<thead>
<tr>
<th>Destination/Mask</th>
<th>Nexthop</th>
<th>Flag</th>
<th>OutInterface</th>
<th>InnerLabel</th>
<th>Token</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2.1.1/32</td>
<td>127.0.0.1</td>
<td>UH</td>
<td>InLoop0</td>
<td>Null</td>
<td>Invalid</td>
</tr>
<tr>
<td>127.0.0.0/8</td>
<td>127.0.0.1</td>
<td>U</td>
<td>InLoop0</td>
<td>Null</td>
<td>Invalid</td>
</tr>
<tr>
<td>127.0.0.1/32</td>
<td>127.0.0.1</td>
<td>UH</td>
<td>InLoop0</td>
<td>Null</td>
<td>Invalid</td>
</tr>
</tbody>
</table>

# Display FIB information passing the IP prefix list abc0.

```bash
<Sysname> system-view
[Sysname] ip ip-prefix abc0 permit 10.2.0.0 16
[Sysname] display fib ip-prefix abc0
```

Flag:
- U: Useable
- G: Gateway
- H: Host
- B: Blackhole
- D: Dynamic
- S: Static
- R: Relay

<table>
<thead>
<tr>
<th>Destination/Mask</th>
<th>Nexthop</th>
<th>Flag</th>
<th>OutInterface</th>
<th>InnerLabel</th>
<th>Token</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2.0.0/16</td>
<td>10.2.1.1</td>
<td>U</td>
<td>VLAN1</td>
<td>Null</td>
<td>Invalid</td>
</tr>
</tbody>
</table>
### Table 10-1 display fib command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination count</td>
<td>Total number of destination addresses</td>
</tr>
<tr>
<td>FIB entry count</td>
<td>Total number of FIB entries</td>
</tr>
<tr>
<td>Destination/Mask</td>
<td>Destination address/length of mask</td>
</tr>
<tr>
<td>Nexthop</td>
<td>Address of next hop</td>
</tr>
<tr>
<td>Flag</td>
<td>Flags of routes:</td>
</tr>
<tr>
<td></td>
<td>• “U”—Usable route</td>
</tr>
<tr>
<td></td>
<td>• “G”—Gateway route</td>
</tr>
<tr>
<td></td>
<td>• “H”—Host route</td>
</tr>
<tr>
<td></td>
<td>• “B”—Blackhole route</td>
</tr>
<tr>
<td></td>
<td>• “D”—Dynamic route</td>
</tr>
<tr>
<td></td>
<td>• “S”—Static route</td>
</tr>
<tr>
<td></td>
<td>• “R”—Relay route</td>
</tr>
<tr>
<td>OutInterface</td>
<td>Outbound interface</td>
</tr>
<tr>
<td>InnerLabel</td>
<td>Inner label</td>
</tr>
<tr>
<td>Token</td>
<td>LSP index number</td>
</tr>
</tbody>
</table>

### display fib ip-address

**Syntax**

`display fib ip-address [ mask | mask-length ]`

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

- `ip-address`: Destination IP address, in dotted decimal notation.
- `mask`: IP address mask.
- `mask-length`: Length of IP address mask.

**Description**

Use the `display fib ip-address` command to display FIB entries that match the specified destination IP address.

If no mask or mask length is specified, the FIB entry that matches the destination IP address and has the longest mask will be displayed; if the mask is specified, the FIB entry that exactly matches the specified destination IP address will be displayed.

**Examples**

`# Display the FIB entries that match the destination IP address of 10.2.1.1.`
<Sysname> display fib 10.2.1.1
Destination count: 1    FIB entry count: 1

Flag:
U:Useable   G:Gateway   H:Host   B:Blackhole   D:Dynamic   S:Static   R:Relay

Destination/Mask  Nexthop     Flag     OutInterface  InnerLabel Token
10.2.1.1/32       127.0.0.1   UH       InLoop0       Null       Invalid

For description about the above output, refer to Table 10-1.

display icmp statistics

Syntax

display icmp statistics [ slot slot-number ]

View

Any view

Default Level

1: Monitor level

Parameters

slot slot-number: Displays the ICMP statistics on the specified device. If the device is in an IRF, the
slot-number argument represents the member ID of the device; if the device is not in any IRF, the
slot-number argument represents the device ID.

Description

Use the display icmp statistics command to display ICMP statistics.

Related commands: display ip interface (in IP Addressing Commands of the IP Services Volume),
reset ip statistics.

Examples

# Display ICMP statistics.
<Sysname> display icmp statistics

Input: bad formats   0                   bad checksum            0
        echo             5                   destination unreachable 0
        source quench   0                   redirects              0
        echo reply      10                  parameter problem      0
        timestamp       0                   information request    0
        mask requests   0                   mask replies           0
        time exceeded   0

Output:echo         10                  destination unreachable 0
        source quench  0                   redirects              0
        echo reply     5                   parameter problem      0
        timestamp      0                   information reply      0
        mask requests  0                   mask replies           0
### Table 10-2 display icmp statistics command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bad formats</td>
<td>Number of input wrong format packets</td>
</tr>
<tr>
<td>bad checksum</td>
<td>Number of input wrong checksum packets</td>
</tr>
<tr>
<td>echo</td>
<td>Number of input/output echo packets</td>
</tr>
<tr>
<td>destination unreachable</td>
<td>Number of input/output destination unreachable packets</td>
</tr>
<tr>
<td>source quench</td>
<td>Number of input/output source quench packets</td>
</tr>
<tr>
<td>redirects</td>
<td>Number of input/output redirection packets</td>
</tr>
<tr>
<td>echo reply</td>
<td>Number of input/output replies</td>
</tr>
<tr>
<td>parameter problem</td>
<td>Number of input/output parameter problem packets</td>
</tr>
<tr>
<td>timestamp</td>
<td>Number of input/output time stamp packets</td>
</tr>
<tr>
<td>information request</td>
<td>Number of input information request packets</td>
</tr>
<tr>
<td>mask requests</td>
<td>Number of input/output mask requests</td>
</tr>
<tr>
<td>mask replies</td>
<td>Number of input/output mask replies</td>
</tr>
<tr>
<td>information reply</td>
<td>Number of output information reply packets</td>
</tr>
<tr>
<td>time exceeded</td>
<td>Number of input/output expiration packets</td>
</tr>
</tbody>
</table>

### display ip socket

**Syntax**

```plaintext
display ip socket [socktype sock-type] [task-id socket-id] [slot slot-number]
```

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

- **socktype sock-type**: Displays the socket information of this type. The sock type is in the range 1 to 3, corresponding to TCP, UDP and raw IP respectively.
- **task-id**: Displays the socket information of this task. Task ID is in the range 1 to 100.
- **socket-id**: Displays the information of the socket. Socket ID is in the range 0 to 3072.
- **slot slot-number**: Displays the socket information of the specified device. If the device is in an IRF, the `slot-number` argument represents the member ID of the device; if the device is not in any IRF, the `slot-number` argument represents the device ID.

**Description**

Use the `display ip socket` command to display socket information.
Examples

# Display the TCP socket information.

<Sysname> display ip socket

SOCK_STREAM:
Task = VTYD(38), socketid = 1, Proto = 6,
LA = 0.0.0.0:23, FA = 0.0.0.0:0,
sndbuf = 8192, rcvbuf = 8192, sb_cc = 0, rb_cc = 0,
socket option = SO_ACCEPTCONN SO_KEEPALIVE SO_REUSEPORT SO_SENDVPNID(3073) SO_SETKEEPALIVE,
socket state = SS_PRIV SS_ASYNC

Task = HTTP(36), socketid = 1, Proto = 6,
LA = 0.0.0.0:80, FA = 0.0.0.0:0,
sndbuf = 8192, rcvbuf = 8192, sb_cc = 0, rb_cc = 0,
socket option = SO_ACCEPTCONN SO_REUSEPORT,
socket state = SS_PRIV SS_NBIO

Task = ROUT(69), socketid = 10, Proto = 6,
LA = 0.0.0.0:179, FA = 192.168.1.45:0,
sndbuf = 8192, rcvbuf = 8192, sb_cc = 0, rb_cc = 0,
socket option = SO_ACCEPTCONN SO_REUSEADDR SO_REUSEPORT SO_SENDVPNID(0),
socket state = SS_PRIV SS_ASYNC

Task = VTYD(38), socketid = 4, Proto = 6,
LA = 192.168.1.40:23, FA = 192.168.1.52:1917,
sndbuf = 8192, rcvbuf = 8192, sb_cc = 237, rb_cc = 0,
socket option = SO_KEEPALIVE SO_OOBINLINE SO_REUSEPORT SO_SENDVPNID(0) SO_SETKEEPALIVE,
socket state = SS_ISCONNECTED SS_PRIV SS_ASYNC

Task = VTYD(38), socketid = 3, Proto = 6,
LA = 192.168.1.40:23, FA = 192.168.1.84:1503,
sndbuf = 8192, rcvbuf = 8192, sb_cc = 0, rb_cc = 0,
socket option = SO_KEEPALIVE SO_OOBINLINE SO_REUSEPORT SO_SENDVPNID(0) SO_SETKEEPALIVE,
socket state = SS_ISCONNECTED SS_PRIV SS_ASYNC

Task = ROUT(69), socketid = 11, Proto = 6,
LA = 192.168.1.40:1025, FA = 192.168.1.45:179,
sndbuf = 8192, rcvbuf = 8192, sb_cc = 0, rb_cc = 0,
socket option = SO_REUSEADDR SO_LINGER SO_SENDVPNID(0),
socket state = SS_ISCONNECTED SS_PRIV SS_ASYNC

SOCK_DGRAM:
Task = NTPT(37), socketid = 1, Proto = 17,
LA = 0.0.0.0:123, FA = 0.0.0.0:0,
sndbuf = 9216, rcvbuf = 41600, sb_cc = 0, rb_cc = 0,
socket option = SO_UDPCHECKSUM SO_SENDVPNID(3073),
socket state = SS_PRIV
Task = AGNT(51), socketid = 1, Proto = 17,
LA = 0.0.0.0:161, FA = 0.0.0.0:0,
sndbuf = 9216, rcvbuf = 41600, sb_cc = 0, rb_cc = 0,
socket option = SO_UDPCHECKSUM SO_SENDVPNID(3073),
socket state = SS_PRIV SS_NBIO SS_ASYNC

Task = RDSO(56), socketid = 1, Proto = 17,
LA = 0.0.0.0:1024, FA = 0.0.0.0:0,
sndbuf = 9216, rcvbuf = 41600, sb_cc = 0, rb_cc = 0,
socket option = SO_UDPCHECKSUM,
socket state = SS_PRIV

Task = TRAP(52), socketid = 1, Proto = 17,
LA = 0.0.0.0:1025, FA = 0.0.0.0:0,
sndbuf = 9216, rcvbuf = 0, sb_cc = 0, rb_cc = 0,
socket option = SO_UDPCHECKSUM,
socket state = SS_PRIV

Task = RDSO(56), socketid = 2, Proto = 17,
LA = 0.0.0.0:1812, FA = 0.0.0.0:0,
sndbuf = 9216, rcvbuf = 41600, sb_cc = 0, rb_cc = 0,
socket option = SO_UDPCHECKSUM,
socket state = SS_PRIV

SOCK_RAW:
Task = ROUT(69), socketid = 8, Proto = 89,
LA = 0.0.0.0, FA = 0.0.0.0,
sndbuf = 262144, rcvbuf = 262144, sb_cc = 0, rb_cc = 0,
socket option = SO_SENDVPNID(0) SO_RCVVPNID(0),
socket state = SS_PRIV SS_ASYNC

Task = ROUT(69), socketid = 3, Proto = 2,
LA = 0.0.0.0, FA = 0.0.0.0,
sndbuf = 32767, rcvbuf = 256000, sb_cc = 0, rb_cc = 0,
socket option = SO_SENDVPNID(0) SO_RCVVPNID(0),
socket state = SS_PRIV SS_NBIO SS_ASYNC

Task = ROUT(69), socketid = 2, Proto = 103,
LA = 0.0.0.0, FA = 0.0.0.0,
sndbuf = 65536, rcvbuf = 256000, sb_cc = 0, rb_cc = 0,
socket option = SO_SENDVPNID(0) SO_RCVVPNID(0),
socket state = SS_PRIV SS_NBIO SS_ASYNC

Task = ROUT(69), socketid = 1, Proto = 65,
LA = 0.0.0.0, FA = 0.0.0.0,
sndbuf = 32767, rcvbuf = 256000, sb_cc = 0, rb_cc = 0,
socket option = 0,
Task = RSVP(73), socketid = 1, Proto = 46, LA = 0.0.0.0, FA = 0.0.0.0, sndbuf = 4194304, rcvbuf = 4194304, sb_cc = 0, rb_cc = 0, socket option = 0, socket state = SS_PRIV SS_NBIO SS_ASYNC

Table 10-3 display ip socket command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOCK_STREAM</td>
<td>TCP socket</td>
</tr>
<tr>
<td>SOCK_DGRAM</td>
<td>UDP socket</td>
</tr>
<tr>
<td>SOCK_RAW</td>
<td>Raw IP socket</td>
</tr>
<tr>
<td>Task</td>
<td>Task number</td>
</tr>
<tr>
<td>socketid</td>
<td>Socket ID</td>
</tr>
<tr>
<td>Proto</td>
<td>Protocol number of the socket, indicating the protocol type that IP carries</td>
</tr>
<tr>
<td>LA</td>
<td>Local address and local port number</td>
</tr>
<tr>
<td>FA</td>
<td>Remote address and remote port number</td>
</tr>
<tr>
<td>sndbuf</td>
<td>Sending buffer size of the socket, in bytes</td>
</tr>
<tr>
<td>rcvbuf</td>
<td>Receiving buffer size of the socket, in bytes</td>
</tr>
<tr>
<td>sb_cc</td>
<td>Current data size in the sending buffer (It is available only for TCP that</td>
</tr>
<tr>
<td></td>
<td>can buffer data)</td>
</tr>
<tr>
<td>rb_cc</td>
<td>Data size currently in the receiving buffer</td>
</tr>
<tr>
<td>socket option</td>
<td>Socket option</td>
</tr>
<tr>
<td>socket state</td>
<td>Socket state</td>
</tr>
</tbody>
</table>

display ip statistics

Syntax

display ip statistics [ slot slot-number ]

View

Any view

Default Level

1: Monitor level

Parameters

slot slot-number: Displays statistics of IP packets on the specified device. If the device is in an IRF, the slot-number argument represents the member ID of the device; if the device is not in any IRF, the slot-number argument represents the device ID.
**Description**

Use the `display ip statistics` command to display statistics of IP packets.

Related commands: `display ip interface` (in *IP Addressing Commands* of the *IP Services Volume*), `reset ip statistics`.

**Examples**

# Display statistics of IP packets.

```bash
<Sysname> display ip statistics
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Input:</strong></td>
<td></td>
</tr>
<tr>
<td>sum</td>
<td>Total number of packets received</td>
</tr>
<tr>
<td>local</td>
<td>Total number of packets with destination being local</td>
</tr>
<tr>
<td>bad protocol</td>
<td>Total number of unknown protocol packets</td>
</tr>
<tr>
<td>bad format</td>
<td>Total number of packets with incorrect format</td>
</tr>
<tr>
<td>bad checksum</td>
<td>Total number of packets with incorrect checksum</td>
</tr>
<tr>
<td>bad options</td>
<td>Total number of packets with incorrect option</td>
</tr>
<tr>
<td>forwarding</td>
<td>Total number of packets forwarded</td>
</tr>
<tr>
<td>dropped</td>
<td>Total number of packets discarded</td>
</tr>
<tr>
<td>no route</td>
<td>Total number of packets for which no route is available</td>
</tr>
<tr>
<td>Fragment:</td>
<td></td>
</tr>
<tr>
<td>input</td>
<td>Total number of fragments received</td>
</tr>
<tr>
<td>output</td>
<td>Total number of fragments sent</td>
</tr>
<tr>
<td>dropped</td>
<td>Total number of fragments dropped</td>
</tr>
<tr>
<td>fragmented</td>
<td>Total number of packets successfully fragmented</td>
</tr>
<tr>
<td>couldn't fragment</td>
<td>Total number of packets that failed to be fragmented</td>
</tr>
<tr>
<td>Reassembling:</td>
<td></td>
</tr>
<tr>
<td>sum</td>
<td>Total number of packets reassembled</td>
</tr>
<tr>
<td>timeouts</td>
<td>Total number of reassembly timeout fragments</td>
</tr>
</tbody>
</table>

Table 10-4 display ip statistics command output description
display tcp statistics

Syntax

display tcp statistics

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the **display tcp statistics** command to display statistics of TCP traffic.

Related commands: **display tcp status**, **reset tcp statistics**.

Examples

# Display statistics of TCP traffic.

<Sysname> display tcp statistics

Received packets:
Total: 8457
packets in sequence: 3660 (5272 bytes)
window probe packets: 0, window update packets: 0
checksum error: 0, offset error: 0, short error: 0
duplicate packets: 1 (8 bytes), partially duplicate packets: 0 (0 bytes)
out-of-order packets: 17 (0 bytes)
packets of data after window: 0 (0 bytes)
packets received after close: 0

ACK packets: 4625 (141989 bytes)
duplicate ACK packets: 1702, too much ACK packets: 0

Sent packets:
Total: 6726
urgent packets: 0
control packets: 21 (including 0 RST)
window probe packets: 0, window update packets: 0
data packets: 6484 (141984 bytes) data packets retransmitted: 0 (0 bytes)
ACK-only packets: 221 (177 delayed)

Retransmitted timeout: 0, connections dropped in retransmitted timeout: 0
Keepalive timeout: 1682, keepalive probe: 1682, Keepalive timeout, so connections disconnected : 0
Initiated connections: 0, accepted connections: 22, established connections: 22
Closed connections: 49 (dropped: 0, initiated dropped: 0)
Packets dropped with MD5 authentication: 0
Packets permitted with MD5 authentication: 0

Table 10-5 display tcp statistics command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>Total number of packets received</td>
</tr>
<tr>
<td>packets in sequence</td>
<td>Number of packets arriving in sequence</td>
</tr>
<tr>
<td>window probe packets</td>
<td>Number of window probe packets received</td>
</tr>
<tr>
<td>window update packets</td>
<td>Number of window update packets received</td>
</tr>
<tr>
<td>checksum error</td>
<td>Number of checksum error packets received</td>
</tr>
<tr>
<td>offset error</td>
<td>Number of offset error packets received</td>
</tr>
<tr>
<td>short error</td>
<td>Number of received packets with length being too small</td>
</tr>
<tr>
<td>duplicate packets</td>
<td>Number of completely duplicate packets received</td>
</tr>
<tr>
<td>partially duplicate packets</td>
<td>Number of partially duplicate packets received</td>
</tr>
<tr>
<td>out-of-order packets</td>
<td>Number of out-of-order packets received</td>
</tr>
<tr>
<td>packets of data after window</td>
<td>Number of packets outside the receiving window</td>
</tr>
<tr>
<td>packets received after close</td>
<td>Number of packets that arrived after connection is closed</td>
</tr>
<tr>
<td>ACK packets</td>
<td>Number of ACK packets received</td>
</tr>
<tr>
<td>duplicate ACK packets</td>
<td>Number of duplicate ACK packets received</td>
</tr>
<tr>
<td>too much ACK packets</td>
<td>Number of ACK packets for data unsent</td>
</tr>
<tr>
<td>Total</td>
<td>Total number of packets sent</td>
</tr>
<tr>
<td>urgent packets</td>
<td>Number of urgent packets sent</td>
</tr>
<tr>
<td>control packets</td>
<td>Number of control packets sent</td>
</tr>
<tr>
<td>window probe packets</td>
<td>Number of window probe packets sent; in the brackets are resent packets</td>
</tr>
<tr>
<td>window update packets</td>
<td>Number of window update packets sent</td>
</tr>
<tr>
<td>data packets</td>
<td>Number of data packets sent</td>
</tr>
<tr>
<td>data packets retransmitted</td>
<td>Number of data packets retransmitted</td>
</tr>
<tr>
<td>ACK-only packets</td>
<td>Number of ACK packets sent; in brackets are delayed ACK packets</td>
</tr>
<tr>
<td>Retransmitted timeout</td>
<td>Number of retransmission timer timeouts</td>
</tr>
<tr>
<td>connections dropped in retransmitted timeout</td>
<td>Number of connections broken due to retransmission timeouts</td>
</tr>
<tr>
<td>Keepalive timeout</td>
<td>Number of keepalive timer timeouts</td>
</tr>
<tr>
<td>keepalive probe</td>
<td>Number of keepalive probe packets sent</td>
</tr>
<tr>
<td>Keepalive timeout, so connections disconnected</td>
<td>Number of connections broken due to timeout of the keepalive timer</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Initiated connections</td>
<td>Number of connections initiated</td>
</tr>
<tr>
<td>accepted connections</td>
<td>Number of connections accepted</td>
</tr>
<tr>
<td>established connections</td>
<td>Number of connections established</td>
</tr>
<tr>
<td>Closed connections</td>
<td>Number of connections closed; in brackets are connections closed accidentally (before receiving SYN from the peer) and connections closed initiatively (after receiving SYN from the peer)</td>
</tr>
<tr>
<td>Packets dropped with MD5 authentication</td>
<td>Number of packets dropped by MD5 authentication</td>
</tr>
<tr>
<td>Packets permitted with MD5 authentication</td>
<td>Number of packets permitted by MD5 authentication</td>
</tr>
</tbody>
</table>

**display tcp status**

**Syntax**

```
display tcp status
```

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

None

**Description**

Use the `display tcp status` command to display status of all TCP connections for monitoring TCP connections.

**Examples**

```
Display status of all TCP connections.
<Sysname> display tcp status
*: TCP MD5 Connection
TCPCB Local Add:port Foreign Add:port State
03e37dc4 0.0.0.0:4001 0.0.0.0:0 Listening
04217174 100.0.0.204:23 100.0.0.253:65508 Established
```

**Table 10-6 display tcp status command output description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>If the status information of a TCP connection contains *, the TCP adopts the MD5 algorithm for authentication.</td>
</tr>
<tr>
<td>TCPCB</td>
<td>TCP control block</td>
</tr>
<tr>
<td>Local Add:port</td>
<td>Local IP address and port number</td>
</tr>
<tr>
<td>Foreign Add:port</td>
<td>Remote IP address and port number</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------------------------------------</td>
</tr>
<tr>
<td>State</td>
<td>State of the TCP connection</td>
</tr>
</tbody>
</table>

**display udp statistics**

**Syntax**

```
display udp statistics
```

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

None

**Description**

Use the `display udp statistics` command to display statistics of UDP packets.

Related commands: `reset udp statistics`.

**Examples**

```
Display statistics of UDP packets.
<Sysname> display udp statistics

Received packets:
 Total: 0
 checksum error: 0
 shorter than header: 0, data length larger than packet: 0
 unicast(no socket on port): 0
 broadcast/multicast(no socket on port): 0
 not delivered, input socket full: 0
 input packets missing pcb cache: 0

Sent packets:
 Total: 0
```

**Table 10-7 display udp statistics command output description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Received packets:</td>
<td>Total number of UDP packets received</td>
</tr>
<tr>
<td>checksum error</td>
<td>Total number of packets with incorrect checksum</td>
</tr>
<tr>
<td>shorter than header</td>
<td>Number of packets with data shorter than head</td>
</tr>
<tr>
<td>data length larger than packet</td>
<td>Number of packets with data longer than packet</td>
</tr>
<tr>
<td>unicast(no socket on port)</td>
<td>Number of unicast packets with no socket on port</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------------------</td>
<td>------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>broadcast/multicast(no socket on port)</td>
<td>Number of broadcast/multicast packets without socket on port</td>
</tr>
<tr>
<td>not delivered, input socket full</td>
<td>Number of packets not delivered to an upper layer due to a full socket cache</td>
</tr>
<tr>
<td>input packets missing pcb cache</td>
<td>Number of packets without matching protocol control block (PCB) cache</td>
</tr>
</tbody>
</table>

| Sent packets: | Total | Total number of UDP packets sent |

**ip forward-broadcast (interface view)**

**Syntax**

```
ip forward-broadcast [acl acl-number]
undo ip forward-broadcast
```

**View**

Interface view

**Default Level**

2: System level

**Parameters**

- **acl acl-number**: Access control list number, in the range 2000 to 3999. From 2000 to 2999 are numbers for basic ACLs, and from 3000 to 3999 are numbers for advanced ACLs. Only directed broadcasts permitted by the ACL can be forwarded.

**Description**

Use the **ip forward-broadcast** command to enable the interface to forward directed broadcasts to a directly-connected network.

Use the **undo ip forward-broadcast** command to disable the interface from forwarding directed broadcasts to a directly-connected network.

By default, an interface is disabled from forwarding directed broadcasts to a directly-connected network.

**Examples**

```
Enable VLAN-interface 2 to forward the directed broadcasts to a directly-connected network matching ACL 2001.
<Sysname> system-view
<Sysname> interface vlan-interface 2
<Sysname-Vlan-interface2> ip forward-broadcast acl 2001
```
ip forward-broadcast (system view)

Syntax

ip forward-broadcast
undo ip forward-broadcast

View

System view

Default Level

1: Monitor level

Parameters

None

Description

Use the `ip forward-broadcast` command to enable the device to receive directed broadcasts.

Use the `undo ip forward-broadcast` command to disable the device from receiving directed broadcasts.

By default, the device is disabled from receiving directed broadcasts.

Examples

# Enable the device to receive directed broadcasts.

```
<Sysname> system-view
[Sysname] ip forward-broadcast
```

ip redirects enable

Syntax

ip redirects enable
undo ip redirects

View

System view

Default Level

2: System level

Parameters

None

Description

Use the `ip redirects enable` command to enable sending of ICMP redirection packets.

Use the `undo ip redirects` command to disable sending of ICMP redirection packets.

This feature is disabled by default.
Examples

# Enable sending of ICMP redirect packets.
<Sysname> system-view
[Sysname] ip redirects enable

ip ttl.expires enable

Syntax

ip ttl.expires enable
undo ip ttl.expires

View

System view

Default Level

2: System level

Parameters

None

Description

Use the **ip ttl.expires enable** command to enable the sending of ICMP timeout packets.
Use the **undo ip ttl.expires** command to disable sending ICMP timeout packets.
Sending ICMP timeout packets is enabled by default.
If the feature is disabled, the device will not send TTL timeout ICMP packets, but still send “reassembly timeout” ICMP packets.

Examples

# Disable sending ICMP timeout packets.
<Sysname> system-view
[Sysname] undo ip ttl.expires

ip unreachables enable

Syntax

ip unreachables enable
undo ip unreachables

View

System view

Default Level

2: System level
Parameters

None

Description

Use the **ip unreachables enable** command to enable the sending of ICMP destination unreachable packets.

Use the **undo ip unreachables** command to disable sending ICMP destination unreachable packets.

Sending ICMP destination unreachable packets is disabled by default.

Examples

```
Enable sending ICMP destination unreachable packets.
<Sysname> system-view
[Sysname] ip unreachables enable
```
**View**

User view

**Default Level**

2: System level

**Parameters**

None

**Description**

Use the `reset tcp statistics` command to clear statistics of TCP traffic.

Related commands: `display tcp statistics`.

**Examples**

```
Display statistics of TCP traffic.
<Sysname> reset tcp statistics
```

**reset udp statistics**

**Syntax**

```
reset udp statistics
```

**View**

User view

**Default Level**

2: System level

**Parameters**

None

**Description**

Use the `reset udp statistics` command to clear statistics of UDP traffic.

**Examples**

```
Display statistics of UDP traffic.
<Sysname> reset udp statistics
```

**tcp timer fin-timeout**

**Syntax**

```
tcp timer fin-timeout time-value
undo tcp timer fin-timeout
```

**View**

System view
Default Level

2: System level

Parameters

time-value: Length of the TCP finwait timer in seconds, in the range 76 to 3,600.

Description

Use the tcp timer fin-timeout command to configure the length of the TCP finwait timer.
Use the undo tcp timer fin-timeout command to restore the default.
By default, the length of the TCP finwait timer is 675 seconds.
Note that the actual length of the finwait timer is determined by the following formula:
Actual length of the finwait timer = (Configured length of the finwait timer – 75) + configured length of the synwait timer
Related commands: tcp timer syn-timeout, tcp window.

Examples

# Set the length of the TCP finwait timer to 800 seconds.
<Sysname> system-view
<Sysname> tcp timer fin-timeout 800

tcp timer syn-timeout

Syntax

tcp timer syn-timeout time-value
undo tcp timer syn-timeout

View

System view

Default Level

2: System level

Parameters

time-value: TCP finwait timer in seconds, in the range 2 to 600.

Description

Use the tcp timer syn-timeout command to configure the length of the TCP synwait timer.
Use the undo tcp timer syn-timeout command to restore the default.
By default, the value of the TCP synwait timer is 75 seconds.
Related commands: tcp timer fin-timeout, tcp window.

Examples

# Set the length of the TCP synwait timer to 80 seconds.
<Sysname> system-view
tcp window

Syntax

tcp window window-size
undo tcp window

View

System view

Default Level

2: System level

Parameters

window-size: Size of the send/receive buffer in KB, in the range 1 to 32.

Description

Use the tcp window command to configure the size of the TCP send/receive buffer.
Use the undo tcp window command to restore the default.
The size of the TCP send/receive buffer is 8 KB by default.
Related commands: tcp timer fin-timeout, tcp timer syn-timeout.

Examples

# Configure the size of the TCP send/receive buffer as 3 KB.
<Sysname> system-view
[Sysname] tcp window 3
UDP Helper Configuration Commands

display udp-helper server

Syntax

display udp-helper server [ interface interface-type interface-number ]

View

Any view

Default Level

2: System level

Parameters

interface interface-type interface-number: Displays information of forwarded UDP packets on the specified interface.

Description

Use the display udp-helper server command to display the information of forwarded UDP packets on the specified interface or all interfaces.

If interface-type interface-number is not specified, this command displays the information of forwarded UDP packets on all interfaces.

Examples

# Display the information of forwarded UDP packets on the interface VLAN-interface 1.

<Sysname> display udp-helper server interface vlan-interface 1
Interface name     Server address   Packets sent
Vlan-interface1    192.1.1.2        0

The information above shows that the IP address of the destination server corresponding to the interface VLAN-interface 1 is 192.1.1.2, and that no packets are forwarded to the destination server.

reset udp-helper packet

Syntax

reset udp-helper packet

View

User view
Default Level
2: System level

Parameters
None

Description
Use the reset udp-helper packet command to clear the statistics of UDP packets forwarded.
Related commands: display udp-helper server.

Examples
# Clear the statistics of the forwarded UDP packets.
<Sysname> reset udp-helper packet

udp-helper enable

Syntax
udp-helper enable
undo udp-helper enable

View
System view

Default Level
2: System level

Parameters
None

Description
Use the udp-helper enable command to enable UDP Helper. The device enabled with UDP Helper functions as a relay agent that converts UDP broadcast packets into unicast packets and forwards them to a specified destination server.
Use the undo udp-helper enable command to disable UDP Helper.
By default, UDP Helper is disabled.

Examples
# Enable UDP Helper
<Sysname> system-view
[Sysname] udp-helper enable

udp-helper port

Syntax
udp-helper port { port-number | dns | netbios-ds | netbios-ns | tacacs | tftp | time }
undo udp-helper port (port-number | dns | netbios-mds | netbios-ns | tacacs | tftp | time)

View
System view

Default Level
2: System level

Parameters

port-number: UDP port number with which packets need to be forwarded, in the range of 1 to 65535 (except 67 and 68).
dns: Forwards DNS data packets. The corresponding UDP port number is 53.
netbios-mds: Forwards NetBIOS data packets. The corresponding UDP port number is 138.
netbios-ns: Forwards NetBIOS name service data packets. The corresponding UDP port number is 137.
tacacs: Forwards terminal access controller access control system (TACACS) data packet. The corresponding UDP port number is 49.
tftp: Forwards TFTP data packets. The corresponding UDP port number is 69.
time: Forwards time service data packets. The corresponding UDP port number is 37.

Description
Use the `udp-helper port` command to enable the forwarding of packets with the specified UDP port number.
Use the `undo udp-helper port` command to remove the configured UDP port numbers.
By default, no UDP port number is specified.
The specified UDP port numbers will all be removed if UDP Helper is disabled.

Examples

# Forward broadcast packets with the UDP destination port number 100.
<Sysname> system-view
<Sysname> udp-helper port 100

udp-helper server

Syntax

udp-helper server ip-address
undo udp-helper server [ip-address]

View
Interface view

Default Level
2: System level
Parameters

*ip-address*: IP address of the destination server, in dotted decimal notation.

Description

Use the `udp-helper server` command to specify the destination server which UDP packets need to be forwarded to.

Use the `undo udp-helper server` command to remove the destination server.

No destination server is configured by default.

Currently, you can configure up to 20 destination servers on an interface.

Note that you will remove all the destination servers on an interface if you carry out the `undo udp-helper server` command without the `ip-address` argument.

Related commands: `display udp-helper server`.

Examples

```
Specify the IP address of the destination server as 192.1.1.2 on the interface VLAN-interface 100.
<Sysname> system-view
[Sysname] interface vlan-interface 100
[Sysname-Vlan-interface100] udp-helper server 192.1.1.2
```
IPv6 Basics Configuration Commands

display dns ipv6 dynamic-host

Syntax

display dns ipv6 dynamic-host

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the **display dns ipv6 dynamic-host** command to display IPv6 dynamic domain name information, including the domain name, IPv6 address, and TTL of the DNS entries.

You can use the **reset dns ipv6 dynamic-host** command to clear all IPv6 dynamic domain name information from the cache.

Examples

# Display IPv6 dynamic domain name information.

```
<Sysname> display dns ipv6 dynamic-host
NoHost IPv6 Address TTL
1 aaa 2001::2 6
```

Table 12-1 display dns ipv6 dynamic-host command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Sequence number</td>
</tr>
<tr>
<td>Host</td>
<td>Host name</td>
</tr>
<tr>
<td>IPv6 address</td>
<td>IPv6 address of the host</td>
</tr>
<tr>
<td>TTL</td>
<td>Time within which an entry can be cached, in seconds</td>
</tr>
</tbody>
</table>
For a domain name displayed with the `display dns ipv6 dynamic-host` command, no more than 21 characters can be displayed. If the domain name exceeds the maximum length, the first 21 characters will be displayed.

### display dns ipv6 server

**Syntax**

`display dns ipv6 server [ dynamic ]`

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

- **dynamic**: Displays IPv6 DNS server information acquired dynamically through DHCP or other protocols.

**Description**

Use the `display dns ipv6 server` command to display IPv6 DNS server information.

**Examples**

# Display IPv6 DNS server information.

```
<Sysname> display dns ipv6 server
Type:
D:Dynamic S:Static
```

<table>
<thead>
<tr>
<th>DNS Server</th>
<th>Type</th>
<th>IPv6 Address</th>
<th>(Interface Name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S</td>
<td>1::1</td>
<td></td>
</tr>
</tbody>
</table>

**Table 12-2 display dns ipv6 server command output description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS Server</td>
<td>Sequence number of the DNS server, which is assigned automatically by the system, starting from 1.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of the DNS server: &quot;S&quot; represents a statically configured DNS server, and &quot;D&quot; represents a DNS server obtained dynamically through DHCP.</td>
</tr>
<tr>
<td>IPv6 Address</td>
<td>IPv6 address of the DNS server</td>
</tr>
<tr>
<td>Interface Name</td>
<td>Interface name, which is available only for a DNS server with an IPv6 link-local address configured.</td>
</tr>
</tbody>
</table>
display ipv6 fib

Syntax

    display ipv6 fib [ slot-number ] [ ipv6-address ]

View

    Any view

Default Level

    1: Monitor level

Parameters

    ipv6-address: Displays the IPv6 FIB entries for an IPv6 address.

    slot-number: Displays the IPv6 forwarding information base (FIB) entries of a specified device in an IRF. If no IRF is formed, the IPv6 FIB entries of the current device are displayed only. The slot-number argument indicates the member ID of the device.

Description

Use the display ipv6 fib command to display IPv6 FIB entries. If no argument is specified, all IPv6 FIB entries will be displayed.

The device looks up a matching IPv6 FIB entry for forwarding an IPv6 packet.

Examples

    # Display all IPv6 FIB entries.
    <Sysname> display ipv6 fib
    FIB Table:
    Total number of Routes : 1

    Flag:
    U:Useable   G:Gateway   H:Host   B:Blackhole   D:Dynamic   S:Static

    Destination:    ::1                                     PrefixLength : 128
    NextHop    :    ::1                                     Flag         : HU
    Label      :    NULL                                    Tunnel ID    : 0
    TimeStamp  :    Date- 7/14/2008, Time- 15:17:15
    Interface  :    InLoopBack0

Table 12-3 display ipv6 fib command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of Routes</td>
<td>Total number of routes in the FIB</td>
</tr>
<tr>
<td>Destination</td>
<td>Destination address</td>
</tr>
<tr>
<td>PrefixLength</td>
<td>Prefix length of the destination address</td>
</tr>
<tr>
<td>NextHop</td>
<td>Next hop</td>
</tr>
</tbody>
</table>
### display ipv6 host

**Syntax**

`display ipv6 host`

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

None

**Description**

Use the `display ipv6 host` command to display the mappings between host names and IPv6 addresses in the static domain name resolution table.

Related commands: `ipv6 host`.

**Examples**

```
Display the mappings between host names and IPv6 addresses in the static domain name resolution table.
<Sysname> display ipv6 host
Host Age Flags IPv6Address
aaa 0 static 2002::1
bbb 0 static 2002::2
```

**Table 12-4 display ipv6 host command output description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host</td>
<td>Host name</td>
</tr>
<tr>
<td>Age</td>
<td>Time for the entry to live. “0” is displayed in the case of static configuration.</td>
</tr>
</tbody>
</table>
### display ipv6 interface

**Syntax**

```
display ipv6 interface [interface-type [interface-number]] [verbose]
```

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

- `interface-type`: Interface type.
- `interface-number`: Interface number.
- `verbose`: Displays the detailed IPv6 information of an interface.

**Description**

Use the `display ipv6 interface` command to display the IPv6 information of an interface for which an IPv6 address can be configured.

If `interface-type interface-number` is not specified, the IPv6 information of all interfaces for which IPv6 addresses can be configured is displayed; if only `interface-type` is specified, the IPv6 information of the interfaces of the specified type for which IPv6 addresses can be configured is displayed; if `interface-type interface-number` is specified, the IPv6 information of the specified interface is displayed. If the `verbose` keyword is also specified, the detailed IPv6 information of the interface is displayed.

**Examples**

# Display the IPv6 information of VLAN-interface 2.

```
<Sysname> display ipv6 interface vlan-interface 2 verbose
Vlan-interface2 current state :UP
Line protocol current state :UP
IPv6 is enabled, link-local address is FE80::1234:56FF:FE65:4322
 Global unicast address(es):
 2001::1, subnet is 2001::/64
 Joined group address(es):
 FF02::1:FF00:1
 FF02::1:FF65:4322
 FF02::2
 FF02::1
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flags</td>
<td>Flag indicating the type of mapping between a host name and an IPv6 address. Static indicates a static mapping.</td>
</tr>
<tr>
<td>IPv6Address</td>
<td>IPv6 address of a host</td>
</tr>
</tbody>
</table>
MTU is 1500 bytes
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds
ND retransmit interval is 1000 milliseconds
Hosts use stateless autoconfig for addresses
IPv6 Packet statistics:
InReceives: 0
InTooShorts: 0
InTruncatedPkts: 0
InHopLimitExceeds: 0
InBadReaders: 0
InBadOptions: 0
ReasmReqds: 0
ReasmOKs: 0
InFragDrops: 0
InFragTimeouts: 0
OutFragFails: 0
InUnknownProtos: 0
InDelivers: 0
OutRequests: 0
OutForwDatagrams: 0
InNoRoutes: 0
InTooBigErrors: 0
OutFragOKs: 0
OutFragCreates: 0
InMcastPkts: 0
InMcastNotMembers: 0
OutMcastPkts: 0
InAddrErrors: 0
InDiscards: 0
OutDiscards: 0

Table 12-5 display ipv6 interface verbose command output description (on a switch)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlan-interface2 current state</td>
<td>Physical state of the interface:</td>
</tr>
<tr>
<td></td>
<td>• Administratively DOWN: Indicates that the VLAN interface is administratively down; that is, the interface is shut down using the <code>shutdown</code> command.</td>
</tr>
<tr>
<td></td>
<td>• DOWN: Indicates that the VLAN interface is administratively up but its physical state is down; that is, no ports in the VLAN are up, which may be caused by a connection or link failure.</td>
</tr>
<tr>
<td></td>
<td>• UP: Indicates that the administrative and physical states of the VLAN interface are both up.</td>
</tr>
<tr>
<td>Line protocol current state</td>
<td>Link layer protocol state of the interface:</td>
</tr>
<tr>
<td></td>
<td>• DOWN: Indicates that the link layer protocol state of the VLAN interface is down, generally because no IP address is configured.</td>
</tr>
<tr>
<td></td>
<td>• UP: Indicates that the link layer protocol state of the VLAN interface is up.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>IPv6 is enabled</td>
<td>IPv6 packet forwarding state of the interface (after an IPv6 address is configured for an interface, IPv6 is automatically enabled on it; IPv6 packet forwarding is enabled in the example)</td>
</tr>
<tr>
<td>link-local address</td>
<td>Link-local address configured for the interface</td>
</tr>
<tr>
<td>Global unicast address(es)</td>
<td>Aggregatable global unicast address(es) configured for the interface</td>
</tr>
<tr>
<td>Joined group address(es)</td>
<td>Address(es) of multicast group(s) that the interface has joined</td>
</tr>
<tr>
<td>MTU</td>
<td>Maximum transmission unit of the interface</td>
</tr>
</tbody>
</table>
| ND DAD is enabled, number of DAD attempts | Number of DAD attempts (DAD is enabled).  
  - If DAD is enabled, the number of neighbor request messages is also displayed (configured by using the `ipv6 nd dad attempts` command)  
  - If DAD is disabled, “ND DAD is disabled” is displayed. (You can set the number of neighbor request messages for DAD to 0 to disable this function.) |
<p>| ND reachable time                   | Neighbor reachable time                                                                                                                    |
| ND retransmit interval              | Interval for retransmitting a neighbor solicitation (NS) message                                                                          |
| Hosts use stateless autoconfig for addresses | Hosts use stateless autoconfiguration mode to acquire IPv6 addresses                                                                    |
| InReceives                          | All IPv6 packets received by the interface, including all types of error packets.                                                             |
| InTooShorts                         | Received IPv6 packets that are too short, with a length less than 40 bytes, for example.                                                     |
| InTruncatedPkts                     | Received IPv6 packets with a length less than that specified in the packets                                                               |
| InHopLimitExceeds                   | Received IPv6 packets with a hop count exceeding the limit                                                                                 |
| InBadHeaders                        | Received IPv6 packets with bad basic headers                                                                                               |
| InBadOptions                        | Received IPv6 packets with bad extension headers                                                                                           |
| ReasmReqds                          | Received IPv6 fragments                                                                                                                    |
| ReasmOKs                            | Number of packets after reassembly rather than the number of fragments                                                                  |
| InFragDrops                         | IPv6 fragments discarded due to certain error                                                                                               |
| InFragTimeouts                      | IPv6 fragments discarded because the interval for which they had stayed in the system buffer exceeded the specified period                   |
| OutFragFails                        | Packets failed in fragmentation on the outbound interface                                                                                   |
| InUnknownProtos                     | Received IPv6 packets with unknown or unsupported protocol type                                                                               |
| InDelivers                          | Received IPv6 packets that were delivered to application layer protocols (such as ICMPv6, TCP, and UDP)                                      |
| OutRequests                         | Local IPv6 packets sent by IPv6 application protocols                                                                                       |
| OutForwDatagrams                    | Packets forwarded by the outbound interface.                                                                                               |
| InNoRoutes                          | IPv6 packets that were discarded because no matched route can be found                                                                    |</p>
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InTooBigErrors</td>
<td>IPv6 packets that were discarded because they exceeded the PMTU</td>
</tr>
<tr>
<td>OutFragOKs</td>
<td>Packets that were fragmented on the outbound interface</td>
</tr>
<tr>
<td>OutFragCreates</td>
<td>Number of packet fragments after fragmentation on the outbound interface</td>
</tr>
<tr>
<td>InMcastPkts</td>
<td>IPv6 multicast packets received on the interface</td>
</tr>
<tr>
<td>InMcastNotMembers</td>
<td>Incoming IPv6 multicast packets that were discarded because the interface did not belong to the corresponding multicast groups</td>
</tr>
<tr>
<td>OutMcastPkts</td>
<td>IPv6 multicast packets sent by the interface</td>
</tr>
<tr>
<td>InAddrErrors</td>
<td>IPv6 packets that were discarded due to invalid destination addresses</td>
</tr>
<tr>
<td>InDiscards</td>
<td>Received IPv6 packets that were discarded due to resource problems rather than packet content errors</td>
</tr>
<tr>
<td>OutDiscards</td>
<td>Sent packets that were discarded due to resource problems rather than packet content errors</td>
</tr>
</tbody>
</table>

# Display the brief IPv6 information of all interfaces for which IPv6 addresses can be configured.

```bash
<Sysname> display ipv6 interface
```

*down: administratively down

(s): spoofing

<table>
<thead>
<tr>
<th>Interface</th>
<th>Physical</th>
<th>Protocol</th>
<th>IPv6 Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlan-interface1</td>
<td>down</td>
<td>down</td>
<td>Unassigned</td>
</tr>
<tr>
<td>Vlan-interface2</td>
<td>up</td>
<td>up</td>
<td>2001::1</td>
</tr>
<tr>
<td>Vlan-interface100</td>
<td>up</td>
<td>down</td>
<td>Unassigned</td>
</tr>
</tbody>
</table>

Table 12-6 display ipv6 interface command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*down: administratively down</td>
<td>The interface is down, that is, the interface is closed by using the shutdown command.</td>
</tr>
<tr>
<td>(s): spoofing</td>
<td>Spoofing attribute of the interface, that is, the link protocol state of the interface is up, but the link does not exist, or the link is established on demand, instead of being permanent.</td>
</tr>
<tr>
<td>Interface</td>
<td>Name of the interface</td>
</tr>
<tr>
<td>Physical</td>
<td>Physical state of the interface:</td>
</tr>
<tr>
<td></td>
<td>*down: Indicates that the VLAN interface is administratively down; that is, the interface is shut down using the shutdown command.</td>
</tr>
<tr>
<td></td>
<td>down: Indicates that the VLAN interface is administratively up but its physical state is down; that is, no port in the VLAN is up, which may be caused by a connection or link failure.</td>
</tr>
<tr>
<td></td>
<td>up: Indicates that the administrative and physical states of the VLAN interface are both up.</td>
</tr>
</tbody>
</table>
### Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| Protocol    | Link protocol state of the interface:  
  - down: Indicates that the link layer protocol state of the VLAN interface is down, generally because no IP address is configured.  
  - up: Indicates that the link layer protocol state of the VLAN interface is up. |
| IPv6 Address| IPv6 address of the interface. Only the first of configured IPv6 addresses is displayed. (If no address is configured for the interface, “Unassigned” will be displayed.) |

---

**display ipv6 neighbors**

**Syntax**

```plaintext
display ipv6 neighbors { { ipv6-address | all | dynamic | static } [slot slot-number] | interface interface-type interface-number | vlan vlan-id } [| { begin | exclude | include } regular-expression]
```

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

- `ipv6-address`: IPv6 address whose neighbor information is to be displayed.
- `all`: Displays information of all neighbors, including neighbors acquired dynamically and configured statically.
- `dynamic`: Displays information of all neighbors acquired dynamically.
- `static`: Displays information of all neighbors configured statically.
- `slot slot-number`: Displays information of the neighbors of a specified device in an IRF. If no IRF is formed, the neighbors of the current device are displayed only. The `slot-number` argument indicates the member ID of the device.
- `interface interface-type interface-number`: Displays information of the neighbors of a specified interface.
- `vlan vlan-id`: Displays information of the neighbors of a specified VLAN whose ID ranges from 1 to 4094.
- `regular-expression`: Uses a regular expression to match neighbor entries. For detailed information about regular expression, refer to CLI display in Basic System Configuration in the System Volume.
  - `begin`: Displays a specific neighbor entry and all the neighbor entries following it. The specific neighbor entry must match the specified regular expression.
  - `exclude`: Displays the neighbor entries not matching the specified regular expression.
  - `include`: Displays the neighbor entries matching the specified regular expression.

**Description**

Use the `display ipv6 neighbors` command to display neighbor information.
You can use the **reset ipv6 neighbors** command to clear specific IPv6 neighbor information.

Related commands: **ipv6 neighbor**, **reset ipv6 neighbors**.

**Examples**

# Display all neighbor information.

```
<Sysname> display ipv6 neighbors all
```

<table>
<thead>
<tr>
<th>IPv6 Address</th>
<th>Link-layer</th>
<th>VID</th>
<th>Interface</th>
<th>State</th>
<th>T</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>FE80::200:5EFF:FE32:B800</td>
<td>0000-5e32-b800</td>
<td>N/A</td>
<td>GE1/0/1</td>
<td>REACH</td>
<td>S</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 12-7 **display ipv6 neighbors** command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 Address</td>
<td>IPv6 address of a neighbor</td>
</tr>
<tr>
<td>Link-layer</td>
<td>Link layer address (MAC address of a neighbor)</td>
</tr>
<tr>
<td>VID</td>
<td>VLAN to which the interface connected with a neighbor belongs</td>
</tr>
<tr>
<td>Interface</td>
<td>Interface connected with a neighbor</td>
</tr>
<tr>
<td>State</td>
<td>State of a neighbor, including:</td>
</tr>
<tr>
<td></td>
<td>• INCMP: The address is being resolved. The link layer address of the</td>
</tr>
<tr>
<td></td>
<td>neighbor is unknown.</td>
</tr>
<tr>
<td></td>
<td>• REACH: The neighbor is reachable.</td>
</tr>
<tr>
<td></td>
<td>• STALE: The reachability of the neighbor is unknown. The device will</td>
</tr>
<tr>
<td></td>
<td>not verify the reachability any longer unless data is sent to the</td>
</tr>
<tr>
<td></td>
<td>neighbor.</td>
</tr>
<tr>
<td></td>
<td>• DELAY: The reachability of the neighbor is unknown. The device sends</td>
</tr>
<tr>
<td></td>
<td>an NS message after a delay.</td>
</tr>
<tr>
<td></td>
<td>• PROBE: The reachability of the neighbor is unknown. The device sends</td>
</tr>
<tr>
<td></td>
<td>an NS message to verify the reachability of the neighbor.</td>
</tr>
<tr>
<td>T</td>
<td>Type of neighbor information, including static configuration and dynamic</td>
</tr>
<tr>
<td></td>
<td>acquisition.</td>
</tr>
<tr>
<td>Age</td>
<td>For a static entry, a hyphen “-“ is displayed. For a dynamic entry, the</td>
</tr>
<tr>
<td></td>
<td>reachable time (in seconds) elapsed is displayed, and if it is never</td>
</tr>
<tr>
<td></td>
<td>reachable, “#” is displayed (for a neighbor acquired dynamically).</td>
</tr>
</tbody>
</table>

**display ipv6 neighbors count**

**Syntax**

```
display ipv6 neighbors { { all | dynamic | static } [slot slot-number] | interface interface-type interface-number | vlan vlan-id } count
```

**View**

Any view

**Default Level**

1: Monitor level
Parameters

all: Displays the total number of all neighbor entries, including neighbor entries acquired dynamically and configured statically.
dynamic: Displays the total number of all neighbor entries acquired dynamically.
static: Displays the total number of neighbor entries configured statically.
slot slot-number: Displays the total number of neighbor entries of a specified device in an IRF. If no IRF is formed, the total number of neighbor entries of the current device is displayed only. The slot-number argument indicates the member ID of the device.
interface interface-type interface-number: Displays the total number of neighbor entries of a specified interface.
vlan vlan-id: Displays the total number of neighbor entries of a specified VLAN whose ID ranges from 1 to 4094.

Description

Use the display ipv6 neighbors count command to display the total number of neighbor entries satisfying the specified condition.

Examples

# Display the total number of neighbor entries acquired dynamically.
<Sysname> display ipv6 neighbors dynamic count
Total dynamic entry(ies): 2

display ipv6 pathmtu

Syntax

display ipv6 pathmtu { ipv6-address | all | dynamic | static }

View

Any view

Default Level

1: Monitor level

Parameters

ipv6-address: IPv6 address whose PMTU information is to be displayed.
all: Displays all PMTU information.
dynamic: Displays all dynamic PMTU information.
static: Displays all static PMTU information.

Description

Use the display ipv6 pathmtu command to display the PMTU information of IPv6 addresses.

Examples

# Display all PMTU information.
<Sysname> display ipv6 pathmtu all
IPv6 Destination Address ZoneID PathMTU Age Type
fe80::12 0 1300 40 Dynamic
2222::3 0 1280 - Static

Table 12-8 display ipv6 pathmtu command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 Destination Address</td>
<td>Destination IPv6 address</td>
</tr>
<tr>
<td>ZoneID</td>
<td>ID of address zone, currently invalid</td>
</tr>
<tr>
<td>PathMTU</td>
<td>PMTU of an IPv6 address</td>
</tr>
<tr>
<td>Age</td>
<td>Time for a PMTU to live. For a static PMTU, a hyphen “-” is displayed.</td>
</tr>
<tr>
<td>Type</td>
<td>Indicates that the PMTU is dynamically negotiated or statically configured.</td>
</tr>
</tbody>
</table>

display ipv6 socket

Syntax

display ipv6 socket [ socktype socket-type ] [ task-id socket-id ] [ slot slot-number ]

View

Any view

Default Level

1: Monitor level

Parameters

socktype socket-type: Displays the socket information of this type. The socket type is in the range of 1 to 3. The value “1” represents a TCP socket, “2” a UDP socket, and “3” a raw IP socket.
task-id: Displays the socket information of the task. The task ID is in the range 1 to 100.
socket-id: Displays the information of the socket. The socket ID is in the range 0 to 3072.
slot slot-number: Displays the socket information of a specified device in an IRF. If no IRF is formed, the socket information of the current device is displayed only. The slot-number argument indicates the member ID of the device.

Description

Use the display ipv6 socket command to display socket information.

With no parameter specified, this command displays the information about all the sockets; with only the socket type specified, the command displays the information about sockets of the specified type; with the socket type, task ID and socket ID specified, the command displays the information about the specified socket.

Examples

# Display the information of all sockets.
<Sysname> display ipv6 socket
SOCK_STREAM:
Task = VTYD(14), socketid = 4, Proto = 6,
LA = ::->22, FA = ::->0,
sndbuf = 8192, rcvbuf = 8192, sb_cc = 0, rb_cc = 0,
socket option = SO_ACCEPTCONN SO_REUSEPORT SO_SENDVPNID,
socket state = SS_PRIV SS_ASYNC

Task = VTYD(14), socketid = 3, Proto = 6,
LA = ::->23, FA = ::->0,
sndbuf = 8192, rcvbuf = 8192, sb_cc = 0, rb_cc = 0,
socket option = SO_ACCEPTCONN SO_REUSEPORT SO_SENDVPNID,
socket state = SS_PRIV SS_ASYNC

SOCK_DGRAM:
Task = AGNT(51), socketid = 2, Proto = 17,
LA = ::->161, FA = ::->0,
sndbuf = 9216, rcvbuf = 42080, sb_cc = 0, rb_cc = 0,
socket option = SO_REUSEPORT,
socket state = SS_PRIV SS_NBIO SS_ASYNC

Task = TRAP(52), socketid = 2, Proto = 17,
LA = ::->1024, FA = ::->0,
sndbuf = 9216, rcvbuf = 42080, sb_cc = 0, rb_cc = 0,
socket state = SS_PRIV

SOCK_RAW:
Task = ROUT(86), socketid = 5, Proto = 89,
LA = ::, FA = ::,
sndbuf = 262144, rcvbuf = 262144, sb_cc = 0, rb_cc = 0,
socket option = SO_REUSEADDR,
socket state = SS_PRIV SS_ASYNC

Table 12-9 display ipv6 socket command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOCK_STREAM</td>
<td>TCP socket</td>
</tr>
<tr>
<td>SOCK_DGRAM</td>
<td>UDP socket</td>
</tr>
<tr>
<td>SOCK_RAW</td>
<td>Raw IP socket</td>
</tr>
<tr>
<td>Task</td>
<td>Task name and ID of the created socket</td>
</tr>
<tr>
<td>socketid</td>
<td>ID assigned by the kernel to the created socket</td>
</tr>
<tr>
<td>Proto</td>
<td>Protocol ID</td>
</tr>
<tr>
<td>LA</td>
<td>Local address and local port number</td>
</tr>
<tr>
<td>FA</td>
<td>Remote address and remote port number</td>
</tr>
<tr>
<td>sndbuf</td>
<td>Size of the send buffer</td>
</tr>
<tr>
<td>rcvbuf</td>
<td>Size of the receive buffer</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>sb_cc</td>
<td>Number of bytes sent by the send buffer</td>
</tr>
<tr>
<td>rb_cc</td>
<td>Number of bytes received by the receive buffer</td>
</tr>
<tr>
<td>socket option</td>
<td>Socket option set by the application</td>
</tr>
<tr>
<td>socket state</td>
<td>State of the socket</td>
</tr>
</tbody>
</table>

**display ipv6 statistics**

**Syntax**

`display ipv6 statistics [ slot slot-number ]`

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

`slot slot-number`: Displays statistics of IPv6 packets and ICMPv6 packets on a specified device in an IRF. If no IRF is formed, related information of the current device is displayed only. The `slot-number` argument indicates the member ID of the device.

**Description**

Use the `display ipv6 statistics` command to display statistics of IPv6 packets and ICMPv6 packets.

You can use the `reset ipv6 statistics` command to clear all IPv6 and ICMPv6 packet statistics.

**Examples**

```
Display the statistics of IPv6 packets and ICMPv6 packets.
<Sysname> display ipv6 statistics
IPv6 Protocol:

Sent packets:
Total: 0
 Local sent out: 0 forwarded: 0
 raw packets: 0 discarded: 0
 routing failed: 0 fragments: 0
 fragments failed: 0

Received packets:
Total: 0
 local host: 0 hopcount exceeded: 0
 format error: 0 option error: 0
 protocol error: 0 fragments: 0
 reassembled: 0 reassembly failed: 0
```
reassembly timeout: 0

ICMPv6 protocol:

Sent packets:
Total: 0
unreached: 0 too big: 0
hopcount exceeded: 0 reassembly timeout: 0
parameter problem: 0
echo request: 0 echo replied: 0
neighbor solicit: 0 neighbor advert: 0
router solicit: 0 router advert: 0
redirected: 0
Send failed:
ratelimited: 0 other errors: 0

Received packets:
Total: 0
checksum error: 0 too short: 0
bad code: 0
unreached: 0 too big: 0
hopcount exceeded: 0 reassembly timeout: 0
parameter problem: 0 unknown error type: 0
echoed: 0 echo replied: 0
neighbor solicit: 0 neighbor advert: 0
router solicit: 0 router advert: 0
redirected: 0 router renumbering: 0
unknown info type: 0
Deliver failed:
bad length: 0 ratelimited: 0

Table 12-10 display ipv6 statistics command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 Protocol:</td>
<td>Statistics of IPv6 packets</td>
</tr>
<tr>
<td>Sent packets:</td>
<td>Statistics of sent IPv6 packets, including:</td>
</tr>
<tr>
<td>Total: 0</td>
<td>- Total number of locally sent packets and forwarded packets</td>
</tr>
<tr>
<td>Local sent out: 0</td>
<td>- Number of packets sent locally</td>
</tr>
<tr>
<td>forwarded: 0</td>
<td>- Number of forwarded packets</td>
</tr>
<tr>
<td>raw packets: 0</td>
<td>- Number of packets sent via raw socket</td>
</tr>
<tr>
<td>discarded: 0</td>
<td>- Number of discarded packets</td>
</tr>
<tr>
<td>routing failed: 0</td>
<td>- Number of packets failing to be routed</td>
</tr>
<tr>
<td>fragments: 0</td>
<td>- Number of sent fragment packets</td>
</tr>
<tr>
<td>fragments failed: 0</td>
<td>- Number of fragments failing to be sent</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Received packets:</td>
<td>Statistics of received IPv6 packets, including</td>
</tr>
<tr>
<td>Total: 0</td>
<td>• Total number of received packets</td>
</tr>
<tr>
<td>local host: 0 hopcount exceeded: 0</td>
<td>• Number of packets received locally</td>
</tr>
<tr>
<td>format error: 0 option error: 0</td>
<td>• Number of packets exceeding the hop limit</td>
</tr>
<tr>
<td>protocol error: 0 fragments: 0</td>
<td>• Number of packets in an incorrect format</td>
</tr>
<tr>
<td>reassembled: 0 reassembly failed: 0</td>
<td>• Number of packets with incorrect options</td>
</tr>
<tr>
<td>reassembly timeout: 0</td>
<td>• Number of packets with incorrect protocol</td>
</tr>
<tr>
<td>ICMPv6 protocol:</td>
<td>Statistics of ICMPv6 packets</td>
</tr>
<tr>
<td>Sent packets:</td>
<td>Statistics of sent ICMPv6 packets, including</td>
</tr>
<tr>
<td>Total: 0</td>
<td>• Total number of sent packets</td>
</tr>
<tr>
<td>unreached: 0 too big: 0</td>
<td>• Number of packets whose destination is unreachable</td>
</tr>
<tr>
<td>hopcount exceeded: 0 reassembly timeout: 0</td>
<td>• Number of too large packets</td>
</tr>
<tr>
<td>parameter problem: 0</td>
<td>• Number of packets exceeding the hop limit</td>
</tr>
<tr>
<td>echo request: 0 echo replied: 0</td>
<td>• Number of packets whose fragmentation and reassembly times out</td>
</tr>
<tr>
<td>neighbor solicit: 0 neighbor advert: 0</td>
<td>• Number of packets with parameter errors</td>
</tr>
<tr>
<td>router solicit: 0 router advert: 0</td>
<td>• Number of request packets</td>
</tr>
<tr>
<td>redirected: 0</td>
<td>• Number of response packets</td>
</tr>
<tr>
<td>Send failed:</td>
<td>• Number of neighbor solicitation packets</td>
</tr>
<tr>
<td>ratelimited: 0</td>
<td>• Number of neighbor advertisement packets</td>
</tr>
<tr>
<td>other errors: 0</td>
<td>• Number of redirected packets</td>
</tr>
<tr>
<td></td>
<td>• Number of packets failing to be sent because of rate limitation</td>
</tr>
<tr>
<td></td>
<td>• Number of packets with other errors</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Received packets:</td>
<td>Statistics of received ICMPv6 packets, including</td>
</tr>
<tr>
<td>Total: 0</td>
<td>• Total number of received packets</td>
</tr>
<tr>
<td>checksum error: 0</td>
<td>• Number of packets with checksum errors</td>
</tr>
<tr>
<td>too short: 0</td>
<td>• Number of too small packets</td>
</tr>
<tr>
<td>bad code 0</td>
<td>• Number of packets with error codes</td>
</tr>
<tr>
<td>unreached: 0</td>
<td>• Number of packets whose destination is unreachable</td>
</tr>
<tr>
<td>too big: 0</td>
<td>• Number of too large packets</td>
</tr>
<tr>
<td>hopcount exceeded: 0</td>
<td>• Number of packets exceeding the hop limit</td>
</tr>
<tr>
<td>reassembly timeout: 0</td>
<td>• Number of packets whose fragmentation and reassembly times out</td>
</tr>
<tr>
<td>parameter problem: 0</td>
<td>• Number of packets with parameter errors</td>
</tr>
<tr>
<td>unknown error type: 0</td>
<td>• Number of packets with unknown errors</td>
</tr>
<tr>
<td>echoed: 0</td>
<td>• Number of request packets</td>
</tr>
<tr>
<td>echo replied: 0</td>
<td>• Number of response packets</td>
</tr>
<tr>
<td>neighbor solicit: 0</td>
<td>• Number of neighbor solicitation messages</td>
</tr>
<tr>
<td>neighbor advert: 0</td>
<td>• Number of neighbor advertisement packets</td>
</tr>
<tr>
<td>router solicit: 0</td>
<td>• Number of router solicitation packets</td>
</tr>
<tr>
<td>router advert</td>
<td>• Number of router advertisement packets</td>
</tr>
<tr>
<td>redirected: 0</td>
<td>• Number of redirected packets</td>
</tr>
<tr>
<td>router renumbering 0</td>
<td>• Number of packets recounted by the router</td>
</tr>
<tr>
<td>unknown info type: 0</td>
<td>• Number of unknown type of packets</td>
</tr>
<tr>
<td>Deliver failed:</td>
<td>• Number of packets with a incorrect size</td>
</tr>
<tr>
<td>bad length: 0</td>
<td>• Number of packets failing to be received because of rate limitation</td>
</tr>
<tr>
<td>ratelimited: 0</td>
<td></td>
</tr>
</tbody>
</table>

**display tcp ipv6 statistics**

**Syntax**

`display tcp ipv6 statistics`

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

None

**Description**

Use the `display tcp ipv6 statistics` command to display IPv6 TCP connection statistics.

You can use the `reset tcp ipv6 statistics` command to clear statistics of all IPv6 TCP packets.

**Examples**

# Display the statistics of IPv6 TCP connections.

```plaintext
<Sysname> display tcp ipv6 statistics
Received packets:
```
Total: 0
packets in sequence: 0 (0 bytes)
window probe packets: 0, window update packets: 0
checksum error: 0, offset error: 0, short error: 0
duplicate packets: 0 (0 bytes), partially duplicate packets: 0 (0 bytes)
out-of-order packets: 0 (0 bytes)
packets with data after window: 0 (0 bytes)
packets after close: 0

ACK packets: 0 (0 bytes)
duplicate ACK packets: 0, too much ACK packets: 0

Sent packets:
  Total: 0
  urgent packets: 0
  control packets: 0 (including 0 RST)
  window probe packets: 0, window update packets: 0

data packets: 0 (0 bytes) data packets retransmitted: 0 (0 bytes)
  ACK only packets: 0 (0 delayed)

Retransmitted timeout: 0, connections dropped in retransmitted timeout: 0
Keepalive timeout: 0, keepalive probe: 0, Keepalive timeout, so connections disconnected: 0
Initiated connections: 0, accepted connections: 0, established connections: 0
Closed connections: 0 (dropped: 0, initiated dropped: 0)
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Received packets:</td>
<td></td>
</tr>
<tr>
<td>Total: 0</td>
<td>Statistics of received packets, including</td>
</tr>
<tr>
<td>packets in sequence: 0 (0 bytes)</td>
<td>• Total number of received packets</td>
</tr>
<tr>
<td>window probe packets: 0</td>
<td>• Number of packets received in sequence</td>
</tr>
<tr>
<td>window update packets: 0</td>
<td>• Number of window probe packets</td>
</tr>
<tr>
<td>checksum error: 0</td>
<td>• Number of window size update packets</td>
</tr>
<tr>
<td>offset error: 0</td>
<td>• Number of packets with checksum errors</td>
</tr>
<tr>
<td>short error: 0</td>
<td>• Number of packets with offset errors</td>
</tr>
<tr>
<td>duplicate packets: 0 (0 bytes), partially duplicate packets: 0 (0 bytes)</td>
<td>• Number of packets whose total length is less than specified by the packet header</td>
</tr>
<tr>
<td>out-of-order packets: 0 (0 bytes)</td>
<td>• Number of duplicate packets</td>
</tr>
<tr>
<td>packets with data after window: 0 (0 bytes)</td>
<td>• Number of partially duplicate packets</td>
</tr>
<tr>
<td>packets after close: 0</td>
<td>• Number of out-of-order packets</td>
</tr>
<tr>
<td>ACK packets: 0 (0 bytes)</td>
<td>• Number of packets exceeding the size of the receiving window</td>
</tr>
<tr>
<td>duplicate ACK packets: 0</td>
<td>• Number of packets received after the connection is closed</td>
</tr>
<tr>
<td>too much ACK packets: 0</td>
<td>• Number of ACK packets</td>
</tr>
<tr>
<td>Sent packets:</td>
<td></td>
</tr>
<tr>
<td>Total: 0</td>
<td>Statistics of sent packets, including</td>
</tr>
<tr>
<td>urgent packets: 0</td>
<td>• Total number of packets</td>
</tr>
<tr>
<td>control packets: 0 (including 0 RST)</td>
<td>• Number of packets containing an urgent indicator</td>
</tr>
<tr>
<td>window probe packets: 0</td>
<td>• Number of control packets</td>
</tr>
<tr>
<td>window update packets: 0</td>
<td>• Number of window probe packets</td>
</tr>
<tr>
<td>data packets: 0 (0 bytes)</td>
<td>• Number of window update packets</td>
</tr>
<tr>
<td>packets retransmitted: 0 (0 bytes)</td>
<td>• Number of data packets</td>
</tr>
<tr>
<td>ACK only packets: 0 (0 delayed)</td>
<td>• Number of retransmitted packets</td>
</tr>
<tr>
<td>Retransmitted timeout</td>
<td>Number of packets whose retransmission times out</td>
</tr>
<tr>
<td>connections dropped in retransmitted timeout</td>
<td>Number of connections dropped because of retransmission timeout</td>
</tr>
<tr>
<td>Keepalive timeout</td>
<td>Number of keepalive timeouts</td>
</tr>
<tr>
<td>keepalive probe</td>
<td>Number of keepalive probes</td>
</tr>
<tr>
<td>Keepalive timeout, so connections disconnected</td>
<td>Number of connections dropped because of keepalive response timeout</td>
</tr>
<tr>
<td>Initiated connections</td>
<td>Number of initiated connections</td>
</tr>
<tr>
<td>accepted connections</td>
<td>Number of accepted connections</td>
</tr>
<tr>
<td>established connections</td>
<td>Number of established connections</td>
</tr>
<tr>
<td>Closed connections</td>
<td>Number of closed connections</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>dropped</td>
<td>Number of dropped connections (after SYN is received from the peer)</td>
</tr>
<tr>
<td>initiated dropped</td>
<td>Number of initiated but dropped connections (before SYN is received from the peer)</td>
</tr>
</tbody>
</table>

**display tcp ipv6 status**

**Syntax**

`display tcp ipv6 status`

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

None

**Description**

Use the `display tcp ipv6` command to display the IPv6 TCP connection status, including IP address of the IPv6 TCP control block, local and peer IPv6 addresses, and status of the IPv6 TCP connection.

**Examples**

```
Display the IPv6 TCP connection status.
<Sysname> display tcp ipv6 status
TCP6CB Local Address Foreign Address State
045d8074 ::->21 ::->0 Listening
```

**Table 12-12 display tcp ipv6 status command output description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP6CB</td>
<td>IPv6 address of the TCP control block (hexadecimal)</td>
</tr>
<tr>
<td>Local Address</td>
<td>Local IPv6 address</td>
</tr>
<tr>
<td>Foreign Address</td>
<td>Remote IPv6 address</td>
</tr>
</tbody>
</table>
### Field | Description
--- | ---
State | IPv6 TCP connection status, including
- Closed
- Listening
- Syn_Sent
- Syn_Rcvd
- Established
- Close_Wait
- Fin_Wait1
- Closing
- Last_Ack
- Fin_Wait2
- Time_Wait

---

**display udp ipv6 statistics**

**Syntax**

```
display udp ipv6 statistics
```

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

None

**Description**

Use the `display udp ipv6 statistics` command to display the statistics of IPv6 UDP packets.

You can use the `reset udp ipv6 statistics` command to clear the statistics of all IPv6 UDP packets.

**Examples**

```
Display the statistics information of IPv6 UDP packets.
<Sysname> display udp ipv6 statistics

Received packets:
Total: 0
checksum error: 0
shorter than header: 0, data length larger than packet: 0
unicast(no socket on port): 0
broadcast/multicast(no socket on port): 0
not delivered, input socket full: 0
input packets missing pcb cache: 0

Sent packets:
Total: 0
```
Table 12-13 display udp ipv6 statistics command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>Total number of received/sent packets</td>
</tr>
<tr>
<td>checksum error</td>
<td>Total number of packets with a checksum error</td>
</tr>
<tr>
<td>shorter than header</td>
<td>Total number of IPv6 UDP packets whose total length is less than that specified by the packet header</td>
</tr>
<tr>
<td>data length larger than packet</td>
<td>Total number of packets whose data length exceeds that specified by the packet header</td>
</tr>
<tr>
<td>unicast(no socket on port)</td>
<td>Total number of received unicast packets without any socket</td>
</tr>
<tr>
<td>broadcast/multicast(no socket on port)</td>
<td>Total number of received broadcast/multicast packets without any socket</td>
</tr>
<tr>
<td>not delivered, input socket full</td>
<td>Number of packets not handled because of the receive buffer being full</td>
</tr>
<tr>
<td>input packet missing pcb cache</td>
<td>Number of packets failing to match the protocol control block (PCB) cache</td>
</tr>
</tbody>
</table>

dns server ipv6

Syntax

dns server ipv6 ipv6-address [ interface-type interface-number ]
undo dns server ipv6 ipv6-address [ interface-type interface-number ]

View

System view

Default Level

2: System level

Parameters

ipv6-address: IPv6 address of a DNS server.
interface-type interface-number: Specifies an interface. When the IPv6 address of the DNS server is a link-local address, this argument must be specified.

Description

Use the dns server ipv6 command to specify a DNS server.
Use the undo dns server ipv6 command to remove the specified DNS server.
By default, no DNS server is configured.

Examples

# Specify a DNS server at 2002::1.
<Sysname> system-view
[Sysname] dns server ipv6 2002::1
ipv6

Syntax

ipv6
undo ipv6

View

System view

Default Level

2: System level

Parameters

None

Description

Use the `ipv6` command to enable IPv6.
Use the `undo ipv6` command to disable IPv6.
By default, IPv6 is disabled.

Examples

# Enable IPv6.
<Sysname> system-view
<Sysname> ipv6

ipv6 address

Syntax

ipv6 address { ipv6-address prefix-length | ipv6-address/prefix-length }
undo ipv6 address [ ipv6-address prefix-length | ipv6-address/prefix-length ]

View

Interface view

Default Level

2: System level

Parameters

ipv6-address: IPv6 address.

prefix-length: Prefix length of the IPv6 address, in the range 1 to 128.

Description

Use the `ipv6 address` command to configure an IPv6 site-local address or aggregatable global unicast address for an interface.
Use the `undo ipv6 address` command to remove the IPv6 address from the interface.
By default, no site-local address or global unicast address is configured for an interface.

Note that except the link-local address automatically configured, all IPv6 addresses will be removed from the interface if you carry out the **undo ipv6 address** command without any parameter specified.

**Examples**

```bash
Set the aggregatable global IPv6 unicast address of VLAN-interface 100 to 2001::1 with prefix length 64.

Method I:
<Sysname> system-view
[Sysname] interface vlan-interface 100
[Sysname-Vlan-interface100] ipv6 address 2001::1/64

Method II:
<Sysname> system-view
[Sysname] interface vlan-interface 100
[Sysname-Vlan-interface100] ipv6 address 2001::1 64
```

**ipv6 address auto link-local**

**Syntax**

```
ipv6 address auto link-local
undo ipv6 address auto link-local
```

**View**

Interface view

**Default Level**

2: System level

**Parameters**

None

**Description**

Use the **ipv6 address auto link-local** command to automatically generate a link-local address for an interface.

Use the **undo ipv6 address auto link-local** command to remove the automatically generated link-local address for the interface.

By default, a link-local address will automatically be generated after a site-local or global IPv6 unicast address is configured for an interface.

Note that:

- After an IPv6 site-local address or aggregatable global unicast address is configured for an interface, a link-local address is generated automatically. The automatically generated link-local address is the same as the one generated by using the **ipv6 address auto link-local** command.

- The **undo ipv6 address auto link-local** command can only remove the link-local addresses generated through the **ipv6 address auto link-local** command. Therefore, after the **undo ipv6 address auto link-local** command is used on an interface that has an IPv6 site-local address or
aggregatable global unicast address configured, the interface still has a link-local address. If the interface has no IPv6 site-local address or aggregatable global unicast address configured, it will have no link-local address.

- Manual assignment takes precedence over automatic generation. That is, if you first adopt automatic generation and then manual assignment, the manually assigned link-local address will overwrite the automatically generated one. If you first adopt manual assignment and then automatic generation, the automatically generated link-local address will not take effect and the link-local address of an interface is still the manually assigned one. If you delete the manually assigned address, the automatically generated link-local address is validated. For manually assignment of an IPv6 link-local address, refer to the `ipv6 address link-local` command.

**Examples**

```
Configure VLAN-interface 100 to automatically generate a link-local address.
<Sysname> system-view
 [Sysname] interface vlan-interface 100
 [Sysname-Vlan-interface100] ipv6 address auto link-local
```

**ipv6 address eui-64**

**Syntax**

```
ipv6 address ipv6-address/prefix-length eui-64
undo ipv6 address ipv6-address/prefix-length eui-64
```

**View**

Interface view

**Default Level**

2: System level

**Parameters**

`ipv6-address/prefix-length`: IPv6 address and IPv6 prefix. The `ipv6-address` and `prefix-length` arguments jointly specify the prefix of an IPv6 address in the EUI-64 format.

**Description**

Use the `ipv6 address eui-64` command to configure a site-local address or global unicast address in the EUI-64 format for an interface.

Use the `undo ipv6 address eui-64` command to remove the configured site-local address or global unicast address in the EUI-64 format for the interface.

By default, no site-local or global unicast address in the EUI-64 format is configured for an interface.

An EUI-64 IPv6 address is generated based on the specified prefix and the MAC address of the local device and can be displayed by using the `display ipv6 interface` command.

Note that you cannot specify the prefix length of an IPv6 address in the EUI-64 format to be greater than 64.
Examples

# Configure an IPv6 address in the EUI-64 format for VLAN-interface 100. The prefix length of the address is the same as that of 2001::1/64, and the interface ID is generated based on the MAC address of the device.

<Sysname> system-view
<Sysname> interface vlan-interface 100
<Sysname-Vlan-interface100> ipv6 address 2001::1/64 eui-64

ipv6 address link-local

Syntax

ipv6 address ipv6-address link-local
undo ipv6 address ipv6-address link-local

View

Interface view

Default Level

2: System level

Parameters

ipv6-address: IPv6 link-local address. The first 10 bits of an address must be 1111111010 (binary), that is, the first group of hexadecimals in the address must be FE80 to FEBF.

Description

Use the ipv6 address link-local command to configure a link-local address for the interface.

Use the undo ipv6 address link-local command to remove the configured link-local address for the interface.

Note that:

Manual assignment takes precedence over automatic generation. That is, if you first adopt automatic generation and then manual assignment, the manually assigned link-local address will overwrite the automatically generated one. If you first adopt manual assignment and then automatic generation, the automatically generated link-local address will not take effect and the link-local address of an interface is still the manually assigned one. If you delete the manually assigned address, the automatically generated link-local address is validated. For automatic generation of an IPv6 link-local address, refer to the ipv6 address auto link-local command.

Examples

# Configure a link-local address for VLAN-interface 100.

<Sysname> system-view
<Sysname> interface vlan-interface 100
<Sysname-Vlan-interface100> ipv6 address fe80::1 link-local
**ipv6 hoplimit-expires enable**

**Syntax**

ipv6 hoplimit-expires enable  
undo ipv6 hoplimit-expires

**View**

System view

**Default Level**

2: System level

**Parameters**

None

**Description**

Use the `ipv6 hoplimit-expires enable` command to enable the sending of ICMPv6 time exceeded packets.

Use the `undo ipv6 hoplimit-expires` command to disable the sending of ICMPv6 time exceeded packets.

By default, the sending of ICMPv6 time exceeded packets is enabled.

Note that:

After you disable the sending of ICMPv6 time exceeded packets, the device will not send time-to-live count exceeded packets, but will still send fragment reassembly time exceeded packets.

**Examples**

# Disable the sending of ICMPv6 time exceeded packets.

```plaintext
<Sysname> system-view
[Sysname] undo ipv6 hoplimit-expires
```

**ipv6 host**

**Syntax**

ipv6 host hostname ipv6-address  
undo ipv6 host hostname [ ipv6-address ]

**View**

System view

**Default Level**

2: System level

**Parameters**

*hostname*: Host name, a string of up to 20 characters. The character string can contain letters, numerals, ",", ",", or "," and must contain at least one letter.
ipv6-address: IPv6 address.

Description

Use the ipv6 host command to configure the mappings between host names and IPv6 addresses.
Use the undo ipv6 host command to remove the mappings between host names and IPv6 addresses.
Each host name can correspond to only one IPv6 address.
Related commands: display ipv6 host.

Examples

# Configure the mapping between a host name and an IPv6 address.
<Sysname> system-view
<Sysname> ipv6 host aaa 2001::1

ipv6 icmp-error

Syntax

ipv6 icmp-error { bucket buck-size | ratelimit interval } *
undo ipv6 icmp-error

View

System view

Default Level

2: System level

Parameters

bucket buck-size: Number of tokens in the token bucket, in the range of 1 to 200.
ratelimit interval: Update period of the token bucket in milliseconds, in the range of 0 to 2,147,483,647.
The update period “0” indicates that the number of ICMPv6 error packets sent is not restricted.

Description

Use the ipv6 icmp-error command to configure the size and update period of the token bucket.
Use the undo ipv6 icmp-error command to restore the defaults.
By default, the size is 10 and the update period is 100 milliseconds. That is, at most 10 ICMPv6 error packets can be sent within 100 milliseconds.

Examples

# Set the capacity of the token bucket to 50 and the update period to 100 milliseconds.
<Sysname> system-view
<Sysname> ipv6 icmp-error bucket 50 ratelimit 100

ipv6 icmpv6 multicast-echo-reply enable

Syntax

ipv6 icmpv6 multicast-echo-reply enable
undo ipv6 icmpv6 multicast-echo-reply

View
System view

Default Level
2: System level

Parameters
None

Description
Use the `ipv6 icmpv6 multicast-echo-reply enable` command to enable the sending of multicast echo replies.
Use the `undo ipv6 icmpv6 multicast-echo-reply` command to disable the sending of multicast echo replies.
By default, the device is disabled from sending multicast echo replies.

Examples

# Enable the sending of multicast echo replies.
<Sysname> system-view
[Sysname] ipv6 icmpv6 multicast-echo-reply enable

ipv6 nd autoconfig managed-address-flag

Syntax

ipv6 nd autoconfig managed-address-flag
undo ipv6 nd autoconfig managed-address-flag

View
Interface view

Default Level
2: System level

Parameters
None

Description
Use the `ipv6 nd autoconfig managed-address-flag` command to set the managed address configuration (M) flag to 1 so that the host can acquire an IPv6 address through stateful autoconfiguration (for example, from a DHCP server).
Use the `undo ipv6 nd autoconfig managed-address-flag` command to restore the default.
By default, the M flag is set to 0 so that the host can acquire an IPv6 address through stateless autoconfiguration.
Examples

# Configure the host to acquire an IPv6 address through stateful autoconfiguration.
<Sysname> system-view
[Sysname] interface vlan-interface 100
[Sysname-Vlan-interface100] ipv6 nd autoconfig managed-address-flag

ipv6 nd autoconfig other-flag

Syntax

ipv6 nd autoconfig other-flag
undo ipv6 nd autoconfig other-flag

View

Interface view

Default Level

2: System level

Parameters

None

Description

Use the ipv6 nd autoconfig other-flag command to set the other stateful configuration flag (O) to 1 so that the host can acquire information other than IPv6 address through stateful autoconfiguration (for example, from a DHCP server).

Use the undo ipv6 nd autoconfig other-flag command to restore the default.

By default, the O flag is set to 0 so that the host can acquire other information through stateless autoconfiguration.

Examples

# Configure the host to acquire information other than IPv6 address through stateless autoconfiguration.
<Sysname> system-view
[Sysname] interface vlan-interface 100
[Sysname-Vlan-interface100] undo ipv6 nd autoconfig other-flag

ipv6 nd dad attempts

Syntax

ipv6 nd dad attempts value
undo ipv6 nd dad attempts

View

Interface view
Default Level

2: System level

Parameters

value: Number of attempts to send an NS message for DAD, in the range of 0 to 600. The default value is “1”. When it is set to 0, DAD is disabled.

Description

Use the `ipv6 nd dad attempts` command to configure the number of attempts to send an NS message for DAD.

Use the `undo ipv6 nd dad attempts` command to restore the default.

By default, the number of attempts to send an NS message for DAD is 1.

Related commands: `display ipv6 interface`.

Examples

# Set the number of attempts to send an NS message for DAD to 20.
< Sysname > system-view
[Sysname] interface vlan-interface 100
[Sysname-Vlan-interface100] ipv6 nd dad attempts 20

ipv6 nd hop-limit

Syntax

ipv6 nd hop-limit value
undo ipv6 nd hop-limit

View

System view

Default Level

2: System level

Parameters

value: Number of hops, in the range of 0 to 255. When it is set to 0, the Hop Limit field in RA messages sent by the device is 0. That is, the number of hops is determined by the requesting device itself.

Description

Use the `ipv6 nd hop-limit` command to configure the hop limit advertised by the device.

Use the `undo ipv6 nd hop-limit` command to restore the default hop limit.

By default, the hop limit advertised by the device is 64.

Examples

# Set the hop limit advertised by the device to 100.
< Sysname > system-view
[Sysname] ipv6 nd hop-limit 100
ipv6 nd ns retrans-timer

Syntax

ipv6 nd ns retrans-timer value
undo ipv6 nd ns retrans-timer

View

Interface view

Default Level

2: System level

Parameters

value: Interval for retransmitting an NS message in milliseconds, in the range of 1,000 to 4,294,967,295.

Description

Use the **ipv6 nd ns retrans-timer** command to set the interval for retransmitting an NS message. The local interface retransmits an NS message at intervals of this value. Furthermore, the Retrans Timer field in RA messages sent by the local interface is equal to this value.

Use the **undo ipv6 nd ns retrans-timer** command to restore the default.

By default, the local interface retransmits an NS message at intervals of 1,000 milliseconds and the Retrans Timer field in RA messages sent by the local interface is 0.

Related commands: **display ipv6 interface**.

Examples

# Specify VLAN-interface 100 to retransmit NS messages at intervals of 10,000 milliseconds.

```
<Sysname> system-view
[Sysname] interface vlan-interface 100
[Sysname-Vlan-interface100] ipv6 nd ns retrans-timer 10000
```

ipv6 nd nud reachable-time

Syntax

ipv6 nd nud reachable-time value
undo ipv6 nd nud reachable-time

View

Interface view

Default Level

2: System level

Parameters

value: Neighbor reachable time in milliseconds, in the range of 1 to 3,600,000.
Description

Use the `ipv6 nd nud reachable-time` command to configure the neighbor reachable time on an interface. This time value serves as not only the neighbor reachable time on the local interface, but also the value of the Reachable Timer field in RA messages sent by the local interface.

Use the `undo ipv6 nd nud reachable-time` command to restore the default neighbor reachable time and to specify the value of the Reachable Timer field in RA messages as 0, so that the number of hops is determined by the requesting device itself.

By default, the neighbor reachable time on the local interface is 30,000 milliseconds and the Reachable Timer field in RA messages is 0.

Related commands: `display ipv6 interface`.

Examples

# Set the neighbor reachable time on VLAN-interface 100 to 10,000 milliseconds.

```
<Sysname> system-view
[Sysname] interface vlan-interface 100
[Sysname-Vlan-interface100] ipv6 nd nud reachable-time 10000
```

`ipv6 nd ra halt`

Syntax

```
ipv6 nd ra halt
undo ipv6 nd ra halt
```

View

Interface view

Default Level

2: System level

Parameters

None

Description

Use the `ipv6 nd ra halt` command to enable RA message suppression.

Use the `undo ipv6 nd ra halt` command to disable RA message suppression.

By default, RA messages are suppressed.

Examples

# Suppress RA messages on VLAN-interface 100.

```
<Sysname> system-view
[Sysname] interface vlan-interface 100
[Sysname-Vlan-interface100] ipv6 nd ra halt
```
ipv6 nd ra interval

Syntax

ipv6 nd ra interval max-interval-value min-interval-value
undo ipv6 nd ra interval

View

Interface view

Default Level

2: System level

Parameters

max-interval-value: Maximum interval for advertising RA messages in seconds, in the range of 4 to 1,800.
min-interval-value: Minimum interval for advertising RA messages in seconds, in the range of 3 to 1,350.

Description

Use the ipv6 nd ra interval command to set the maximum and minimum intervals for advertising RA messages. The device advertises RA messages at intervals of a random value between the maximum interval and the minimum interval.

Use the undo ipv6 nd ra interval command to restore the default.

By default, the maximum interval between RA messages is 600 seconds, and the minimum interval is 200 seconds.

Note the following:

- The minimum interval should be three-fourths of the maximum interval or less.
- The maximum interval for sending RA messages should be less than or equal to the router lifetime in RA messages.

Examples

# Set the maximum interval for advertising RA messages to 1,000 seconds and the minimum interval to 700 seconds.
<Sysname> system-view
[Sysname] interface vlan-interface 100
[Sysname-Vlan-interface100] ipv6 nd ra interval 1000 700

ipv6 nd ra prefix

Syntax

ipv6 nd ra prefix { ipv6-address prefix-length | ipv6-address/prefix-length } valid-lifetime preferred-lifetime [ no-autoconfig | off-link ] *
undo ipv6 nd ra prefix ipv6-prefix
View

Interface view

Default Level

2: System level

Parameters

*ipv6-address*: IPv6 address or IPv6 address prefix.
*prefix-length*: Prefix length of the IPv6 address.
*ipv6-prefix*: IPv6 address prefix.
*valid-lifetime*: Valid lifetime of a prefix in seconds, in the range of 0 to 4,294,967,295.
*preferred-lifetime*: Preferred lifetime of a prefix used for stateless autoconfiguration in seconds, in the range of 0 to 4,294,967,295.
*no-autoconfig*: Specifies a prefix not to be used for stateless autoconfiguration. If this keyword is not provided, the prefix is used for stateless autoconfiguration.
*off-link*: Specifies the address with the prefix not to be directly reachable on the link. If this keyword is not provided, the address with the prefix is directly reachable on the link.

Description

Use the `ipv6 nd ra prefix` command to configure the prefix information in RA messages.
Use the `undo ipv6 nd ra prefix` command to remove the prefix information from RA messages.
By default, no prefix information is configured in RA messages and the IPv6 address of the interface sending RA messages is used as the prefix information.

Examples

# Configure the prefix information for RA messages on VLAN-interface 100.
<Sysname> system-view
<Sysname> interface vlan-interface 100
<Sysname-Vlan-interface100> ipv6 nd ra prefix 2001:10::100/64 100 10

ipv6 nd ra router-lifetime

Syntax

*ipv6 nd ra router-lifetime value*
undo ipv6 nd ra router-lifetime

View

Interface view

Default Level

2: System level
Parameters

value: Router lifetime in seconds, in the range of 0 to 9,000. When it is set to 0, the device does not serve as the default router.

Description

Use the `ipv6 nd ra router-lifetime` command to configure the router lifetime in RA messages.

Use the `undo ipv6 nd ra router-lifetime` command to restore the default.

By default, the router lifetime in RA messages is 1,800 seconds.

Note that the router lifetime in RA messages should be greater than or equal to the advertising interval.

Examples

```
Set the router lifetime in RA messages on VLAN-interface 100 to 1,000 seconds.
<Sysname> system-view
<Sysname> interface vlan-interface 100
<Sysname-Vlan-interface100] ipv6 nd ra router-lifetime 1000
```

ipv6 neighbor

Syntax

```
ipv6 neighbor ipv6-address mac-address { vlan-id port-type port-number | interface interface-type interface-number }
undo ipv6 neighbor ipv6-address interface-type interface-number
```

View

System view

Default Level

2: System level

Parameters

`ipv6-address`: IPv6 address of the static neighbor entry.

`mac-address`: MAC address of the static neighbor entry (48 bits long, in the format of H-H-H).

`vlan-id`: VLAN ID of the static neighbor entry, in the range of 1 to 4094.

`port-type port-number`: Type and number of a Layer 2 port of the static neighbor entry.

`interface interface-type interface-number`: Type and number of a Layer 3 interface of the static neighbor entry.

Description

Use the `ipv6 neighbor` command to configure a static neighbor entry.

Use the `undo ipv6 neighbor` command to remove a static neighbor entry.

You can use a Layer 3 VLAN interface or a Layer 2 port in the VLAN to configure a static neighbor entry.
• If the first method is used, the neighbor entry is in the INCMP state. After the device obtains the corresponding Layer 2 port information through resolution, the neighbor entry will go into the REACH state.

• If the second method is used, the corresponding VLAN interface must exist and the port specified by `port-type port-number` must belong to the VLAN specified by `vlan-id`. After the static neighbor entry is configured, the device will relate the VLAN interface with the IPv6 address to identify the static neighbor entry uniquely and the entry will be in the REACH state.

To remove a static neighbor entry, you only need to specify the corresponding VLAN interface and the neighbor address.

Related commands: `display ipv6 neighbors`.

Examples

# Configure a static neighbor entry for Layer 2 port GigabitEthernet1/0/1 of VLAN 100.

```bash
<Sysname> system-view
[Sysname] ipv6 neighbor 2000::1 fe-e0-89 100 gigabitethernet 1/0/1
```

**ipv6 neighbors max-learning-num**

**Syntax**

`ipv6 neighbors max-learning-num number`

`undo ipv6 neighbors max-learning-num`

**View**

Interface view

**Default Level**

2: System level

**Parameters**

`number`: Maximum number of neighbors that can be dynamically learned by the interface, in the range 1 to 128.

**Description**

Use the `ipv6 neighbors max-learning-num` command to configure the maximum number of neighbors that can be dynamically learned on the interface.

Use the `undo ipv6 neighbors max-learning-num` command to restore the default.

By default, the maximum number of neighbors that can be dynamically learned on the interface is 128.

**Examples**

# Set the maximum number of neighbors that can be dynamically learned on VLAN-interface 100 to 10.

```bash
<Sysname> system-view
[Sysname] interface vlan-interface 100
[Sysname-Vlan-interface100] ipv6 neighbors max-learning-num 10
```
**ipv6 pathmtu**

**Syntax**

```
ipv6 pathmtu ipv6-address [value]
undo ipv6 pathmtu ipv6-address
```

**View**

System view

**Default Level**

2: System level

**Parameters**

- `ipv6-address`: IPv6 address.
- `value`: PMTU of a specified IPv6 address in bytes. It ranges from 1280 to 10000.

**Description**

Use the `ipv6 pathmtu` command to configure a static PMTU for a specified IPv6 address.

Use the `undo ipv6 pathmtu` command to remove the PMTU configuration for a specified IPv6 address.

By default, no static PMTU is configured.

**Examples**

```
Configure a static PMTU for a specified IPv6 address.
<Sysname> system-view
[Sysname] ipv6 pathmtu fe80::12 1300
```

**ipv6 pathmtu age**

**Syntax**

```
ipv6 pathmtu age age-time
undo ipv6 pathmtu age
```

**View**

System view

**Default Level**

2: System level

**Parameters**

- `age-time`: Aging time for PMTU in minutes, in the range of 10 to 100.

**Description**

Use the `ipv6 pathmtu age` command to configure the aging time for a dynamic PMTU.

Use the `undo ipv6 pathmtu age` command to restore the default.
By default, the aging time is 10 minutes.
Note that the aging time is invalid for a static PMTU.
Related commands: **display ipv6 pathmtu**.

**Examples**

# Set the aging time for a dynamic PMTU to 40 minutes.
<Sysname> system-view
[Sysname] ipv6 pathmtu age 40

**reset dns ipv6 dynamic-host**

**Syntax**

reset dns ipv6 dynamic-host

**View**

User view

**Default Level**

2: System level

**Parameters**

None

**Description**

Use the **reset dns ipv6 dynamic-host** command to clear IPv6 dynamic domain name cache information.
You can use the **display dns ipv6 dynamic-host** command to display the current IPv6 dynamic domain name cache information.

**Examples**

# Clear IPv6 dynamic domain name cache information.
<Sysname> reset dns ipv6 dynamic-host

**reset ipv6 neighbors**

**Syntax**

reset ipv6 neighbors { all | dynamic | interface interface-type interface-number | slot slot-number | static }

**View**

User view

**Default Level**

2: System level
**Parameters**

- **all**: Clears static and dynamic neighbor information on all interfaces.
- **dynamic**: Clears dynamic neighbor information on all interfaces.
- **interface** *interface-type* *interface-number*: Clears dynamic neighbor information on a specified interface.
- **slot** *slot-number*: Clears dynamic neighbor information on a specified device in an IRF. If no IRF is formed, only the dynamic neighbor information of the current device is cleared. The *slot-number* argument indicates the member ID of the device.
- **static**: Clears static neighbor information on all interfaces.

**Description**

Use the **reset ipv6 neighbors** command to clear IPv6 neighbor information.

You can use the **display ipv6 neighbors** command to display the current IPv6 neighbor information.

**Examples**

# Clear neighbor information on all interfaces.
<Sysname> reset ipv6 neighbors all

# Clear dynamic neighbor information on all interfaces.
<Sysname> reset ipv6 neighbors dynamic

# Clear all neighbor information on VLAN-interface 1.
<Sysname> reset ipv6 neighbors interface vlan-interface 1

**reset ipv6 pathmtu**

**Syntax**

```
reset ipv6 pathmtu { all | static | dynamic }
```

**View**

User view

**Default Level**

2: System level

**Parameters**

- **all**: Clears all PMTUs.
- **static**: Clears all static PMTUs.
- **dynamic**: Clears all dynamic PMTUs.

**Description**

Use the **reset ipv6 pathmtu** the command to clear the PMTU information.

**Examples**

# Clear all PMTUs.
<Sysname> reset ipv6 pathmtu all
reset ipv6 statistics

Syntax

reset ipv6 statistics [ slot slot-number ]

View

User view

Default Level

2: System level

Parameters

slot slot number: Clears the statistics of IPv6 packets and ICMPv6 packets on a specified device in an IRF. If no IRF is formed, related information on the current device is cleared only. The slot-number argument indicates the member ID of the device.

Description

Use the reset ipv6 statistics command to clear the statistics of IPv6 packets and ICMPv6 packets. You can use the display ipv6 statistics command to display the statistics of IPv6 and ICMPv6 packets.

Examples

# Clear the statistics of IPv6 packets and ICMPv6 packets.
<Sysname> reset ipv6 statistics

reset tcp ipv6 statistics

Syntax

reset tcp ipv6 statistics

View

User view

Default Level

2: System level

Parameters

None

Description

Use the reset tcp ipv6 statistics command to clear the statistics of all IPv6 TCP connections. You can use the display tcp ipv6 statistics command to display the statistics of IPv6 TCP connections.

Examples

# Clear the statistics of all IPv6 TCP connections.
reset udp ipv6 statistics

Syntax

reset udp ipv6 statistics

View

User view

Default Level

2: System level

Parameters

None

Description

Use the reset udp ipv6 statistics command to clear the statistics of all IPv6 UDP packets. You can use the display udp ipv6 statistics command to display the statistics of IPv6 UDP packets.

Examples

# Clear the statistics of all IPv6 UDP packets.
<Sysname> reset udp ipv6 statistics

tcp ipv6 timer fin-timeout

Syntax

tcp ipv6 timer fin-timeout wait-time
undo tcp ipv6 timer fin-timeout

View

System view

Default Level

2: System level

Parameters

wait-time: Length of the finwait timer for IPv6 TCP connections in seconds, in the range of 76 to 3,600.

Description

Use the tcp ipv6 timer fin-timeout command to set the finwait timer for IPv6 TCP connections. Use the undo tcp ipv6 timer fin-timeout command to restore the default. By default, the length of the finwait timer is 675 seconds.

Examples

# Set the finwait timer length of IPv6 TCP connections to 800 seconds.
tcp ipv6 timer syn-timeout

Syntax

```text
tcp ipv6 timer syn-timeout wait-time
undo tcp ipv6 timer syn-timeout
```

View

System view

Default Level

2: System level

Parameters

```text
wait-time: Length of the synwait timer for IPv6 TCP connections in seconds, in the range of 2 to 600.
```

Description

Use the `tcp ipv6 timer syn-timeout` command to set the synwait timer for IPv6 TCP connections.

Use the `undo tcp ipv6 timer syn-timeout` command to restore the default.

By default, the length of the synwait timer of IPv6 TCP connections is 75 seconds.

Examples

```text
Set the synwait timer length of IPv6 TCP connections to 100 seconds.
<Sysname> system-view
<Sysname> tcp ipv6 timer syn-timeout 100
```

tcp ipv6 window

Syntax

```text
tcp ipv6 window size
undo tcp ipv6 window
```

View

System view

Default Level

2: System level

Parameters

```text
size: Size of the IPv6 TCP send/receive buffer in KB (kilobyte), in the range of 1 to 32.
```

Description

Use the `tcp ipv6 window` command to set the size of the IPv6 TCP send/receive buffer.

Use the `undo tcp ipv6 window` command to restore the default.
By default, the size of the IPv6 TCP send/receive buffer is 8 KB.

**Examples**

# Set the size of the IPv6 TCP send/receive buffer to 4 KB.

```bash
<Sysname> system-view
<Sysname> tcp ipv6 window 4
```
sFlow Configuration Commands

display sflow

Syntax

display sflow [slot slot-number ]

View

Any view

Default Level

2: System level

Parameters

slot slot-number: Displays the sFlow configuration information of the specified IRF member device. The slot-number argument is the member number of the device in the IRF, which you can display with the display irf command. The value range for the slot-number argument depends on the number of members and numbering conditions in the current IRF. If no IRF exists, the slot-number argument is the current device number.

Description

Use the display sflow command to display the sFlow configuration information.

Examples

# Display the sFlow configuration information of member device 1 in an IRF stack.
<Sysname> display sflow slot 1
sFlow Version: 5
sFlow Global Information:
    Agent        IP:10.10.10.1
    Collector    IP:10.10.10.2  Port:6343
    Interval(s): 20
sFlow Port Information:
    Interface          Direction        Rate          Mode            Status
    GigabitEthernet1/0/1      Out              5000          Random          Active

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sFlow Version</td>
<td>Currently, sFlow has the following versions:</td>
</tr>
<tr>
<td></td>
<td>● 5: sFlow version 5.</td>
</tr>
</tbody>
</table>
### sFlow Global Information
- **Description**: sFlow global configuration information

### Agent
- **Description**: IP address of the sFlow agent

### Collector
- **Description**: IP address and port number of each sFlow collector

### Interval(s)
- **Description**: Counter sampling interval (sFlow interval)

### sFlow Port Information
- **Description**: Information of the ports enabled with sFlow

### Interface
- **Description**: sFlow enabled interface

### Direction
- **Description**: Packet sampling direction:
  - In: Samples inbound packets.
  - Out: Samples outbound packets.
  - In/Out: Samples inbound and outbound packets.

### Rate
- **Description**: Packet sampling rate

### Mode
- **Description**: Packet sampling mode:
  - Determine: Samples a fixed number of packets.
  - Random: Samples a random number of packets.

### Status
- **Description**: Status of the sFlow enabled port:
  - Suspend: Indicates the port is suspended, and it stops sampling.
  - Active: Indicates the port is active and performs sampling.

---

### sflow agent ip

#### Syntax

```
sflow agent ip ip-address
```

```
undo sflow agent ip
```

#### View
- System view

#### Default Level
- 2: System level

#### Parameters
- **ip-address**: IP address of the sFlow agent.

#### Description
- Use the `sflow agent ip` command to configure the IP address of the sFlow agent.
- Use the `undo sflow agent ip` command to remove the configured IP address.
- By default, no IP address is configured for the sFlow agent.

- **Note that:**
  - The sFlow agent and sFlow collector must not have the same IP address.
  - Currently, a device supports only one sFlow agent.
sFlow does not work if the sFlow agent has no IP address configured, or the IP address of the sFlow agent is removed.

Examples

# Configure the IP address of the sFlow agent.
<Sysname> system-view
[Sysname] sflow agent ip 10.10.10.1

sflow collector ip

Syntax

sflow collector ip ip-address [ port portnum ]
undo sflow collector ip ip-address

View

System view

Default Level

2: System level

Parameters

ip-address: IP address of the sFlow collector.
port portnum: Port number of the sFlow Collector, which is in the range 1 to 65535 and defaults to 6343.

Description

Use the sflow collector ip command to specify the IP address and port number of an sFlow collector. Use the undo sflow collector ip command to remove an sFlow collector. By default, no sFlow collector is specified.

Note that:

- The sFlow collector and sFlow agent must not have the same IP address.
- Currently, you can specify at most two sFlow collectors, with one as the backup sFlow collector.
- sFlow does not work if no sFlow collector is specified.
- If only one sFlow collector is specified, sFlow does not work after you use the undo sflow collector ip command to disable it.

Examples

# Specify the IP address and port number of an sFlow collector.
<Sysname> system-view
[Sysname] sflow collector ip 10.10.10.2 port 6343

sflow enable

Syntax

sflow enable { inbound | outbound }
undo sflow enable \{ inbound | outbound \}

View

Ethernet port view

Default Level

2: System level

Parameters

- **inbound**: Samples inbound packets.
- **outbound**: Samples outbound packets.

Description

Use the **sflow enable** command to enable sFlow in the inbound or outbound direction on the port.

Use the **undo sflow enable** command to disable sFlow in the inbound or outbound direction on the port.

sFlow is disabled by default.

Note that:

This command is supported on physical Ethernet interfaces only, instead of logical interfaces (VLAN interfaces). If you want to enable sFlow on an aggregation group, you need to enable sFlow on each member port.

Examples

```
Enable sFlow in the outbound direction on GigabitEthernet 1/0/1.
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] sflow enable outbound
```

sflow interval

Syntax

```
sflow interval interval-time
undo sflow interval
```

View

System view

Default Level

2: System level

Parameters

- **interval-time**: Counter sampling interval in seconds, in the range 2 to 200.

Description

Use the **sflow interval** command to set the counter sampling interval at which the sFlow agent collects the statistics of all sFlow enabled ports.
Use the `undo sflow interval` command to restore the default interval.

By default, the sampling interval is 20 seconds.

**Examples**

```
Configure the counter sampling interval as 50 seconds.
<Sysname> system-view
[Sysname] sflow interval 50
```

### sflow sampling-mode

**Syntax**

```
sflow sampling-mode { determine | random }
undo sflow sampling-mode
```

**View**

Ethernet port view

**Default Level**

2: System level

**Parameters**

- **determine**: Sample a fixed number of packets.
- **random**: Sample packets randomly.

**Description**

Use the `sflow sampling-mode` command to specify the packet sampling mode.

Use the `undo sflow sampling-mode` command to restore the default.

By default, the packet sampling mode is **random**.

Note that this command should be used after sFlow is enabled on the current port.

---

**Note**

Currently, the **determine** mode is not supported on Switch 4210G Family.

---

**Examples**

```
Configure the interface to sample a fixed number of inbound packets.
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] sflow enable inbound
[Sysname-GigabitEthernet1/0/1] sflow sampling-mode determine
```
**sflow sampling-rate**

**Syntax**

```
sflow sampling-rate rate
undo sflow sampling-rate
```

**View**

Ethernet port view

**Default Level**

2: System level

**Parameters**

- **rate**: Number of packets, in the range of 1000 to 500000.

**Description**

Use the `sflow sampling-rate` command to specify the number of packets out of which the interface will sample a packet.

Use the `undo sflow sampling-rate` command to restore the default.

By default, the packet sampling rate is 200000.

Note that this command should be used after sFlow is enabled on the current port.

**Examples**

```
Specify the interface to sample a packet out of 100000 inbound packets.
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] sflow enable inbound
[Sysname-GigabitEthernet1/0/1] sflow sampling-rate 100000
```
# Table of Contents

1 IP Routing Table Commands

- IP Routing Table Commands
  - display ip routing-table
  - display ip routing-table acl
  - display ip routing-table ip-address
  - display ip routing-table ip-prefix
  - display ip routing-table protocol
  - display ip routing-table statistics
  - display ipv6 routing-table
  - display ipv6 routing-table acl
  - display ipv6 routing-table ipv6-address
  - display ipv6 routing-table ipv6-address1 ipv6-address2
  - display ipv6 routing-table ipv6-prefix
  - display ipv6 routing-table protocol
  - display ipv6 routing-table statistics
  - display ipv6 routing-table verbose
  - reset ip routing-table statistics protocol
  - reset ipv6 routing-table statistics

2 Static Routing Configuration Commands

- Static Routing Configuration Commands
  - delete static-routes all
  - ip route-static
  - ip route-static default-preference

3 IPv6 Static Routing Configuration Commands

- IPv6 Static Routing Configuration Commands
  - delete ipv6 static-routes all
  - ipv6 route-static
IP Routing Table Commands

display ip routing-table

Syntax

display ip routing-table [ verbose | { begin | exclude | include } regular-expression ]

View

Any view

Default Level

1: Monitor level

Parameters

verbose: Displays detailed routing table information, including that for inactive routes. With this keyword absent, the command displays only brief information about active routes.

regular-expression: A string of 1 to 256 case-sensitive characters used for specifying routing entries.

Description

Use the display ip routing-table command to display brief information about active routes in the routing table.

This command displays brief information about a routing table, with a routing entry contained in one line. The information displayed includes destination IP address/mask length, protocol, priority, cost, next hop and outbound interface. This command only displays the routes currently in use, that is, the optimal routes.
Use the `display ip routing-table verbose` command to display detailed information about all routes in the routing table.

This command displays detailed information about all active and inactive routes, including the statistics of the entire routing table and information for each route.

**Examples**

# Display brief information about active routes in the routing table.

```plaintext
<Sysname> display ip routing-table
Routing Tables: Public
 Destinations : 4 Routes : 4
 Destination/Mask Proto Pre Cost NextHop Interface

127.0.0.0/8 Direct 0 0 127.0.0.1 InLoop0
127.0.0.1/32 Direct 0 0 127.0.0.1 InLoop0
192.168.80.0/24 Direct 0 0 192.168.80.10 Vlan1
192.168.80.10/32 Direct 0 0 127.0.0.1 InLoop0
```

**Table 1-1** `display ip routing-table` command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destinations</td>
<td>Number of destination addresses</td>
</tr>
<tr>
<td>Routes</td>
<td>Number of routes</td>
</tr>
<tr>
<td>Destination/Mask</td>
<td>Destination address/mask length</td>
</tr>
<tr>
<td>Proto</td>
<td>Protocol that presents the route</td>
</tr>
<tr>
<td>Pre</td>
<td>Priority of the route</td>
</tr>
<tr>
<td>Cost</td>
<td>Cost of the route</td>
</tr>
<tr>
<td>NextHop</td>
<td>Address of the next hop on the route</td>
</tr>
<tr>
<td>Interface</td>
<td>Outbound interface for packets to be forwarded along the route</td>
</tr>
</tbody>
</table>

# Display detailed information about all routes in the routing table.

```plaintext
<Sysname> display ip routing-table verbose
Routing Table : Public
 Destinations : 4 Routes : 4

Destination: 10.1.1.0/24
 Protocol: Direct Process ID: 0
 Preference: 0 Cost: 0
 NextHop: 10.1.1.1 Interface: Vlan-interface1
 RelyNextHop: 0.0.0.0 Neighbour: 0.0.0.0
 Tunnel ID: 0x0 Label: NULL
 State: Active Adv Age: 04h00m30s
 Tag: 0

Destination: 10.1.1.1/32
 Protocol: Direct Process ID: 0
 Preference: 0 Cost: 0
 NextHop: 127.0.0.1 Interface: InLoopBack0
```
RelyNextHop: 0.0.0.0          Neighbour: 0.0.0.0
Tunnel ID: 0x0                  Label: NULL
State: Active NoAdv           Age: 04h00m30s
    Tag: 0

Destination: 127.0.0.0/8
    Protocol: Direct          Process ID: 0
    Preference: 0              Cost: 0
    NextHop: 127.0.0.1         Interface: InLoopBack0
RelyNextHop: 0.0.0.0          Neighbour: 0.0.0.0
Tunnel ID: 0x0                  Label: NULL
State: Active NoAdv           Age: 04h00m36s
    Tag: 0

Destination: 127.0.0.1/32
    Protocol: Direct          Process ID: 0
    Preference: 0              Cost: 0
    NextHop: 127.0.0.1         Interface: InLoopBack0
RelyNextHop: 0.0.0.0          Neighbour: 0.0.0.0
Tunnel ID: 0x0                  Label: NULL
State: Active NoAdv           Age: 04h00m36s
    Tag: 0

Displayed first are statistics for the whole routing table, followed by detailed description of each route (in sequence).

**Table 1-2** display ip routing-table verbose command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination</td>
<td>Destination address/mask length</td>
</tr>
<tr>
<td>Protocol</td>
<td>Protocol that presents the route</td>
</tr>
<tr>
<td>Process ID</td>
<td>Process ID</td>
</tr>
<tr>
<td>Preference</td>
<td>Priority of the route</td>
</tr>
<tr>
<td>Cost</td>
<td>Cost of the route</td>
</tr>
<tr>
<td>NextHop</td>
<td>Address of the next hop on the route</td>
</tr>
<tr>
<td>Interface</td>
<td>Outbound interface for packets to be forwarded along the route</td>
</tr>
<tr>
<td>BkNexthop</td>
<td>Backup next hop</td>
</tr>
<tr>
<td>BkInterface</td>
<td>Backup outbound interface</td>
</tr>
<tr>
<td>RelyNextHop</td>
<td>The next hop address obtained through routing recursion</td>
</tr>
<tr>
<td>Neighbour</td>
<td>Neighboring address determined by Routing Protocol</td>
</tr>
<tr>
<td>Tunnel ID</td>
<td>Tunnel ID</td>
</tr>
<tr>
<td>Label</td>
<td>Label</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Route status:</td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>This is an active unicast route.</td>
</tr>
<tr>
<td>Adv</td>
<td>This route can be advertised.</td>
</tr>
<tr>
<td>Delete</td>
<td>This route is deleted.</td>
</tr>
<tr>
<td>Gateway</td>
<td>This is an indirect route.</td>
</tr>
<tr>
<td>Holddown</td>
<td>Number of holddown routes.</td>
</tr>
<tr>
<td>Int</td>
<td>The route was discovered by an Interior Gateway Protocol (IGP).</td>
</tr>
<tr>
<td>NoAdv</td>
<td>The route is not advertised when the router advertises routes based on policies.</td>
</tr>
<tr>
<td>NotInstall</td>
<td>Normally, among routes to a destination, the route with the highest priority is installed into the core routing table and advertised, while a NotInstall route cannot be installed into the core routing table but may be advertised.</td>
</tr>
<tr>
<td>Reject</td>
<td>The packets matching a Reject route will be dropped. Besides, the router sends ICMP unreachable messages to the sources of the dropped packets. The Reject routes are usually used for network testing.</td>
</tr>
<tr>
<td>Static</td>
<td>A static route is not lost when you perform the save operation and then restart the router. Routes configured manually are marked as static.</td>
</tr>
<tr>
<td>Unicast</td>
<td>Unicast routes</td>
</tr>
<tr>
<td>Inactive</td>
<td>Inactive routes</td>
</tr>
<tr>
<td>Invalid</td>
<td>Invalid routes</td>
</tr>
<tr>
<td>WaitQ</td>
<td>The route is the WaitQ during route recursion.</td>
</tr>
<tr>
<td>TunE</td>
<td>Tunnel</td>
</tr>
<tr>
<td>GotQ</td>
<td>The route is in the GotQ during route recursion.</td>
</tr>
<tr>
<td>Age</td>
<td>Time for which the route has been in the routing table, in the sequence of hour, minute, and second from left to right.</td>
</tr>
<tr>
<td>Tag</td>
<td>Route tag</td>
</tr>
</tbody>
</table>

**display ip routing-table acl**

**Syntax**

```
 display ip routing-table acl acl-number [verbose]
```

**View**

Any view

**Default Level**

1: Monitor level
**Parameters**

- **acl-number**: Basic ACL number, in the range of 2000 to 2999.
- **verbose**: Displays detailed routing table information, including that for inactive routes. With this argument absent, the command displays only brief information about active routes.

**Description**

Use the `display ip routing-table acl` command to display information about routes permitted by a specified basic ACL.

This command is intended for the follow-up display of routing policies.

For more information about routing policy, refer to *Routing Policy Configuration* in the *IP Routing Volume*.

---

**Note**

If the specified ACL does not exist or it has no rules configured, the entire routing table is displayed.

---

**Examples**

# Define basic ACL 2000 and set the route filtering rules.

```bash
<Sysname> system-view
[Sysname] acl number 2000
[Sysname-acl-basic-2000] rule permit source 10.1.0.0 0.0.255.255
[Sysname-acl-basic-2000] rule deny source any
```

# Display brief information about active routes permitted by basic ACL 2000.

```bash
[Sysname-acl-basic-2000] display ip routing-table acl 2000
Routes Matched by Access list : 2000
Summary Count : 6
```

<table>
<thead>
<tr>
<th>Destination/Mask</th>
<th>Proto</th>
<th>Pre</th>
<th>Cost</th>
<th>NextHop</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.1.0/24</td>
<td>Direct 0</td>
<td>0</td>
<td></td>
<td>10.1.1.2</td>
<td>Vlan1</td>
</tr>
<tr>
<td>10.1.1.2/32</td>
<td>Direct 0</td>
<td>0</td>
<td></td>
<td>127.0.0.1</td>
<td>InLoop0</td>
</tr>
<tr>
<td>10.1.2.0/24</td>
<td>Direct 0</td>
<td>0</td>
<td></td>
<td>10.1.2.1</td>
<td>Vlan2</td>
</tr>
<tr>
<td>10.1.2.1/32</td>
<td>Direct 0</td>
<td>0</td>
<td></td>
<td>127.0.0.1</td>
<td>InLoop0</td>
</tr>
<tr>
<td>10.1.3.0/24</td>
<td>Direct 0</td>
<td>0</td>
<td></td>
<td>10.1.3.1</td>
<td>Vlan3</td>
</tr>
<tr>
<td>10.1.3.1/32</td>
<td>Direct 0</td>
<td>0</td>
<td></td>
<td>127.0.0.1</td>
<td>InLoop0</td>
</tr>
</tbody>
</table>

For detailed description of the above output, see Table 1-1.

# Display detailed information about both active and inactive routes permitted by basic ACL 2000.

```bash
<Sysname> display ip routing-table acl 2000 verbose
Routes Matched by Access list : 2000
Summary Count: 6
```

Destination: 10.1.1.0/24
Protocol: Direct          Process ID: 0
Preference: 0                     Cost: 0
NextHop: 10.1.1.2         Interface: Vlan-interface1
RelyNextHop: 0.0.0.0          Neighbour: 0.0.0.0
Tunnel ID: 0x0                  Label: NULL
   State: Active Adv             Age: 00h25m32s
   Tag: 0

Destination: 10.1.1.2/32
Protocol: Direct          Process ID: 0
Preference: 0                     Cost: 0
NextHop: 127.0.0.1        Interface: InLoopBack0
RelyNextHop: 0.0.0.0          Neighbour: 0.0.0.0
Tunnel ID: 0x0                  Label: NULL
   State: Active NoAdv           Age: 00h41m34s
   Tag: 0

Destination: 10.1.2.0/24
Protocol: Direct          Process ID: 0
Preference: 0                     Cost: 0
NextHop: 10.1.2.1         Interface: Vlan-interface2
RelyNextHop: 0.0.0.0          Neighbour: 0.0.0.0
Tunnel ID: 0x0                  Label: NULL
   State: Active Adv             Age: 00h05m42s
   Tag: 0

Destination: 10.1.2.1/32
Protocol: Direct          Process ID: 0
Preference: 0                     Cost: 0
NextHop: 127.0.0.1        Interface: InLoopBack0
RelyNextHop: 0.0.0.0          Neighbour: 0.0.0.0
Tunnel ID: 0x0                  Label: NULL
   State: Active NoAdv           Age: 00h05m42s
   Tag: 0

Destination: 10.1.3.0/24
Protocol: Direct          Process ID: 0
Preference: 0                     Cost: 0
NextHop: 10.1.3.1         Interface: Vlan-interface3
RelyNextHop: 0.0.0.0          Neighbour: 0.0.0.0
Tunnel ID: 0x0                  Label: NULL
   State: Active Adv             Age: 00h05m31s
   Tag: 0

Destination: 10.1.3.1/32
Protocol: Direct          Process ID: 0
Preference: 0                     Cost: 0
NextHop: 127.0.0.1        Interface: InLoopBack0
display ip routing-table ip-address

Syntax

display ip routing-table ip-address [ mask-length | mask ][ longer-match ] [ verbose ]
display ip routing-table ip-address1 { mask-length | mask } ip-address2 { mask-length | mask } [ verbose ]

View

Any view

Default Level

1: Monitor level

Parameters

ip-address: Destination IP address, in dotted decimal format.
mask-length: IP address mask length in the range 0 to 32.
mask: IP address mask in dotted decimal format.
longer-match: Displays the route with the longest mask.
verbose: Displays detailed routing table information, including both active and inactive routes. With this argument absent, the command displays only brief information about active routes.

Description

Use the display ip routing-table ip-address command to display information about routes to a specified destination address.

Executing the command with different parameters yields different output:

- display ip routing-table ip-address

The system ANDs the input destination IP address with the subnet mask in each route entry; and
ANDs the destination IP address in each route entry with its corresponding subnet mask.

If the two operations yield the same result for an entry and this entry is active, it is displayed.

- display ip routing-table ip-address mask

The system ANDs the input destination IP address with the input subnet mask; and ANDs the destination IP address in each route entry with the input subnet mask.

If the two operations yield the same result for an entry and the entry is active with a subnet mask less
than or equal to the input subnet mask, the entry is displayed.

Only route entries that exactly match the input destination address and mask are displayed.

- display ip routing-table ip-address longer-match

The system ANDs the input destination IP address with the subnet mask in each route entry; and
ANDs the destination IP address in each route entry with its corresponding subnet mask.
If the two operations yield the same result for multiple entries that are active, the one with longest mask length is displayed.

- **display ip routing-table ip-address mask longer-match**

The system ANDs the input destination IP address with the input subnet mask; and ANDs the destination IP address in each route entry with the input subnet mask.

If the two operations yield the same result for multiple entries with a mask less than or equal to the input subnet mask, the one that is active with longest mask length is displayed.

Use the **display ip routing-table ip-address1 { mask-length | mask } ip-address2 { mask-length | mask }** command to display route entries with destination addresses within a specified range.

**Examples**

# Display route entries for the destination IP address 11.1.1.1.

```plaintext
<Sysname> display ip routing-table 11.1.1.1
Routing Table : Public
Summary Count : 4

<table>
<thead>
<tr>
<th>Destination/Mask</th>
<th>Proto</th>
<th>Pre</th>
<th>Cost</th>
<th>NextHop</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0/0</td>
<td>Static</td>
<td>60</td>
<td>0</td>
<td>0.0.0.0</td>
<td>NULL0</td>
</tr>
<tr>
<td>11.0.0.0/8</td>
<td>Static</td>
<td>60</td>
<td>0</td>
<td>0.0.0.0</td>
<td>NULL0</td>
</tr>
<tr>
<td>11.1.0.0/16</td>
<td>Static</td>
<td>60</td>
<td>0</td>
<td>0.0.0.0</td>
<td>NULL0</td>
</tr>
<tr>
<td>11.1.1.0/24</td>
<td>Static</td>
<td>60</td>
<td>0</td>
<td>0.0.0.0</td>
<td>NULL0</td>
</tr>
</tbody>
</table>
```

For detailed description about the output, see Table 1-1.

# Display route entries by specifying a destination IP address and the longer-match keyword.

```plaintext
<Sysname> display ip routing-table 11.1.1.1 longer-match
Routing Table : Public
Summary Count : 1

<table>
<thead>
<tr>
<th>Destination/Mask</th>
<th>Proto</th>
<th>Pre</th>
<th>Cost</th>
<th>NextHop</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1.1.0/24</td>
<td>Static</td>
<td>60</td>
<td>0</td>
<td>0.0.0.0</td>
<td>NULL0</td>
</tr>
</tbody>
</table>
```

# Display route entries by specifying a destination IP address and mask.

```plaintext
<Sysname> display ip routing-table 11.1.1.1 24
Routing Table : Public
Summary Count : 3

<table>
<thead>
<tr>
<th>Destination/Mask</th>
<th>Proto</th>
<th>Pre</th>
<th>Cost</th>
<th>NextHop</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0.0.0/8</td>
<td>Static</td>
<td>60</td>
<td>0</td>
<td>0.0.0.0</td>
<td>NULL0</td>
</tr>
<tr>
<td>11.1.0.0/16</td>
<td>Static</td>
<td>60</td>
<td>0</td>
<td>0.0.0.0</td>
<td>NULL0</td>
</tr>
<tr>
<td>11.1.1.0/24</td>
<td>Static</td>
<td>60</td>
<td>0</td>
<td>0.0.0.0</td>
<td>NULL0</td>
</tr>
</tbody>
</table>
```

# Display route entries by specifying a destination IP address and mask and the longer-match keyword.

```plaintext
<Sysname> display ip routing-table 11.1.1.1 24 longer-match
Routing Table : Public
```
Summary Count : 1

<table>
<thead>
<tr>
<th>Destination/Mask</th>
<th>Proto</th>
<th>Pre</th>
<th>Cost</th>
<th>NextHop</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1.1.0/24</td>
<td>Static</td>
<td>60</td>
<td>0</td>
<td>0.0.0.0</td>
<td>NULL0</td>
</tr>
</tbody>
</table>

For detailed description of the above output, see Table 1-1.

# Display route entries for destination addresses in the range 1.1.1.0 to 5.5.5.0.

<Sysname> display ip routing-table 1.1.1.0 24 5.5.5.0 24

Routing Table : Public

<table>
<thead>
<tr>
<th>Destination/Mask</th>
<th>Proto</th>
<th>Pre</th>
<th>Cost</th>
<th>NextHop</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.0/24</td>
<td>Direct</td>
<td>0</td>
<td>0</td>
<td>1.1.1.1</td>
<td>Vlan1</td>
</tr>
<tr>
<td>1.1.1.1/32</td>
<td>Direct</td>
<td>0</td>
<td>0</td>
<td>127.0.0.1</td>
<td>InLoop0</td>
</tr>
<tr>
<td>2.2.2.0/24</td>
<td>Direct</td>
<td>0</td>
<td>0</td>
<td>2.2.2.1</td>
<td>Vlan2</td>
</tr>
<tr>
<td>2.2.2.1/32</td>
<td>Direct</td>
<td>0</td>
<td>0</td>
<td>127.0.0.1</td>
<td>InLoop0</td>
</tr>
</tbody>
</table>

display ip routing-table ip-prefix

Syntax

display ip routing-table ip-prefix ip-prefix-name [ verbose ]

View

Any view

Default Level

1: Monitor level

Parameters

ip-prefix-name: IP prefix list name, a string of 1 to 19 characters.

verbose: Displays detailed routing table information, including that for inactive routes. With this argument absent, the command displays only brief information about active routes.

Description

Use the display ip routing-table ip-prefix command to display information about routes permitted by a specified prefix list.

This command is intended for the follow-up display of routing policies. If the specified prefix list is not configured, detailed information about all routes (with the verbose keyword) or brief information about all active routes (without the verbose keyword) is displayed.

Examples

# Configure a prefix list named test, permitting routes with a prefix of 2.2.2.0 and a mask length between 24 and 32.

<Sysname> system-view
[Sysname] ip ip-prefix test permit 2.2.2.0 24 less-equal 32

# Display brief information about active routes permitted by the prefix list test.

[Sysname] display ip routing-table ip-prefix test
Routes Matched by Prefix list : test
Summary Count : 2
<table>
<thead>
<tr>
<th>Destination/Mask</th>
<th>Proto</th>
<th>Pre</th>
<th>Cost</th>
<th>NextHop</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.2.0/24</td>
<td>Direct</td>
<td>0</td>
<td>0</td>
<td>2.2.2.1</td>
<td>Vlan2</td>
</tr>
<tr>
<td>2.2.2.1/32</td>
<td>Direct</td>
<td>0</td>
<td>0</td>
<td>127.0.0.1</td>
<td>InLoop0</td>
</tr>
</tbody>
</table>

For detailed description of the above output, see Table 1-1.

# Display detailed information about both active and inactive routes permitted by IP prefix list test.

[Sysname] display ip routing-table ip-prefix test verbose

Routes Matched by Prefix list test:
Summary Count: 2

Destination: 2.2.2.0/24
Protocol: Direct  Process ID: 0
Preference: 0  Cost: 0
NextHop: 2.2.2.1  Interface: Vlan-interface2
RelayNextHop: 0.0.0.0  Neighbour: 0.0.0.0
Tunnel ID: 0x0  Label: NULL
State: Active Adv  Age: 00h20m52s
Tag: 0

Destination: 2.2.2.1/32
Protocol: Direct  Process ID: 0
Preference: 0  Cost: 0
NextHop: 127.0.0.1  Interface: InLoopBack0
RelayNextHop: 0.0.0.0  Neighbour: 0.0.0.0
Tunnel ID: 0x0  Label: NULL
State: Active NoAdv  Age: 00h20m52s
Tag: 0

For detailed description of the above output, see Table 1-2.

display ip routing-table protocol

Syntax

display ip routing-table protocol protocol [ inactive | verbose ]

View

Any view

Default Level

1: Monitor level

Parameters

protocol: Routing protocol. It can be direct, rip, or static.
inactive: Displays information about only inactive routes. With this argument absent, the command displays information about both active and inactive routes.
verbose: Displays detailed routing table information. With this argument absent, the command displays brief routing table information.
Description

Use the `display ip routing-table protocol` command to display routing information of a specified routing protocol.

Examples

# Display brief information about direct routes.

```
<Sysname> display ip routing-table protocol direct
Public Routing Table : Direct
Summary Count : 4

Direct Routing table Status : < Active>
Summary Count : 4

<table>
<thead>
<tr>
<th>Destination/Mask</th>
<th>Proto</th>
<th>Pre</th>
<th>Cost</th>
<th>NextHop</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.2.0/24</td>
<td>Direct</td>
<td>0</td>
<td>0</td>
<td>2.2.2.1</td>
<td>Vlan2</td>
</tr>
<tr>
<td>2.2.2.2/32</td>
<td>Direct</td>
<td>0</td>
<td>0</td>
<td>127.0.0.1</td>
<td>InLoop0</td>
</tr>
<tr>
<td>127.0.0.0/8</td>
<td>Direct</td>
<td>0</td>
<td>0</td>
<td>127.0.0.1</td>
<td>InLoop0</td>
</tr>
<tr>
<td>127.0.0.1/32</td>
<td>Direct</td>
<td>0</td>
<td>0</td>
<td>127.0.0.1</td>
<td>InLoop0</td>
</tr>
</tbody>
</table>
```

Direct Routing table Status : < Inactive>
Summary Count : 0

# Display brief information about static routes.

```
<Sysname> display ip routing-table protocol static
Public Routing Table : Static
Summary Count : 1

Static Routing table Status : < Active>
Summary Count : 0

Static Routing table Status : < Inactive>
Summary Count : 1

<table>
<thead>
<tr>
<th>Destination/Mask</th>
<th>Proto</th>
<th>Pre</th>
<th>Cost</th>
<th>NextHop</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.3.0/24</td>
<td>Static</td>
<td>60</td>
<td>0</td>
<td>1.2.4.5</td>
<td>Vlan10</td>
</tr>
</tbody>
</table>
```

For detailed description of the above output, see Table 1-1.

display ip routing-table statistics

Syntax

```
display ip routing-table statistics
```

View

Any view

Default Level

1: Monitor level
Parameters

None

Description

Use the `display ip routing-table statistics` command to display the route statistics of the routing table.

Examples

```
Display route statistics in the routing table.
<Sysname> display ip routing-table statistics
```

<table>
<thead>
<tr>
<th>Proto</th>
<th>route</th>
<th>active</th>
<th>added</th>
<th>deleted</th>
<th>freed</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIRECT</td>
<td>24</td>
<td>4</td>
<td>25</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>STATIC</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>28</td>
<td>5</td>
<td>29</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1-3 display ip routing-table statistics command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proto</td>
<td>Origin of the routes.</td>
</tr>
<tr>
<td>route</td>
<td>Number of routes from the origin</td>
</tr>
<tr>
<td>active</td>
<td>Number of active routes from the origin</td>
</tr>
<tr>
<td>added</td>
<td>Number of routes added into the routing table since the router started up or the routing table was last cleared</td>
</tr>
<tr>
<td>deleted</td>
<td>Number of routes marked as deleted, which will be freed after a period.</td>
</tr>
<tr>
<td>freed</td>
<td>Number of routes that got freed, that is, got removed permanently.</td>
</tr>
<tr>
<td>Total</td>
<td>Total number</td>
</tr>
</tbody>
</table>

display ipv6 routing-table

Syntax

`display ipv6 routing-table`

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the `display ipv6 routing-table` command to display brief routing table information, including destination IP address and prefix, protocol type, priority, metric, next hop and outbound interface.
The command displays only active routes, namely, the brief information about the current optimal routes.

Examples

# Display brief routing table information
<Sysname> display ipv6 routing-table
Routing Table :
   Destinations : 1        Routes : 1

   Destination : ::1/128                             Protocol   : Direct
   NextHop     : ::1                                 Preference : 0
   Interface   : InLoop0                             Cost       : 0

Table 1-4 display ipv6 routing-table command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination</td>
<td>IPv6 address of the destination network/host</td>
</tr>
<tr>
<td>NextHop</td>
<td>Nexthop address</td>
</tr>
<tr>
<td>Preference</td>
<td>Route priority</td>
</tr>
<tr>
<td>Interface</td>
<td>Outbound interface</td>
</tr>
<tr>
<td>Protocol</td>
<td>Routing protocol</td>
</tr>
<tr>
<td>Cost</td>
<td>Route cost</td>
</tr>
</tbody>
</table>

display ipv6 routing-table acl

Syntax

display ipv6 routing-table acl acl6-number [ verbose ]

View

Any view

Default Level

1: Monitor level

Parameters

acl6-number: Basic IPv6 ACL number, in the range 2000 to 2999.
verbose: Displays both active and inactive verbose routing information permitted by the ACL. Without this keyword, only brief active routing information is displayed.

Description

Use the **display ipv6 routing-table acl** command to display routing information permitted by the IPv6 ACL.

If the specified IPv6 ACL is not available, all routing information is displayed.
Examples

# Display brief routing information permitted by ACL 2000.
<Sysname> display ipv6 routing-table acl 2000
Routes Matched by Access list 2000 :
Summary Count : 2

<table>
<thead>
<tr>
<th>Destination</th>
<th>Protocol</th>
<th>NextHop</th>
<th>Preference</th>
<th>Interface</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>::::1/128</td>
<td>Direct</td>
<td>::1</td>
<td>0</td>
<td>InLoop0</td>
<td>0</td>
</tr>
<tr>
<td>1::/64</td>
<td>Static</td>
<td>::</td>
<td>60</td>
<td>NULL0</td>
<td>0</td>
</tr>
</tbody>
</table>

Refer to Table 1-4 for description about the above output.

display ipv6 routing-table ipv6-address

Syntax

display ipv6 routing-table ipv6-address prefix-length [ longer-match ] [ verbose ]

View

Any view

Default Level

1: Monitor level

Parameters

ipv6-address: Destination IPv6 address.
prefix-length: Prefix length, in the range 0 to 128.
longer-match: Displays the matched route having the longest prefix length.
verbose: Displays both active and inactive verbose routing information. Without this keyword, only brief active routing information is displayed.

Description

Use the display ipv6 routing-table ipv6-address command to display routing information about the specified destination IPv6 address.

Executing the command with different parameters yields different output:

- **display ipv6 routing-table ipv6-address prefix-length**

  The system ANDs the input destination IPv6 address with the input prefix length, and ANDs the destination IPv6 address in each route entry with the input prefix length.

  If the two operations yield the same result for an entry and the entry is active with a prefix length less than or equal to the input prefix length, the entry is displayed.

  Only route entries that exactly match the input destination address and prefix length are displayed.

- **display ipv6 routing-table ipv6-address prefix-length longer-match**
The system ANDs the input destination IPv6 address with the input prefix length; and ANDs the destination IPv6 address in each route entry with the input prefix length.

If the two operations yield the same result for multiple entries with a prefix length less than or equal to the input prefix length, the one that is active with the longest prefix length is displayed.

Examples

# Display brief information about the route matching the specified destination IPv6 address.
<Sysname> display ipv6 routing-table 10::1 127
Routing Table:
Summary Count: 3

Destination: 10::/64                                    Protocol : Static
NextHop    : ::                                         Preference: 60
Interface  : NULL0                                      Cost      : 0

Destination: 10::/68                                    Protocol : Static
NextHop    : ::                                         Preference: 60
Interface  : NULL0                                      Cost      : 0

Destination: 10::/120                                    Protocol : Static
NextHop    : ::                                          Preference: 60
Interface  : NULL0                                       Cost      : 0

# Display brief information about the matched route with the longest prefix length.
<Sysname> display ipv6 routing-table 10:: 127 longer-match
Routing Tables:
Summary Count : 1
Destination: 10::/120                                    Protocol : Static
NextHop    : ::                                          Preference: 60
Interface  : NULL0                                       Cost      : 0

Refer to Table 1-4 for description about the above output.

display ipv6 routing-table ipv6-address1 ipv6-address2

Syntax

display ipv6 routing-table ipv6-address1 prefix-length1 ipv6-address2 prefix-length2 [ verbose ]

View

Any view

Default Level

1: Monitor level

Parameters

ipv6-address1/ipv6-address2: An IPv6 address range from IPv6 address1 to IPv6 address2.
prefix-length1/prefix-length2: Prefix length, in the range 0 to 128.
verbose: Displays both active and inactive verbose routing information. Without this keyword, only brief active routing information is displayed.

**Description**

Use the `display ipv6 routing-table ipv6-address1 ipv6-address2` command to display routes with destinations falling into the specified IPv6 address range.

**Examples**

```bash
Display routes with destinations falling into the IPv6 address range.

<Sysname> display ipv6 routing-table 100::/64 300::/64
Routing Table :
Summary Count : 3

Destination: 100::/64 Protocol : Static
NextHop : :: Preference: 60
Interface : NULL0 Cost : 0

Destination: 200::/64 Protocol : Static
NextHop : :: Preference: 60
Interface : NULL0 Cost : 0

Destination: 300::/64 Protocol : Static
NextHop : :: Preference: 60
Interface : NULL0 Cost : 0
```

Refer to Table 1-4 for description about the above output.

display ipv6 routing-table ipv6-prefix

**Syntax**

```
display ipv6 routing-table ipv6-prefix ipv6-prefix-name [verbose]
```

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

- `ipv6-prefix-name`: Name of the IPv6 prefix list, in the range 1 to 19 characters.
- `verbose`: Displays both active and inactive verbose routing information. Without this keyword, only brief active routing information is displayed.

**Description**

Use the `display ipv6 routing-table ipv6-prefix` command to display routes permitted by the IPv6 prefix list.
Examples

# Display brief active routing information permitted by the IPv6 prefix list test2.
<Sysname> display ipv6 routing-table ipv6-prefix test2
Routes Matched by Prefix list test2 :
Summary Count : 1

Destination: 100::/64 Protocol : Static
NextHop : :: Preference: 60
Interface : NULL0 Cost : 0

Refer to Table 1-4 for description about the above output.

display ipv6 routing-table protocol

Syntax

display ipv6 routing-table protocol [ inactive | verbose ]

View

Any view

Default Level

1: Monitor level

Parameters

protocol: Displays routes of a routing protocol, which can be direct, ripng and static.
inactive: Displays only inactive routes. Without the keyword, all active and inactive routes are displayed.
verbose: Displays both active and inactive verbose routing information. Without this keyword, only brief active routing information is displayed.

Description

Use the display ipv6 routing-table protocol command to display routes of a specified routing protocol.

Examples

# Display brief information about all direct routes.
<Sysname> display ipv6 routing-table protocol direct
Direct Routing Table :
Summary Count : 1

Direct Routing Table's Status : < Active >
Summary Count : 1

Destination: ::1/128 Protocol : Direct
NextHop : ::1 Preference: 0
Interface : InLoop0 Cost : 0
Direct Routing Table's Status: <Inactive>
Summary Count: 0

Refer to Table 1-4 for description about the above output.

display ipv6 routing-table statistics

Syntax

display ipv6 routing-table statistics

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the display ipv6 routing-table statistics command to display routing statistics, including total route number, added route number and deleted route number.

Examples

# Display routing statistics.
<Sysname> display ipv6 routing-table statistics

<table>
<thead>
<tr>
<th>Protocol</th>
<th>route</th>
<th>active</th>
<th>added</th>
<th>deleted</th>
<th>freed</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIRECT</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>STATIC</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1-5 display ipv6 routing-table statistics command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>Routing protocol</td>
</tr>
<tr>
<td>route</td>
<td>Route number of the protocol</td>
</tr>
<tr>
<td>active</td>
<td>Number of active routes</td>
</tr>
<tr>
<td>added</td>
<td>Routes added after the last startup of the router</td>
</tr>
<tr>
<td>deleted</td>
<td>Deleted routes, which will be released after a specified time</td>
</tr>
<tr>
<td>freed</td>
<td>Released (totally removed from the routing table) route number</td>
</tr>
<tr>
<td>Total</td>
<td>Total number of routes</td>
</tr>
</tbody>
</table>

display ipv6 routing-table verbose

Syntax

display ipv6 routing-table verbose
View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the `display ipv6 routing-table verbose` command to display detailed information about all active and inactive routes, including the statistics of the entire routing table and information for each route.

Examples

# Display detailed information about all active and inactive routes.

```plaintext
<Sysname> display ipv6 routing-table verbose
Routing Table :
 Destinations : 1 Routes : 1
 Destination : ::1 PrefixLength : 128
 NextHop : ::1 Preference : 0
 RelayNextHop : :: Tag : 0H
 Neighbour : :: ProcessID : 0
 Interface : InLoopBack0 Protocol : Direct
 State : Active NoAdv Cost : 0
 Tunnel ID : 0x0 Label : NULL
 Age : 22161sec
```

Table 1-6 display ipv6 routing-table verbose command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination</td>
<td>Destination IPv6 address</td>
</tr>
<tr>
<td>PrefixLength</td>
<td>Prefix length of the address</td>
</tr>
<tr>
<td>NextHop</td>
<td>Next hop</td>
</tr>
<tr>
<td>Preference</td>
<td>Route priority</td>
</tr>
<tr>
<td>RelayNextHop</td>
<td>Recursive next hop</td>
</tr>
<tr>
<td>Tag</td>
<td>Tag of the route</td>
</tr>
<tr>
<td>Neighbour</td>
<td>Neighbor address</td>
</tr>
<tr>
<td>ProcessID</td>
<td>Process ID</td>
</tr>
<tr>
<td>Interface</td>
<td>Outbound interface</td>
</tr>
<tr>
<td>Protocol</td>
<td>Routing protocol</td>
</tr>
<tr>
<td>State</td>
<td>State of the route, Active, Inactive, Adv (advertised), or NoAdv (not advertised)</td>
</tr>
<tr>
<td>Cost</td>
<td>Cost of the route</td>
</tr>
</tbody>
</table>
### Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel ID</td>
<td>Tunnel ID</td>
</tr>
<tr>
<td>Label</td>
<td>Label</td>
</tr>
<tr>
<td>Age</td>
<td>Time that has elapsed since the route was generated</td>
</tr>
</tbody>
</table>

**reset ip routing-table statistics protocol**

**Syntax**

```
reset ip routing-table statistics protocol { protocol | all }
```

**View**

User view

**Default Level**

2: System level

**Parameters**

- `protocol`: Clears statistics for the IPv4 routing protocol, which can be direct, rip, or static.
- `all`: Clears statistics for all IPv4 routing protocols.

**Description**

Use the `reset ip routing-table statistics protocol` command to clear routing statistics for the routing table.

**Examples**

```
Clear all the routing statistics information.
<Sysname> reset ip routing-table statistics protocol all
```

**reset ipv6 routing-table statistics**

**Syntax**

```
reset ipv6 routing-table statistics protocol { protocol | all }
```

**View**

User view

**Default Level**

2: System level

**Parameters**

- `protocol`: Clears statistics for the routing protocol, which can be direct, ripng, or static.
- `all`: Clears statistics for all IPv6 routing protocols.
Description

Use the `reset ipv6 routing-table statistics` command to clear the route statistics of the routing table.

Examples

# Clear statistics for all routing protocols.

```bash
<Sysname> reset ipv6 routing-table statistics protocol all
```
The term “router” in this document refers to a router in a generic sense or a Layer 3 switch.

Static Routing Configuration Commands

delete static-routes all

Syntax

delete static-routes all

View

System view

Default Level

2: System level

Parameters

None.

Description

Use the delete static-routes all command to delete all static routes.

When you use this command to delete static routes, the system will prompt you to confirm the operation before deleting all the static routes.

Related commands: ip route-static and display ip routing-table in IP Routing Table Display Commands in the IP Routing Volume.

Examples

# Delete all static routes on the router.
<Sysname> system-view
[Sysname] delete static-routes all
This will erase all ipv4 static routes and their configurations, you must reconfigure all static routes
Are you sure?[Y/N]:Y
**ip route-static**

**Syntax**

```
ip route-static dest-address { mask | mask-length } { next-hop-address [track track-entry-number] | interface-type interface-number next-hop-address } [preference preference-value] [tag tag-value] [description description-text]
undo ip route-static dest-address { mask | mask-length } { next-hop-address | interface-type interface-number [next-hop-address] } [preference preference-value]
```

**View**

System view

**Default Level**

2: System level

**Parameters**

- **dest-address**: Destination IP address of the static route, in dotted decimal notation.
- **mask**: Mast of the IP address, in dotted decimal notation.
- **mask-length**: Mask length, in the range 0 to 32.
- **next-hop-address**: IP address of the next hop, in dotted decimal notation.
- **interface-type**: Specifies the output interface by its type and number.
- **preference preference-value**: Specifies the preference of the static route, which is in the range of 1 to 255 and defaults to 60.
- **tag tag-value**: Sets a tag value for the static route from 1 to 4294967295. The default is 0. Tags of routes are used in routing policies to control routing.
- **description description-text**: Configures a description for the static route, which consists of 1 to 60 characters, including special characters like space, but excluding `?`.
- **track track-entry-number**: Associates the static route with a track entry. Use the `track-entry-number` argument to specify a track entry number, in the range 1 to 1024.

**Description**

Use the **ip route-static** command to configure a unicast static route.

Use the **undo ip route-static** command to delete a unicast static route.

When configuring a unicast static route, note that:

1) If the destination IP address and the mask are both 0.0.0.0, the configured route is a default route. If routing table searching fails, the router will use the default route for packet forwarding.

2) Different route management policies can be implemented for different route preference configurations. For example, specifying the same preference for different routes to the same destination address enables load sharing, while specifying different preferences for these routes enables route backup.

3) When configuring a static route, Note that the next hop address must not be the IP address of the local interface; otherwise, the route configuration will not take effect. When specifying the output interface, note that: for a Null 0 or loopback interface, if the output interface has already been configured, there is no need to configure the next hop address.
Related commands: `display ip routing-table`, `ip route-static default-preference`.

---

**Note**

- To configure track monitoring for an existing static route, simply associate the static route with a track entry. For a non-existent static route, configure it and associate it with a Track entry.
- If a static route needs route recursion, the associated track entry must monitor the nexthop of the recursive route instead of that of the static route; otherwise, a valid route may be mistakenly considered invalid.

---

**Examples**

```
Configure a static route, whose destination address is 1.1.1.1/24, next hop address is 2.2.2.2, tag value is 45, and description information is for internet & intranet.
<Sysname> system-view
[Sysname] ip route-static 1.1.1.1 24 2.2.2.2 tag 45 description for internet & intranet
```

**ip route-static default-preference**

**Syntax**

```
ip route-static default-preference default-preference-value
undo ip route-static default-preference
```

**View**

System view

**Default Level**

2: System level

**Parameters**

`default-preference-value`: Default preference for static routes, which is in the range of 1 to 255.

**Description**

Use the `ip route-static default-preference` command to configure the default preference for static routes.

Use the `undo ip route-static default-preference` command to restore the default.

By default, the default preference of static routes is 60.

Note that:

- If no preference is specified when configuring a static route, the default preference is used.
- When the default preference is re-configured, it applies to newly added static routes only.

Related commands: `ip route-static` and `display ip routing-table` in **IP Routing Table Display Commands** in the **IP Routing Volume**.
Examples

# Set the default preference of static routes to 120.

<Sysname> system-view

[Sysname] ip route-static default-preference 120
IPv6 Static Routing Configuration Commands

delete ipv6 static-routes all

Syntax

delete ipv6 static-routes all

View

System view

Default Level

2: System level

Parameters

None

Description

Use the **delete ipv6 static-routes all** command to delete all static routes including the default route. When using this command, you will be prompted whether to continue the deletion and only after you confirm the deletion will the static routes be deleted.

Related commands: **display ipv6 routing-table**, **ipv6 route-static**.

Examples

# Delete all IPv6 static routes.
<Sysname> system-view
[Sysname] delete ipv6 static-routes all
This will erase all ipv6 static routes and their configurations, you must reconfigure all static routes
Are you sure?[Y/N]Y

Note

Throughout this chapter, the term “router” refers to a router in a generic sense or a Layer 3 switch running routing protocols.
**ipv6 route-static**

**Syntax**

```
ipv6 route-static ipv6-address prefix-length [interface-type interface-number] nexthop-address [preference preference-value]
undo ipv6 route-static ipv6-address prefix-length [interface-type interface-number] [nexthop-address] [preference preference-value]
```

**View**

System view

**Default Level**

2: System level

**Parameters**

- `ipv6-address prefix-length`: IPv6 address and prefix length.
- `interface-type interface-number`: Interface type and interface number of the output interface.
- `nexthop-address`: Next hop IPv6 address.
- `preference-value`: Route preference value, in the range of 1 to 255. The default is 60.

**Description**

Use the `ipv6 route-static` command to configure an IPv6 static route.

Use the `undo ipv6 route-static` command to remove an IPv6 static route.

An IPv6 static route that has the destination address configured as `::/0` (a prefix length of 0) is the default IPv6 route. If the destination address of an IPv6 packet does not match any entry in the routing table, this default route will be used to forward the packet.

Related commands: `display ipv6 routing-table`, `delete ipv6 static-routes all`.

**Examples**

# Configure a static IPv6 route, with the destination address being 1:1:2::/24 and next hop being 1:1:3::1.

```
<Sysname> system-view
[Sysname] ipv6 route-static 1:1:2:: 24 1:1:3::1
```
Table of Contents

1 IGMP Snooping Configuration Commands ................................................................. 1-1
   IGMP Snooping Configuration Commands ............................................................... 1-1
      display igmp-snooping group ............................................................................. 1-1
      display igmp-snooping statistics ...................................................................... 1-2
      fast-leave (IGMP-Snooping view) ................................................................. 1-3
      group-policy (IGMP-Snooping view) ............................................................. 1-4
      host-aging-time (IGMP-Snooping view) ....................................................... 1-5
      igmp-snooping ......................................................................................... 1-6
      igmp-snooping drop-unknown ....................................................................... 1-6
      igmp-snooping enable .................................................................................. 1-7
      igmp-snooping fast-leave .............................................................................. 1-8
      igmp-snooping general-query source-ip ....................................................... 1-9
      igmp-snooping group-limit ........................................................................... 1-9
      igmp-snooping group-policy ......................................................................... 1-10
      igmp-snooping host-aging-time .................................................................... 1-11
      igmp-snooping host-join ............................................................................... 1-12
      igmp-snooping last-member-query-interval ............................................... 1-13
      igmp-snooping max-response-time ............................................................. 1-14
      igmp-snooping overflow-replace ................................................................. 1-15
      igmp-snooping querier ................................................................................ 1-15
      igmp-snooping query-interval ....................................................................... 1-16
      igmp-snooping router-aging-time ................................................................. 1-16
      igmp-snooping source-deny ......................................................................... 1-17
      igmp-snooping special-query source-ip ........................................................ 1-18
      igmp-snooping static-group ......................................................................... 1-19
      igmp-snooping static-router-port ............................................................... 1-20
      igmp-snooping version ............................................................................... 1-21
      last-member-query-interval (IGMP-Snooping view) ...................................... 1-21
      max-response-time (IGMP-Snooping view) .................................................. 1-22
      overflow-replace (IGMP-Snooping view) ...................................................... 1-23
      report-aggregation (IGMP-Snooping view) ............................................... 1-23
      reset igmp-snooping group ......................................................................... 1-24
      reset igmp-snooping statistics .................................................................... 1-25
      router-aging-time (IGMP-Snooping view) .................................................... 1-25
      source-deny (IGMP-Snooping view) ............................................................. 1-26

2 Multicast VLAN Configuration Commands ................................................................. 2-1
   Multicast VLAN Configuration Commands ......................................................... 2-1
      display multicast-vlan ............................................................................... 2-1
      multicast-vlan ........................................................................................ 2-2
      port (multicast VLAN view) ....................................................................... 2-2
      port multicast-vlan .................................................................................... 2-3
      subvlan (multicast VLAN view) ................................................................... 2-4
3 MLD Snooping Configuration Commands

MLD Snooping Configuration Commands

- display mld-snooping group
- display mld-snooping statistics
- fast-leave (MLD-Snooping view)
- group-policy (MLD-Snooping view)
- host-aging-time (MLD-Snooping view)
- last-listener-query-interval (MLD-Snooping view)
- max-response-time (MLD-Snooping view)
- mld-snooping
- mld-snooping enable
- mld-snooping fast-leave
- mld-snooping general-query source-ip
- mld-snooping group-limit
- mld-snooping group-policy
- mld-snooping host-aging-time
- mld-snooping host-join
- mld-snooping last-listener-query-interval
- mld-snooping max-response-time
- mld-snooping overflow-replace
- mld-snooping querier
- mld-snooping query-interval
- mld-snooping router-aging-time
- mld-snooping source-deny
- mld-snooping special-query source-ip
- mld-snooping static-group
- mld-snooping static-router-port
- mld-snooping version
- overflow-replace (MLD-Snooping view)
- report-aggregation (MLD-Snooping view)
- reset mld-snooping group
- reset mld-snooping statistics
- router-aging-time (MLD-Snooping view)
- source-deny (MLD-Snooping view)

4 IPv6 Multicast VLAN Configuration Commands

IPv6 Multicast VLAN Configuration Commands

- display multicast-vlan ipv6
- multicast-vlan ipv6
- port (IPv6 multicast VLAN view)
- port multicast-vlan ipv6
- subvlan (IPv6 multicast VLAN view)
IGMP Snooping Configuration Commands

display igmp-snooping group

Syntax

display igmp-snooping group [ vlan vlan-id ] [ slot slot-number ] [ verbose ]

View

Any view

Default Level

1: Monitor level

Parameters

vlan vlan-id: Displays the IGMP Snooping multicast group information in the specified VLAN, where vlan-id is in the range of 1 to 4094. If you do not specify a VLAN, this command will display the IGMP Snooping multicast group information in all VLANs.

slot slot-number: Displays information about IGMP Snooping multicast groups on the specified IRF member device. The slot-number argument is the member number of the device in the IRF, which you can display with the display irf command. The value range for the slot-number argument depends on the number of members and numbering conditions in the current IRF. If no IRF exists, the slot-number argument is the current device number.

verbose: Specifies to display the detailed IGMP Snooping multicast group information.

Description

Use the display igmp-snooping group command to view the IGMP Snooping multicast group information.

Examples

# View the detailed IGMP Snooping multicast group information in VLAN 2.
<Sysname> display igmp-snooping group vlan 2 verbose
  Total 1 IP Group(s).
  Total 1 IP Source(s).
  Total 1 MAC Group(s).
  Port flags: D-Dynamic port, S-Static port, C-Copy port
  Subvlan flags: R-Real VLAN, C-Copy VLAN
  Vlan(id):2.
    Total 1 IP Group(s).
    Total 1 IP Source(s).
    Total 1 MAC Group(s).
Router port(s): total 1 port.
GE1/0/1                (D) ( 00:01:30 )

IP group(s): the following ip group(s) match to one mac group.
IP group address: 224.1.1.1
(0.0.0.0, 224.1.1.1):
    Attribute: Host Port
    Host port(s): total 1 port.
    GE1/0/2                (D) ( 00:03:23 )

MAC group(s):
MAC group address: 0100-5e01-0101
    Host port(s): total 1 port.
    GE1/0/2

Table 1-1 display igmp-snooping group command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total 1 IP Group(s).</td>
<td>Total number of IP multicast groups</td>
</tr>
<tr>
<td>Total 1 IP Source(s).</td>
<td>Total number of multicast sources</td>
</tr>
<tr>
<td>Total 1 MAC Group(s).</td>
<td>Total number of MAC multicast groups</td>
</tr>
<tr>
<td>Port flags: D-Dynamic port, S-Static port, C-Copy port</td>
<td>Port flags: D for dynamic port, S for static port, C for port copied from a (*, G) entry to an (S, G) entry</td>
</tr>
<tr>
<td>Subvlan flags: R-Real VLAN, C-Copy VLAN</td>
<td>Sub-VLAN flags: R for real egress sub-VLAN under the current entry, C for sub-VLAN copied from a (*, G) entry to an (S, G) entry</td>
</tr>
<tr>
<td>Router port(s)</td>
<td>Number of router ports</td>
</tr>
<tr>
<td>( 00:01:30 )</td>
<td>Remaining time of the dynamic member port or router port aging timer.</td>
</tr>
<tr>
<td>IP group address</td>
<td>Address of IP multicast group</td>
</tr>
<tr>
<td>(0.0.0.0, 224.1.1.1)</td>
<td>An (S, G), where 0.0.0.0 implies any multicast source</td>
</tr>
<tr>
<td>MAC group address</td>
<td>Address of MAC multicast group</td>
</tr>
<tr>
<td>Attribute</td>
<td>Attribute of IP multicast group</td>
</tr>
<tr>
<td>Host port(s)</td>
<td>Number of member ports</td>
</tr>
</tbody>
</table>

display igmp-snooping statistics

**Syntax**

display igmp-snooping statistics

**View**

Any view

**Default Level**

1: Monitor level
Parameters

None

Description

Use the `display igmp-snooping statistics` command to view the statistics information of IGMP messages learned by IGMP Snooping.

Examples

# View the statistics information of IGMP messages learned by IGMP Snooping.

```bash
<Sysname> display igmp-snooping statistics
 Received IGMP general queries:0.
 Received IGMPv1 reports:0.
 Received IGMPv2 reports:19.
 Received IGMP leaves:0.
 Received IGMPv2 specific queries:0.
 Sent IGMPv2 specific queries:0.
 Received IGMPv3 reports:1.
 Received IGMPv3 reports with right and wrong records:0.
 Received IGMPv3 specific queries:0.
 Received IGMPv3 specific sg queries:0.
 Sent IGMPv3 specific queries:0.
 Sent IGMPv3 specific sg queries:0.
 Received error IGMP messages:19.
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>general queries</td>
<td>General query messages</td>
</tr>
<tr>
<td>specific queries</td>
<td>Group-specific query messages</td>
</tr>
<tr>
<td>reports</td>
<td>Report messages</td>
</tr>
<tr>
<td>leaves</td>
<td>Leave messages</td>
</tr>
<tr>
<td>reports with right and wrong records</td>
<td>Report messages with correct and incorrect records</td>
</tr>
<tr>
<td>specific sg query packet(s)</td>
<td>Group-and-source-specific query message(s)</td>
</tr>
<tr>
<td>error IGMP messages</td>
<td>IGMP messages with errors</td>
</tr>
</tbody>
</table>

**fast-leave (IGMP-Snooping view)**

**Syntax**

- `fast-leave [ vlan vlan-list ]`
- `undo fast-leave [ vlan vlan-list ]`

**View**

IGMP-Snooping view
Default Level

2: System level

Parameters

- **vlan vlan-list**: Defines one or multiple VLANs. You can provide up to 10 VLAN lists, by each of which you can specify an individual VLAN in the form of *vlan-id*, or a VLAN range in the form of *start-vlan-id to end-vlan-id*, where the end VLAN ID must be greater than the start VLAN ID. The effective range of a VLAN ID is 1 to 4094.

Description

Use the **fast-leave** command to enable fast leave processing globally. With this function enabled, when the switch receives an IGMP leave message on a port, it directly removes that port from the multicast forwarding entry of the specific group.

Use the **undo fast-leave** command to disable fast leave processing globally.

By default, fast leave processing is disabled.

Note that:
- This command works on IGMP Snooping–enabled VLANs.
- If you do not specify any VLAN, the command will take effect for all VLANs; if you specify a VLAN or multiple VLANs, the command will take effect for the specified VLAN(s) only.

Related commands: **igmp-snooping fast-leave**.

Examples

```
Enable fast leave processing globally in VLAN 2.
<Sysname> system-view
<Sysname> igmp-snooping
<Sysname-igmp-snooping> fast-leave vlan 2
```

group-policy (IGMP-Snooping view)

Syntax

```
group-policy acl-number [vlan vlan-list]
undo group-policy [vlan vlan-list]
```

View

IGMP-Snooping view

Default Level

2: System level

Parameters

- **acl-number**: Basic or advanced ACL number, in the range of 2000 to 3999. The source address or address range specified in the advanced ACL rule is used to match the multicast source address(es) specified in IGMPv3 reports, rather than the source address in the IP packets. The system assumes that an IGMPv1 or IGMPv2 report or an IGMPv3 IS_EX or TO_EX report that does not carry a multicast source address carries a multicast source address of 0.0.0.0.
**Description**

Use the `group-policy` command to configure a global multicast group filter, namely to control the multicast groups a host can join.

Use the `undo group-policy` command to remove the configured global multicast group filter.

By default, no global multicast group filter is configured, namely a host can join any valid multicast group.

Note that:

- If you do not specify any VLAN, the command will take effect for all VLANs; if you specify a VLAN or multiple VLANs, the command will take effect for the specified VLAN(s) only.
- If the specified ACL does not exist or the ACL rule is null, all multicast groups will be filtered out.
- You can configure different ACL rules for a port in different VLANs; for a given VLAN, a newly configured ACL rule will override the existing one.

Related commands: `igmp-snooping group-policy`.

**Examples**

```
Apply ACL 2000 as a multicast group filter in VLAN 2 so that hosts in this VLAN can join 225.1.1.1 only.
<Sysname> system-view
<Sysname> acl number 2000
<Sysname-acl-basic-2000> rule permit source 225.1.1.1 0
<Sysname-acl-basic-2000> quit
<Sysname> igmp-snooping
<Sysname-igmp-snooping> group-policy 2000 vlan 2
```

**host-aging-time (IGMP-Snooping view)**

**Syntax**

```
host-aging-time interval
undo host-aging-time
```

**View**

IGMP-Snooping view

**Default Level**

2: System level

**Parameters**

`interval`: Dynamic member port aging time, in seconds. The effective range is 200 to 1,000.

**Description**

Use the `host-aging-time` command to configure the aging time of dynamic member ports globally.
Use the undo host-aging-time command to restore the default setting. By default, the aging time of dynamic member ports is 260 seconds. This command works on IGMP Snooping–enabled VLANs. Related commands: igmp-snooping host-aging-time.

Examples

# Set the aging time of dynamic member ports globally to 300 seconds.
<Sysname> system-view
[Sysname] igmp-snooping
[Sysname-igmp-snooping] host-aging-time 300

igmp-snooping

Syntax

igmp-snooping
undo igmp-snooping

View

System view

Default Level

2: System level

Parameters

None

Description

Use the igmp-snooping command to enable IGMP Snooping globally and enter IGMP-Snooping view. Use the undo igmp-snooping command to disable IGMP Snooping globally.

By default, IGMP Snooping is disabled.

Related commands: igmp-snooping enable.

Examples

# Enable IGMP Snooping globally and enter IGMP-Snooping view.
<Sysname> system-view
[Sysname] igmp-snooping

igmp-snooping drop-unknown

Syntax

igmp-snooping drop-unknown
undo igmp-snooping drop-unknown
View

VLAN view

Default Level

2: System level

Parameters

None

Description

Use the **igmp-snooping drop-unknown** command to enable the function of dropping unknown multicast data in the current VLAN, so that such multicast data will only be forwarded to router ports.

Use the **undo igmp-snooping drop-unknown** command to disable the function of dropping unknown multicast data in the current VLAN.

By default, this function is disabled, that is, unknown multicast data is flooded.

This command takes effect only if IGMP Snooping is enabled in the VLAN.

Examples

# In VLAN 2, enable the function of dropping unknown multicast data.

```bash
<Sysname> system-view
[Sysname] vlan 2
[Sysname-vlan2] igmp-snooping drop-unknown
```

**igmp-snooping enable**

Syntax

```
igmp-snooping enable
undo igmp-snooping enable
```

View

VLAN view

Default Level

2: System level

Parameters

None

Description

Use the **igmp-snooping enable** command to enable IGMP Snooping in the current VLAN.

Use the **undo igmp-snooping enable** command to disable IGMP Snooping in the current VLAN.

By default, IGMP Snooping is disabled in a VLAN.

IGMP Snooping must be enabled globally before it can be enabled in a VLAN.

Related commands: **igmp-snooping**.
Examples

# Enable IGMP Snooping in VLAN 2.
<Sysname> system-view
[Sysname] igmp-snooping
[Sysname-igmp-snooping] quit
[Sysname] vlan 2
[Sysname-vlan2] igmp-snooping enable

igmp-snooping fast-leave

Syntax

    igmp-snooping fast-leave [ vlan vlan-list ]
    undo igmp-snooping fast-leave [ vlan vlan-list ]

View

    Ethernet port view, Layer 2 aggregate port view, port group view

Default Level

    2: System level

Parameters

    vlan vlan-list: Defines one or multiple VLANs. You can provide up to 10 VLAN lists, by each of which
    you can specify an individual VLAN in the form of vlan-id, or a VLAN range in the form of start-vlan-id
    to end-vlan-id, where the end VLAN ID must be greater than the start VLAN ID. The effective range of
    a VLAN ID is 1 to 4094.

Description

    Use the igmp-snooping fast-leave command to enable fast leave processing on the current port or
    group of ports. With this function enabled, when the switch receives an IGMP leave message on a port,
    it directly removes that port from the multicast forwarding entry of the specific group.

    Use the undo igmp-snooping fast-leave command to disable fast leave processing on the current
    port or group of ports.

    By default, fast leave processing is disabled.

    Note that:
    
    • This command works on IGMP Snooping–enabled VLANs.
    • If you do not specify any VLAN when using this command in Ethernet port view or Layer 2
      aggregate port view, the command will take effect for all VLANs the port belongs to; if you specify
      a VLAN or multiple VLANs, the command will take effect only if the port belongs to the specified
      VLAN(s).
    • If you do not specify any VLAN when using this command in port group view, the command will
      take effect on all the ports in this group; if you specify a VLAN or multiple VLANs, the command
      will take effect only on those ports in this group that belong to the specified VLAN(s).

    Related commands: fast-leave.
Examples

# Enable fast leave processing on GigabitEthernet1/0/1 in VLAN 2.

<Sysname> system-view
[Sysname] interface gigabitethernet1/0/1
[Sysname-GigabitEthernet1/0/1] igmp-snooping fast-leave vlan 2

igmp-snooping general-query source-ip

Syntax

igmp-snooping general-query source-ip { current-interface | ip-address }
undo igmp-snooping general-query source-ip

View

VLAN view

Default Level

2: System level

Parameters

current-interface: Sets the source address of IGMP general queries to the address of the current VLAN interface. If the current VLAN interface does not have an IP address, the default IP address 0.0.0.0 will be used as the source IP address of IGMP general queries.

ip-address: Specifies the source address of IGMP general queries, which can be any legal IP address.

Description

Use the igmp-snooping general-query source-ip command to configure the source address of IGMP general queries.

Use the undo igmp-snooping general-query source-ip command to restore the default configuration.

By default, the source IP address of IGMP general queries is 0.0.0.0.

This command takes effect only if IGMP Snooping is enabled in the VLAN.

Examples

# In VLAN 2 specify 10.1.1.1 as the source IP address of IGMP general queries.

<Sysname> system-view
[Sysname] vlan 2
[Sysname-vlan2] igmp-snooping general-query source-ip 10.1.1.1

igmp-snooping group-limit

Syntax

igmp-snooping group-limit limit [ vlan vlan-list ]
undo igmp-snooping group-limit [ vlan vlan-list ]
View

Ethernet port view, Layer 2 aggregate port view, port group view

Default Level

2: System level

Parameters

limit: Maximum number of multicast groups that can be joined on a port. The effective range is 1 to 1000.

vlan vlan-list: Defines one or multiple VLANs. You can provide up to 10 VLAN lists, by each of which you can specify an individual VLAN in the form of vlan-id, or a VLAN range in the form of start-vlan-id to end-vlan-id, where the end VLAN ID must be greater than the start VLAN ID. The effective range of a VLAN ID is 1 to 4094.

Description

Use the `igmp-snooping group-limit` command to configure the maximum number of multicast groups that can be joined on a port.

Use the `undo igmp-snooping group-limit` command to restore the default setting.

The default limit is 1000.

Note that:

- If you do not specify any VLAN when using this command in Ethernet port view or Layer 2 aggregate port view, the command will take effect for all VLANs the port belongs to; if you specify a VLAN or multiple VLANs, the command will take effect only if the port belongs to the specified VLAN(s).
- If you do not specify any VLAN when using this command in port group view, the command will take effect on all the ports in this group; if you specify a VLAN or multiple VLANs, the command will take effect only on those ports in this group that belong to the specified VLAN(s).

Examples

# Specify to allow a maximum of 10 multicast groups to be joined on GigabitEthernet1/0/1 in VLAN 2.

```plaintext
<Sysname> system-view
<Sysname> interface gigabitethernet1/0/1
<Sysname-GigabitEthernet1/0/1] igmp-snooping group-limit 10 vlan 2
```

**igmp-snooping group-policy**

Syntax

```
igmp-snooping group-policy acl-number [vlan vlan-list]
undo igmp-snooping group-policy [vlan vlan-list]
```

View

Ethernet port view, Layer 2 aggregate port view, port group view

Default Level

2: System level
Parameters

**acl-number**: Basic or advanced ACL number, in the range of 2000 to 3999. The source address or address range specified in the advanced ACL rule is used to match the multicast source address(es) specified in IGMPv3 reports, rather than the source address in the IP packets. The system assumes that an IGMPv1 or IGMPv2 report or an IGMPv3 IS_EX and TO_EX report that does not carry a multicast source address carries a multicast source address of 0.0.0.0.

**vlan vlan-list**: Defines one or multiple VLANs. You can provide up to 10 VLAN lists, by each of which you can specify an individual VLAN in the form of **vlan-id**, or a VLAN range in the form of **start-vlan-id to end-vlan-id**, where the end VLAN ID must be greater than the start VLAN ID. The effective range of a VLAN ID is 1 to 4094.

Description

Use the **igmp-snooping group-policy** command to configure a multicast group filter on the current port(s), namely to control the multicast groups hosts on the port(s) can join.

Use the **undo igmp-snooping group-policy** command to remove a multicast group filter on the current port(s).

By default, no multicast group filter is configured on a port, namely a host can join any valid multicast group.

Note that:

- If you do not specify any VLAN when using this command in Ethernet port view or Layer 2 aggregate port view, the command will take effect for all VLANs the port belongs to; if you specify a VLAN or multiple VLANs, the command will take effect only if the port belongs to the specified VLAN(s).
- If you do not specify any VLAN when using this command in port group view, the command will take effect on all the ports in this group; if you specify a VLAN or multiple VLANs, the command will take effect only on those ports in this group that belong to the specified VLAN(s).
- If the specified ACL does not exist or the ACL rule is null, all multicast groups will be filtered out.
- You can configure different ACL rules for a port in different VLANs; for a given VLAN, a newly configured ACL rule will override the existing one.

Related commands: **group-policy**.

Examples

# Apply ACL 2000 as a multicast group filter so that hosts on GigabitEthernet 1/0/1 in VLAN 2 can join 225.1.1.1 only.

```
<Sysname> system-view
 [Sysname] acl number 2000
 [Sysname-acl-basic-2000] rule permit source 225.1.1.1 0
 [Sysname-acl-basic-2000] quit
 [Sysname] interface gigabitethernet1/0/1
 [Sysname-GigabitEthernet1/0/1] igmp-snooping group-policy 2000 vlan 2
```

**igmp-snooping host-aging-time**

**Syntax**

**igmp-snooping host-aging-time** **interval**
undo igmp-snooping host-aging-time

View

VLAN view

Default Level

2: System level

Parameters

interval: Dynamic member port aging time, in seconds. The effective range is 200 to 1,000.

Description

Use the `igmp-snooping host-aging-time` command to configure the aging time of dynamic member ports in the current VLAN.

Use the `undo igmp-snooping host-aging-time` command to restore the default setting.

By default, the aging time of dynamic member ports is 260 seconds.

This command takes effect only if IGMP Snooping is enabled in the VLAN.

Related commands: `host-aging-time`.

Examples

# Set the aging time of dynamic member ports to 300 seconds in VLAN 2.

```bash
<Sysname> system-view
[Sysname] vlan 2
[Sysname-vlan2] igmp-snooping host-aging-time 300
```

**igmp-snooping host-join**

Syntax

```
igmp-snooping host-join group-address [source-ip source-address] vlan vlan-id
undo igmp-snooping host-join group-address [source-ip source-address] vlan vlan-id
```

View

Ethernet port view, Layer 2 aggregate port view, port group view

Default Level

2: System level

Parameters

- **group-address**: Address of the multicast group that the simulated host is to join, in the range of 224.0.1.0 to 239.255.255.255.
- **source-address**: Address of the multicast source that the simulated host is to join. The value of this argument should be a valid unicast address or 0.0.0.0. If the value is 0.0.0.0, this means that no multicast source is specified.
- **vlan vlan-id**: Specifies the VLAN that comprises the port(s), where `vlan-id` is in the range of 1 to 4094.
Description

Use the `igmp-snooping host-join` command to configure the current port(s) as simulated member host(s), namely configure the current port as a member host for the specified multicast group or source and group.

Use the `undo igmp-snooping host-join` command to remove the current port(s) as simulated member host(s) for the specified multicast group or source and group.

By default, this function is disabled.

Note that:

- This command works on IGMP Snooping–enabled VLANs. The version of IGMP on the simulated host depends on the version of IGMP Snooping running in the VLAN.
- The `source-ip source-address` option in the command is meaningful only for IGMP Snooping version 3. If IGMP Snooping version 2 is running, although you can include `source-ip source-address` in the command, the simulated host does not respond to a query message.
- If configured in Ethernet port view or Layer 2 aggregate port view, this feature takes effect only if the port belongs to the specified VLAN.
- If configured in port group view, this feature takes effect only on those ports in this port group that belong to the specified VLAN.

Examples

# Configure GigabitEthernet1/0/1 as a simulated member host in VLAN 2 for multicast source 1.1.1.1 and multicast group 232.1.1.1.

```
<Sysname> system-view
[Sysname] igmp-snooping
[Sysname-igmp-snooping] quit
[Sysname] vlan 2
[Sysname-vlan2] igmp-snooping enable
[Sysname-vlan2] igmp-snooping version 3
[Sysname-vlan2] quit
[Sysname] interface gigabitethernet1/0/1
[Sysname-GigabitEthernet1/0/1] igmp-snooping host-join 232.1.1.1 source-ip 1.1.1.1 vlan 2
```

`igmp-snooping last-member-query-interval`

Syntax

```
igmp-snooping last-member-query-interval interval
undo igmp-snooping last-member-query-interval
```

View

VLAN view

Default Level

2: System level

Parameters

`interval`: Interval between IGMP last-member queries, in seconds. The effective range is 1 to 5.
**Description**

Use the `igmp-snooping last-member-query-interval` command to configure the interval between IGMP last-member queries in the VLAN.

Use the `undo igmp-snooping last-member-query-interval` command to restore the default setting.

By default, the IGMP last-member query interval is 1 second.

This command takes effect only if IGMP Snooping is enabled in the VLAN.

Related commands: `last-member-query-interval`.

**Examples**

```
Set the interval between IGMP last-member queries to 3 seconds in VLAN 2.
<Sysname> system-view
[Sysname] vlan 2
[Sysname-vlan2] igmp-snooping last-member-query-interval 3
```

**igmp-snooping max-response-time**

**Syntax**

```
igmp-snooping max-response-time interval
undo igmp-snooping max-response-time
```

**View**

VLAN view

**Default Level**

2: System level

**Parameters**

`interval`: Maximum response time to IGMP general queries, in seconds. The effective range is 1 to 25.

**Description**

Use the `igmp-snooping max-response-time` command to configure the maximum response time to IGMP general queries in the VLAN.

Use the `undo igmp-snooping max-response-time` command to restore the default setting.

By default, the maximum response time to IGMP general queries is 10 seconds.

This command takes effect only if IGMP Snooping is enabled in the VLAN.

Related commands: `max-response-time, igmp-snooping query-interval`.

**Examples**

```
Set the maximum response time to IGMP general queries to 5 seconds in VLAN 2.
<Sysname> system-view
[Sysname] vlan 2
[Sysname-vlan2] igmp-snooping max-response-time 5
```
igmp-snooping overflow-replace

Syntax

    igmp-snooping overflow-replace [ vlan vlan-list ]
    undo igmp-snooping overflow-replace [ vlan vlan-list ]

View

  Ethernet port view, Layer 2 aggregate port view, port group view

Default Level

  2: System level

Parameters

  vlan vlan-list: Defines one or multiple VLANs. You can provide up to 10 VLAN lists, by each of which you can specify an individual VLAN in the form of vlan-id, or a VLAN range in the form of start-vlan-id to end-vlan-id, where the end VLAN ID must be greater than the start VLAN ID. The effective range of a VLAN ID is 1 to 4094.

Description

  Use the igmp-snooping overflow-replace command to enable the multicast group replacement function on the current port(s).

  Use the undo igmp-snooping overflow-replace command to disable the multicast group replacement function on the current port(s).

  By default, the multicast group replacement function is disabled.

  Note that:

  ● This command works on IGMP Snooping–enabled VLANs.
  ● If you do not specify any VLAN when using this command in Ethernet port view or Layer 2 aggregate port view, the command will take effect for all VLANs the port belongs to; if you specify a VLAN or multiple VLANs, the command will take effect only if the port belongs to the specified VLAN(s).
  ● If you do not specify any VLAN when using this command in port group view, the command will take effect on all the ports in this group; if you specify a VLAN or multiple VLANs, the command will take effect only on those ports in this group that belong to the specified VLAN(s).

  Related commands: overflow-replace.

Examples

  # Enable the multicast group replacement function on GigabitEthernet1/0/1 in VLAN 2.
  <Sysname> system-view
  [Sysname] interface gigabitethernet1/0/1
  [Sysname-GigabitEthernet1/0/1] igmp-snooping overflow-replace vlan 2

igmp-snooping querier

Syntax

    igmp-snooping querier
undo igmp-snooping querier

View

VLAN view

Default Level

2: System level

Parameters

None

Description

Use the `igmp-snooping querier` command to enable the IGMP Snooping querier function.

Use the `undo igmp-snooping querier` command to disable the IGMP Snooping querier function.

By default, the IGMP Snooping querier function is disabled.

Note that:

- This command takes effect only if IGMP Snooping is enabled in the VLAN.
- This command does not take effect in a sub-VLAN of a multicast VLAN.

Related commands: `subvlan` in *Multicast VLAN Commands* in the *IP Multicast Volume*.

Examples

# Enable the IGMP Snooping querier function in VLAN 2.

```bash
<Sysname> system-view
[Sysname] vlan 2
[Sysname-vlan2] igmp-snooping querier
```

**igmp-snooping query-interval**

Syntax

```bash
igmp-snooping query-interval interval
undo igmp-snooping query-interval
```

View

VLAN view

Default Level

2: System level

Parameters

`interval`: Interval between IGMP general queries, in seconds. The effective range is 2 to 300.

Description

Use the `igmp-snooping query-interval` command to configure the interval between IGMP general queries.

Use the `undo igmp-snooping query-interval` command to restore the default setting.
By default, the IGMP general query interval is 60 seconds. This command takes effect only if IGMP Snooping is enabled in the VLAN.


Examples

```
Set the interval between IGMP general queries to 20 seconds in VLAN 2.
<Sysname> system-view
[Sysname] vlan 2
[Sysname-vlan2] igmp-snooping query-interval 20
```

**igmp-snooping router-aging-time**

**Syntax**

```
igmp-snooping router-aging-time interval
undo igmp-snooping router-aging-time
```

**View**

VLAN view

**Default Level**

2: System level

**Parameters**

`interval`: Dynamic router port aging time, in seconds. The effective range is 1 to 1,000.

**Description**

Use the `igmp-snooping router-aging-time` command to configure the aging time of dynamic router ports in the current VLAN.

Use the `undo igmp-snooping router-aging-time` command to restore the default setting.

By default, the aging time of dynamic router ports is 105 seconds.

This command takes effect only if IGMP Snooping is enabled in the VLAN.

Related commands: `router-aging-time`.

Examples

```
Set the aging time of dynamic router ports to 100 seconds in VLAN 2.
<Sysname> system-view
[Sysname] vlan 2
[Sysname-vlan2] igmp-snooping router-aging-time 100
```

**igmp-snooping source-deny**

**Syntax**

```
igmp-snooping source-deny
undo igmp-snooping source-deny
```

1-17
View

Ethernet port view, port group view

Default Level

2: System level

Parameters

None

Description

Use the `igmp-snooping source-deny` command to enable multicast source port filtering.

Use the `undo igmp-snooping source-deny` command to disable multicast source port filtering.

By default, multicast source port filtering is disabled.

This command works on IGMP Snooping-enabled VLANs.

Examples

# Enable source port filtering for multicast data on GigabitEthernet1/0/1.

```
<Sysname> system-view
<Sysname> interface gigabitethernet1/0/1
<Sysname-GigabitEthernet1/0/1] igmp-snooping source-deny
```

`igmp-snooping special-query source-ip`

Syntax

```
igmp-snooping special-query source-ip { current-interface | ip-address }
undo igmp-snooping special-query source-ip
```

View

VLAN view

Default Level

2: System level

Parameters

- `current-interface`: Sets the source address of IGMP group-specific queries to the address of the current VLAN interface. If the current VLAN interface does not have an IP address, the default IP address 0.0.0.0 will be used as the source IP address of IGMP group-specific queries.
- `ip-address`: Sets the source address of IGMP group-specific queries to the specified address.

Description

Use the `igmp-snooping special-query source-ip` command to configure the source IP address of IGMP group-specific queries.

Use the `undo igmp-snooping special-query source-ip` command to restore the default configuration.

By default, the source IP address of IGMP group-specific queries is 0.0.0.0.
This command takes effect only if IGMP Snooping is enabled in the VLAN.

Examples

# In VLAN 2 specify 10.1.1.1 as the source IP address of IGMP group-specific queries.
<Sysname> system-view
<Sysname> vlan 2
<Sysname-vlan2> igmp-snooping special-query source-ip 10.1.1.1

**igmp-snooping static-group**

**Syntax**

```
igmp-snooping static-group group-address [source-ip source-address] vlan vlan-id
undo igmp-snooping static-group group-address [source-ip source-address] vlan vlan-id
```

**View**

Ethernet port view, Layer 2 aggregate port view, port group view

**Default Level**

2: System level

**Parameters**

*group-address*: Address of the multicast group to be statically joined, in the range of 224.0.0.0 to 239.255.255.255.

*source-address*: Address of the multicast source to be statically joined. The value of this argument should be a valid unicast address or 0.0.0.0. If the value is 0.0.0.0, this means no multicast source is specified.

*vlan vlan-id*: Specifies the VLAN that comprises the port(s), where *vlan-id* is in the range of 1 to 4094.

**Description**

Use the `igmp-snooping static-group` command to configure the static (*, G) or (S, G) joining function, namely to configure the current port or port group as static multicast group or source-group member(s).

Use the `undo igmp-snooping static-group` command to restore the system default.

By default, no ports are static member ports.

Note that:

- The `source-ip source-address` option in the command is meaningful only for IGMP Snooping version 3. If IGMP Snooping version 2 is running, although you can include the `source-ip source-address` option in your command, the configuration will not take effect.
- If configured in Ethernet port view or Layer 2 aggregate port view, this feature takes effect only if the port belongs to the specified VLAN.
- If configured in port group view, this feature takes effect only on those ports in this port group that belong to the specified VLAN.

**Examples**

# Configure GigabitEthernet1/0/1 in VLAN 2 to be a static member port for (1.1.1.1, 232.1.1.1).
**igmp-snooping static-router-port**

**Syntax**

```
igmp-snooping static-router-port vlan vlan-id
undo igmp-snooping static-router-port vlan vlan-id
```

**View**

Ethernet port view, Layer 2 aggregate port view, port group view

**Default Level**

2: System level

**Parameters**

- **vlan** *vlan-id*: Specifies a VLAN in which one or more static router ports are to be configured, where *vlan-id* is in the range of 1 to 4094.

**Description**

Use the `igmp-snooping static-router-port` command to configure the current port(s) as static router port(s).

Use the `undo igmp-snooping static-router-port` command to restore the system default.

By default, no ports are static router ports.

Note that:

- This command works on IGMP Snooping–enabled VLANs.
- This command does not take effect in a sub-VLAN of a multicast VLAN.
- If configured in Ethernet port view or Layer 2 aggregate port view, this feature takes effect only if the port belongs to the specified VLAN.
- If configured in port group view, this feature takes effect only on those ports in this port group that belong to the specified VLAN.

Related commands: `subvlan` in *Multicast VLAN Commands* in the *IP Multicast Volume*.

**Examples**

```
Enable the static router port function on GigabitEthernet1/0/1 in VLAN 2.
<Sysname> system-view
[Sysname] interface gigabitethernet1/0/1
[Sysname-GigabitEthernet1/0/1] igmp-snooping static-router-port vlan 2
```
igmp-snooping version

Syntax

    igmp-snooping version version-number
    undo igmp-snooping version

View

    VLAN view

Default Level

    2: System level

Parameters

    version-number: IGMP snooping version, in the range of 2 to 3.

Description

    Use the **igmp-snooping version** command to configure the IGMP Snooping version.
    Use the **undo igmp-snooping version** command to restore the default setting.
    By default, the IGMP Snooping version is 2.

    Note that:
    - This command can take effect only if IGMP Snooping is enabled in the VLAN.
    - This command does not take effect in a sub-VLAN of a multicast VLAN.

    Related commands: **igmp-snooping enable; subvlan** in *Multicast VLAN Commands* in the *IP Multicast Volume*.

Examples

    # Enable IGMP Snooping in VLAN 2, and set the IGMP Snooping version to version 3.
    <Sysname> system-view
    [Sysname] igmp-snooping
    [Sysname-igmp-snooping] quit
    [Sysname] vlan 2
    [Sysname-vlan2] igmp-snooping enable
    [Sysname-vlan2] igmp-snooping version 3

last-member-query-interval (IGMP-Snooping view)

Syntax

    last-member-query-interval interval
    undo last-member-query-interval

View

    IGMP-Snooping view

Default Level

    2: System level
Parameters

interval: Interval between IGMP last-member queries, in seconds. The effective range is 1 to 5.

Description

Use the **last-member-query-interval** command to configure the interval between IGMP last-member queries globally.

Use the **undo last-member-query-interval** command to restore the default setting.

By default, the interval between IGMP last-member queries is 1 second.

This command works on IGMP Snooping–enabled VLANs.

Related commands: **igmp-snooping last-member-query-interval**.

Examples

# Set the interval between IGMP last-member queries globally to 3 seconds.

```
<Sysname> system-view
[Sysname] igmp-snooping
[Sysname-igmp-snooping] last-member-query-interval 3
```

max-response-time (IGMP-Snooping view)

Syntax

```
max-response-time interval
undo max-response-time
```

View

IGMP-Snooping view

Default Level

2: System level

Parameters

interval: Maximum response time to IGMP general queries, in seconds. The effective range is 1 to 25.

Description

Use the **max-response-time** command to configure the maximum response time to IGMP general queries globally.

Use the **undo max-response-time** command to restore the default value.

This command works on IGMP Snooping–enabled VLANs.

Related commands: **igmp-snooping max-response-time**, **igmp-snooping query-interval**.

Examples

# Set the maximum response time to IGMP general queries globally to 5 seconds.

```
<Sysname> system-view
[Sysname] igmp-snooping
[Sysname-igmp-snooping] max-response-time 5
```
overflow-replace (IGMP-Snooping view)

Syntax

```
overflow-replace [vlan vlan-list]
undo overflow-replace [vlan vlan-list]
```

View

IGMP-Snooping view

Default Level

2: System level

Parameters

`vlan vlan-list`: Defines one or multiple VLANs. You can provide up to 10 VLAN lists, by each of which you can specify an individual VLAN in the form of `vlan-id`, or a VLAN range in the form of `start-vlan-id to end-vlan-id`, where the end VLAN ID must be greater than the start VLAN ID. The effective range of a VLAN ID is 1 to 4094.

Description

Use the `overflow-replace` command to enable the multicast group replacement function globally.

Use the `undo overflow-replace` command to disable the multicast group replacement function globally.

By default, the multicast group replacement function is disabled.

Note that:

- This command works on IGMP Snooping–enabled VLANs.
- If you do not specify any VLAN, the command will take effect for all VLANs; if you specify a VLAN or multiple VLANs, the command will take effect for the specified VLAN(s) only.

Related commands: `igmp-snooping overflow-replace`.

Examples

```
Enable the multicast group replacement function globally in VLAN 2.
<Sysname> system-view
[Sysname] igmp-snooping
[Sysname-igmp-snooping] overflow-replace vlan 2
```

report-aggregation (IGMP-Snooping view)

Syntax

```
report-aggregation
undo report-aggregation
```

View

IGMP-Snooping view
Default Level

2: System level

Parameters

None

Description

Use the `report-aggregation` command to enable IGMP report suppression.
Use the `undo report-aggregation` command to disable IGMP report suppression.
By default, IGMP report suppression is enabled.
This command works on IGMP Snooping–enabled VLANs.

Examples

# Disable IGMP report suppression.
<Sysname> system-view
[ Sysname] igmp-snooping
[ Sysname-igmp-snooping] undo report-aggregation

reset igmp-snooping group

Syntax

```
reset igmp-snooping group { group-address | all } [vlan vlan-id]
```

View

User view

Default Level

2: System level

Parameters

- `group-address`: Clears the information about the specified multicast group. The value range of `group-address` is 224.0.1.0 to 239.255.255.255.
- `all`: Clears all IGMP Snooping multicast group information.
- `vlan vlan-id`: Clears the IGMP Snooping multicast group information in the specified VLAN. The effective range of `vlan-id` is 1 to 4094.

Description

Use the `reset igmp-snooping group` command to clear IGMP Snooping multicast group information.

Note that:

- This command works on IGMP Snooping–enabled VLANs.
- This command cannot clear IGMP Snooping multicast group information of static joins.

Examples

# Clear all IGMP Snooping multicast group information.
<Sysname> reset igmp-snooping group all
reset igmp-snooping statistics

Syntax

    reset igmp-snooping statistics

View

    User view

Default Level

    2: System level

Parameters

    None

Description

    Use the `reset igmp-snooping statistics` command to clear the statistics information of IGMP messages learned by IGMP Snooping.

Examples

    # Clear the statistics information of all kinds of IGMP messages learned by IGMP Snooping.
    <Sysname> reset igmp-snooping statistics

router-aging-time (IGMP-Snooping view)

Syntax

    router-aging-time interval
    undo router-aging-time

View

    IGMP-Snooping view

Default Level

    2: System level

Parameters

    interval: Dynamic router port aging time, in seconds. The effective range is 1 to 1,000.

Description

    Use the `router-aging-time` command to configure the aging time of dynamic router ports globally.
    Use the `undo router-aging-time` command to restore the default setting.
    By default, the aging time of dynamic router ports is 105 seconds.
    This command works on IGMP Snooping–enabled VLANs.
    Related commands: `igmp-snooping router-aging-time`.

Examples

    # Set the aging time of dynamic router ports globally to 100 seconds.
source-deny (IGMP-Snooping view)

Syntax

source-deny port interface-list
undo source-deny port interface-list

View

IGMP-Snooping view

Default Level

2: System level

Parameters

interface-list: Specifies one or multiple ports. You can provide up to ten port lists, by each of which you can specify an individual port in the form of interface-type interface-number, or a port range in the form of interface-type start-interface-number to interface-type end-interface-number, where the end interface number must be greater than the start interface number.

Description

Use the source-deny command to enable multicast source port filtering so that all multicast data packets are blocked.

Use the undo source-deny command to disable multicast source port filtering.

By default, multicast source port filtering is not enabled.

This command works on IGMP Snooping–enabled VLANs.

Examples

# Enable source port filtering for multicast data on interfaces GigabitEthernet1/0/1 through GigabitEthernet1/0/4.
<Sysname> system-view
<Sysname> igmp-snooping
<Sysname-igmp-snooping> router-aging-time 100

<Sysname-igmp-snooping> source-deny port gigabitethernet1/0/1 to gigabitethernet1/0/4
Multicast VLAN Configuration Commands

display multicast-vlan

Syntax

display multicast-vlan [ vlan-id ]

View

Any view

Default Level

1: Monitor level

Parameters

`vlan-id`: VLAN ID of a multicast VLAN, in the range of 1 to 4094. If this argument is not provided, the information about all multicast VLANs will be displayed.

Description

Use the `display multicast-vlan` command to view the information about the specified multicast VLAN.

Examples

# View the information about all multicast VLANs.

<Sysname> display multicast-vlan
Total 1 multicast-vlan(s)

Multicast vlan 100
   subvlan list:
     vlan 2  4-6
   port list:
     no port

Table 2-1 display multicast-vlan command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total 1 multicast-vlan(s)</td>
<td>Total number of multicast VLANs</td>
</tr>
<tr>
<td>Multicast vlan</td>
<td>A multicast VLAN</td>
</tr>
<tr>
<td>subvlan list</td>
<td>List of sub-VLANs of the multicast VLAN</td>
</tr>
<tr>
<td>port list</td>
<td>Port list of the multicast VLAN</td>
</tr>
</tbody>
</table>
multicast-vlan

Syntax

```
multicast-vlan vlan-id
undo multicast-vlan { all | vlan-id }
```

View

System view

Default Level

2: System level

Parameters

```
vlan-id: Specifies a VLAN by its ID, in the range of 1 to 4094.
all: Deletes all multicast VLANs.
```

Description

Use the `multicast-vlan` command to configure the specified VLAN as a multicast VLAN and enter multicast VLAN view.

Use the `undo multicast-vlan` command to remove the specified VLAN as a multicast VLAN.

The VLAN to be configured is not a multicast VLAN by default.

Note that:

- The specified VLAN to be configured as a multicast VLAN must exist.
- For a sub-VLAN-based multicast VLAN, you need to enable IGMP Snooping only in the multicast VLAN; for a port-based multicast VLAN, you need to enable IGMP Snooping in both the multicast VLAN and all the user VLANs.

Related commands: `igmp-snooping enable` in the IGMP Snooping Commands in the IP Multicast Volume.

Examples

```
Enable IGMP Snooping in VLAN 100. Configure it as a multicast VLAN and enter multicast VLAN view.
<Sysname> system-view
[Sysname] igmp-snooping
[Sysname-igmp-snooping] quit
[Sysname] vlan 100
[Sysname-vlan100] igmp-snooping enable
[Sysname-vlan100] quit
[Sysname] multicast-vlan 100
[Sysname-mvlan-100]
```

port (multicast VLAN view)

Syntax

```
port interface-list
```
undo port \{ all | interface-list \}

View

Multicast VLAN view

Default Level

2: System level

Parameters

interface-list: Specifies a port in the form of interface-type interface-number, or a port range in the form of interface-type start-interface-number to interface-type end-interface-number, where the end interface number must be greater than the start interface number.

all: Deletes all the ports in the current multicast VLAN.

Description

Use the port command to assign the specified port(s) to the current multicast VLAN.
Use the undo port command to delete the specified port(s) or all ports from the current multicast VLAN.

By default, a multicast VLAN has no ports.

Note that:
- A port can belong to only one multicast VLAN.
- Only the following types of ports can be configured as multicast VLAN ports: Ethernet, or Layer 2 aggregate ports.

Examples

# Assign ports GigabitEthernet1/0/1 through GigabitEthernet1/0/5 to multicast VLAN 100.
<Sysname> system-view
[Sysname] multicast-vlan 100
[Sysname-mvlan-100] port gigabitethernet1/0/1 to gigabitethernet1/0/5

port multicast-vlan

Syntax

port multicast-vlan vlan-id
undo port multicast-vlan

View

Ethernet port view, Layer 2 aggregate port view, port group view.

Default Level

2: System level

Parameters

vlan-id: VLAN ID of the multicast VLAN you want to assign the current port(s) to, in the range of 1 to 4094.
Description

Use the **port multicast-vlan** command to assign the current port(s) to the specified multicast VLAN.

Use the **undo port multicast-vlan** command to restore the system default.

By default, a port does not belong to any multicast VLAN.

Note that a port can belong to only one multicast VLAN.

Examples

```
Assign GigabitEthernet1/0/1 to multicast VLAN 100.
<Sysname> system-view
<Sysname> interface gigabitethernet1/0/1
<Sysname-gigabitethernet1/0/1> port multicast-vlan 100
```

**subvlan (multicast VLAN view)**

**Syntax**

```
subvlan vlan-list
undo subvlan { all | vlan-list }
```

**View**

Multicast VLAN view

**Default Level**

2: System level

**Parameters**

**vlan-list**: Specifies a VLAN in the form of `vlan-id`, or a VLAN range in the form of `start-vlan-id to end-vlan-id`, where the end VLAN ID must be greater than the start VLAN ID. The effective range of a VLAN ID is 1 to 4094.

**all**: Deletes all the sub-VLANs of the current multicast VLAN.

Description

Use the **subvlan** command to configure sub-VLAN(s) for the current multicast VLAN.

Use the **undo subvlan** command to remove the specified sub-VLAN(s) or all sub-VLANs from the current multicast VLAN.

A multicast VLAN has no sub-VLANs by default.

Note that:

- The VLANs to be configured as sub-VLANs of the multicast VLAN must exist and must not be multicast VLANs or sub-VLANs of another multicast VLAN.
- The number of sub-VLANs of the multicast VLAN must not exceed 63

Examples

```
Configure VLAN 10 through VLAN 15 as sub-VLANs of multicast VLAN 100.
<Sysname> system-view
<Sysname> multicast-vlan 100
```
[Sysname-mvlan-100] subvlan 10 to 15
MLD Snooping Configuration Commands

display mld-snooping group

Syntax

display mld-snooping group [ vlan vlan-id ] [ slot slot-number ] [ verbose ]

View

Any view

Default Level

1: Monitor level

Parameters

vlan vlan-id: Displays the MLD Snooping multicast group information in the specified VLAN, where vlan-id is in the range of 1 to 4094. If you do not specify a VLAN, this command will display the MLD Snooping multicast group information in all VLANs.

slot slot-number: Displays information about MLD Snooping multicast groups on the specified IRF member device. The slot-number argument is the member number of the device in the IRF, which you can display with the display irf command. The value range for the slot-number argument depends on the number of members and numbering conditions in the current IRF. If no IRF exists, the slot-number argument is the current device number.

verbose: Displays the detailed MLD Snooping multicast group information.

Description

Use the display mld-snooping group command to view the MLD Snooping multicast group information.

Examples

# View the detailed MLD Snooping multicast group information in VLAN 2.
<Sysname> display mld-snooping group vlan 2 verbose
    Total 1 IP Group(s).
    Total 1 IP Source(s).
    Total 1 MAC Group(s).

    Port flags: D-Dynamic port, S-Static port, C-Copy port
    Subvlan flags: R-Real VLAN, C-Copy VLAN
    Vlan(id):2.
        Total 1 IP Group(s).
        Total 1 IP Source(s).
Total 1 MAC Group(s).

Router port(s): total 1 port.

GE1/0/1 (D) (00:01:30)

IP group(s): the following IP group(s) match to one MAC group.

IP group address: FF1E::101

(:,:, FF1E::101):

Attribute: Host Port

Host port(s): total 1 port.

GE1/0/2 (D) (00:03:23)

MAC group(s):

MAC group address: 3333-0000-0101

Host port(s): total 1 port.

GE1/0/2

Table 3-1 display mld-snooping group command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total 1 IP Group(s).</td>
<td>Total number of IPv6 multicast groups</td>
</tr>
<tr>
<td>Total 1 IP Source(s).</td>
<td>Total number of IPv6 multicast sources</td>
</tr>
<tr>
<td>Total 1 MAC Group(s).</td>
<td>Total number of MAC multicast groups</td>
</tr>
<tr>
<td>Port flags: D-Dynamic port, S-Static port, C-Copy port</td>
<td>Port flags: D for dynamic port, S for static port, C for port copied from a (*, G) entry to an (S, G) entry</td>
</tr>
<tr>
<td>Subvlan flags: R-Real VLAN, C-Copy VLAN</td>
<td>Sub-VLAN flags: R for real egress sub-VLAN under the current entry, C for sub-VLAN copied from a (*, G) entry to an (S, G) entry</td>
</tr>
<tr>
<td>Router port(s)</td>
<td>Number of router ports</td>
</tr>
<tr>
<td>(00:01:30)</td>
<td>Remaining time of the dynamic member port or router port aging timer.</td>
</tr>
<tr>
<td>IP group address</td>
<td>Address of IPv6 multicast group</td>
</tr>
<tr>
<td>(:, FF1E::101)</td>
<td>(S, G) entry, :: represents all the multicast sources</td>
</tr>
<tr>
<td>MAC group address</td>
<td>Address of MAC multicast group</td>
</tr>
<tr>
<td>Attribute</td>
<td>Attribute of IPv6 multicast group</td>
</tr>
<tr>
<td>Host port(s)</td>
<td>Number of member ports</td>
</tr>
</tbody>
</table>

display mld-snooping statistics

Syntax

display mld-snooping statistics

View

Any view

Default Level

1: Monitor level
Parameters

None

Description

Use the `display mld-snooping statistics` command to view the statistics information of MLD messages learned by MLD Snooping.

Examples

# View the statistics information of all kinds of MLD messages learned by MLD Snooping.

```bash
<Sysname> display mld-snooping statistics
Received MLD general queries:0.
Received MLDv1 specific queries:0.
Received MLDv1 reports:0.
Received MLD dones:0.
Sent MLDv1 specific queries:0.
Received MLDv2 reports:0.
Received MLDv2 reports with right and wrong records:0.
Received MLDv2 specific queries:0.
Received MLDv2 specific sg queries:0.
Sent MLDv2 specific queries:0.
Sent MLDv2 specific sg queries:0.
Received error MLD messages:0.
```

**Table 3-2** display mld-snooping statistics command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>general queries</td>
<td>General query messages</td>
</tr>
<tr>
<td>specific queries</td>
<td>Multicast-address-specific query messages</td>
</tr>
<tr>
<td>reports</td>
<td>Report messages</td>
</tr>
<tr>
<td>dones</td>
<td>Done messages</td>
</tr>
<tr>
<td>reports with right and wrong records</td>
<td>Reports containing correct and incorrect records</td>
</tr>
<tr>
<td>specific sg queries</td>
<td>Multicast-address-and-source-specific queries</td>
</tr>
<tr>
<td>error MLD messages</td>
<td>Error MLD messages</td>
</tr>
</tbody>
</table>

**fast-leave (MLD-Snooping view)**

**Syntax**

```bash
fast-leave [vlan vlan-list]
undo fast-leave [vlan vlan-list]
```

**View**

MLD-Snooping view
Default Level

2: System level

Parameters

**vlan vlan-list**: Defines one or multiple VLANs. You can provide up to 10 VLAN lists, by each of which you can specify an individual VLAN in the form of `vlan-id`, or a VLAN range in the form of `start-vlan-id to end-vlan-id`, where the end VLAN ID must be greater than the start VLAN ID. The effective range of a VLAN ID is 1 to 4094.

Description

Use the **fast-leave** command to enable fast leave processing globally. With this function enabled, when the switch receives an MLD leave message on a port, it directly removes that port from the forwarding table entry for the specific group.

Use the **undo fast-leave** command to disable fast leave processing globally.

By default, fast leave processing is disabled.

Note that:
- This command works on MLD Snooping–enabled VLANs.
- If you do not specify any VLAN, the command will take effect for all VLANs; if you specify a VLAN or multiple VLANs, the command will take effect for the specified VLAN(s) only.

Related commands: **mld-snooping fast-leave**.

Examples

```
Enable fast leave processing globally in VLAN 2.
<Sysname> system-view
[Sysname] mld-snooping
[Sysname-mld-snooping] fast-leave vlan 2
```

**group-policy (MLD-Snooping view)**

Syntax

```
group-policy acl6-number [vlan vlan-list]
undo group-policy [vlan vlan-list]
```

View

MLD-Snooping view

Default Level

2: System level

Parameters

**Acl6-number**: Basic or advanced IPv6 ACL number, in the range of 2000 to 3999. The source address or address range specified in the advanced IPv6 ACL rule is used to match the IPv6 multicast source address(es) specified in MLDv2 reports, rather than the source address in the IPv6 packets. The system assumes that an MLDv1 report or an MLDv2 IS_EX or TO_EX report that does not carry an IPv6 multicast source address carries an IPv6 multicast source address of 0::0.
**vlan vlan-list**: Defines one or multiple VLANs. You can provide up to 10 VLAN lists, by each of which you can specify an individual VLAN in the form of `vlan-id`, or a VLAN range in the form of `start-vlan-id to end-vlan-id`, where the end VLAN ID must be greater than the start VLAN ID. The effective range of a VLAN ID is 1 to 4094.

**Description**

Use the `group-policy` command to configure a global IPv6 multicast group filter, namely to control the IPv6 multicast groups a host can join.

Use the `undo group-policy` command to remove the configured global IPv6 multicast group filter.

By default, no IPv6 multicast group filter is configured globally, namely any host can join any valid IPv6 multicast group.

Note that:

- If you do not specify any VLAN, the command will take effect for all VLANs; if you specify a VLAN or multiple VLANs, the command will take effect for the specified VLAN(s) only.
- If the specified IPv6 ACL does not exist or the ACL rule is null, all IPv6 multicast groups will be filtered out.
- You can configure different IPv6 ACL rules for each port in different VLANs; for a given VLAN, a newly configured IPv6 ACL rule will override the existing one.

Related commands: `mld-snooping group-policy`.

**Examples**

```
Apply ACL 2000 as an IPv6 multicast group filter in VLAN 2 so that hosts in this VLAN can join ff03::101 only.
<Sysname> system-view
<Sysname-acl6-basic-2000> acl ipv6 number 2000
[Sysname-acl6-basic-2000] rule permit source ff03::101 16
[Sysname-acl6-basic-2000] quit
<Sysname> mld-snooping
[Sysname-mld-snooping] group-policy 2000 vlan 2
```

**host-aging-time (MLD-Snooping view)**

**Syntax**

```
host-aging-time interval
undo host-aging-time
```

**View**

MLD-Snooping view

**Default Level**

2: System level

**Parameters**

`interval`: Dynamic member port aging time, in units of seconds. The effective range is 200 to 1,000.
Description

Use the **host-aging-time** command to configure the aging time of dynamic member ports globally.

Use the **undo host-aging-time** command to restore the default setting.

By default, the aging time of dynamic member ports is 260 seconds.

This command works on MLD Snooping–enabled VLANs.

Related commands: **mld-snooping host-aging-time**.

Examples

```
Set the aging time of dynamic member ports globally to 300 seconds.
<Sysname> system-view
<Sysname> mld-snooping
<Sysname-mld-snooping> host-aging-time 300
```

last-listener-query-interval (MLD-Snooping view)

Syntax

```
last-listener-query-interval interval
undo last-listener-query-interval
```

View

MLD-Snooping view

Default Level

2: System level

Parameters

*interval*: MLD last listener query interval in units of seconds, namely the length of time the device waits between sending MLD multicast-address-specific queries. The effective range is 1 to 5.

Description

Use the **last-listener-query-interval** command to configure the MLD last listener query interval globally.

Use the **undo last-listener-query-interval** command to restore the system default.

By default, the MLD last listener query interval is 1 second.

This command works on MLD Snooping–enabled VLANs.

Related commands: **mld-snooping last-listener-query-interval**.

Examples

```
Set the MLD last listener query interval to 3 seconds globally.
<Sysname> system-view
<Sysname> mld-snooping
<Sysname-mld-snooping> last-listener-query-interval 3
```
max-response-time (MLD-Snooping view)

Syntax

max-response-time interval
undo max-response-time

View

MLD-Snooping view

Default Level

2: System level

Parameters

interval: Maximum response time for MLD general queries, in units of seconds. The effective range is 1 to 25.

Description

Use the max-response-time command to configure the maximum response time for MLD general queries globally.

Use the undo max-response-time command to restore the system default.

By default, the maximum response time for MLD general queries is 10 seconds.

This command works on MLD Snooping–enabled VLANs.


Examples

# Set the maximum response time for MLD general queries globally to 5 seconds.
<Sysname> system-view
[Sysname] mld-snooping
[Sysname-mld-snooping] max-response-time 5

mld-snooping

Syntax

mld-snooping
undo mld-snooping

View

System view

Default Level

2: System level

Parameters

None
Description

Use the `mld-snooping` command to enable MLD Snooping globally and enter MLD-Snooping view.
Use the `undo mld-snooping` command to disable MLD Snooping globally.
By default, MLD Snooping is disabled.
Related commands: `mld-snooping enable`.

Examples

# Enable MLD Snooping globally and enter MLD-Snooping view.
<Sysname> system-view
<Sysname> mld-snooping

mld-snooping enable

Syntax

mld-snooping enable
undo mld-snooping enable

View

VLAN view

Default Level

2: System level

Parameters

None

Description

Use the `mld-snooping enable` command to enable MLD Snooping in the current VLAN.
Use the `undo mld-snooping enable` command to disable MLD Snooping in the current VLAN.
By default, MLD Snooping is disabled in a VLAN.
MLD Snooping must be enabled globally before it can be enabled in a VLAN.
Related commands: `mld-snooping`.

Examples

# Enable MLD Snooping in VLAN 2.
<Sysname> system-view
<Sysname> mld-snooping
<Sysname>mld-snooping] quit
<Sysname> vlan 2
<Sysname-vlan2] mld-snooping enable
mld-snooping fast-leave

Syntax

mld-snooping fast-leave [ vlan vlan-list ]
undo mld-snooping fast-leave [ vlan vlan-list ]

View

Ethernet port view, Layer 2 aggregate port view, port group view

Default Level

2: System level

Parameters

vlan vlan-list: Defines one or multiple VLANs. You can provide up to 10 VLAN lists, by each of which you can specify an individual VLAN in the form of vlan-id, or a VLAN range in the form of start-vlan-id to end-vlan-id, where the end VLAN ID must be greater than the start VLAN ID. The effective range of a VLAN ID is 1 to 4094.

Description

Use the mld-snooping fast-leave command to enable fast leave processing on the current port or group of ports. With this function enabled, when the switch receives an MLD leave message on a port, it directly removes that port from the forwarding table entry for the specific group.

Use the undo mld-snooping fast-leave command to disable fast leave processing on the current port or group of ports.

By default, fast leave processing is disabled.

Note that:

- This command works on MLD Snooping–enabled VLANs.
- If you do not specify any VLAN when using this command in Ethernet port view or Layer 2 aggregate port view, the command will take effect for all VLANs the port belongs to; if you specify a VLAN or multiple VLANs, the command will take effect only if the port belongs to the specified VLAN(s).
- If you do not specify any VLAN when using this command in port group view, the command will take effect on all the ports in this group; if you specify a VLAN or multiple VLANs, the command will take effect only on those ports in this group that belong to the specified VLAN(s).

Related commands: fast-leave.

Examples

# Enable fast leave processing on GigabitEthernet 1/0/1 in VLAN 2.

Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] mld-snooping fast-leave vlan 2

mld-snooping general-query source-ip

Syntax

mld-snooping general-query source-ip { current-interface | ipv6-address }
undo mld-snooping general-query source-ip

View

VLAN view

Default Level

2: System level

Parameters

current-interface: Sets the source IPv6 link-local address of MLD general queries to the IPv6 address of the current VLAN interface. If the current VLAN interface does not have an IPv6 address, the default IPv6 address FE80::02FF:FFFF:FE00:0001 will be used as the source IPv6 address of MLD general queries.

ipv6-address: Specifies the source IPv6 address of MLD general queries, which can be any legal IPv6 link-local address.

Description

Use the mld-snooping general-query source-ip command to configure the source IPv6 address of MLD general queries.

Use the undo mld-snooping general-query source-ip command to restore the default configuration.

By default, the source IPv6 address of MLD general queries is FE80::02FF:FFFF:FE00:0001.

This command takes effect only if MLD Snooping is enabled in the VLAN.

Examples

# In VLAN 2, specify FE80:0:0:1::1 as the source IPv6 address of MLD general queries.
<Sysname> system-view
[Sysname] vlan 2
[Sysname-vlan2] mld-snooping general-query source-ip fe80:0:0:1::1

mld-snooping group-limit

Syntax

mld-snooping group-limit limit [ vlan vlan-list ]
undo mld-snooping group-limit [ vlan vlan-list ]

View

Ethernet port view, Layer 2 aggregate port view, port group view

Default Level

2: System level

Parameters

limit: Maximum number of IPv6 multicast groups that can be joined on a port. The value is in the range 1 to 1000.

vlan vlan-list: Defines one or multiple VLANs. You can provide up to 10 VLAN lists, by each of which you can specify an individual VLAN in the form of vlan-id, or a VLAN range in the form of start-vlan-id
to end-vlan-id, where the end VLAN ID must be greater than the start VLAN ID. The effective range of a VLAN ID is 1 to 4094.

Description

Use the **mld-snooping group-limit** command to configure the maximum number of IPv6 multicast groups that can be joined on a port.

Use the **undo mld-snooping group-limit** command to restore the default setting.

By default, maximum number of IPv6 multicast groups that can be joined on a port is 1000.

Note that:

- If you do not specify any VLAN when using this command in Ethernet port view or Layer 2 aggregate port view, the command will take effect for all VLANs the port belongs to; if you specify a VLAN or multiple VLANs, the command will take effect only if the port belongs to the specified VLAN(s).

- If you do not specify any VLAN when using this command in port group view, the command will take effect on all the ports in this group; if you specify a VLAN or multiple VLANs, the command will take effect only on those ports in this group that belong to the specified VLAN(s).

Examples

```plaintext
Specify to allow a maximum of 10 IPv6 multicast groups to be joined on GigabitEthernet 1/0/1 in VLAN 2.
<Sysname> system-view
<Sysname> interface gigabitethernet 1/0/1
<Sysname-GigabitEthernet 1/0/1] mld-snooping group-limit 10 vlan 2
```

**mld-snooping group-policy**

**Syntax**

```
mld-snooping group-policy acl6-number [vlan vlan-list]
undo mld-snooping group-policy [vlan vlan-list]
```

**View**

Ethernet port view, Layer 2 aggregate port view, port group view

**Default Level**

2: System level

**Parameters**

- **acl6-number**: Basic or advanced IPv6 ACL number, in the range of 2000 to 3999. The IPv6 source address or address range specified in the advanced IPv6 ACL rule is the IPv6 multicast source address(es) specified in MLDv2 reports, rather than the source address in the IPv6 packets. The system assumes that an MLDv1 report or an MLDv2 IS_EX or TO_EX report that does not carry an IPv6 multicast source address carries an IPv6 multicast source address of 0::0.

- **vlan vlan-list**: Defines one or multiple VLANs. You can provide up to 10 VLAN lists, by each of which you can specify an individual VLAN in the form of vlan-id, or a VLAN range in the form of start-vlan-id to end-vlan-id, where the end VLAN ID must be greater than the start VLAN ID. The effective range of a VLAN ID is 1 to 4094.
Description

Use the mld-snooping group-policy command to configure an IPv6 multicast group filter on the current port(s), namely to control the IPv6 multicast groups hosts on the port(s) can join.

Use the undo mld-snooping group-policy command to remove the configured IPv6 multicast group filter on the current port(s).

By default, no IPv6 multicast group filter is configured on a port, namely a host can join any valid IPv6 multicast group.

Note that:

- If you do not specify any VLAN when using this command in Ethernet port view or Layer 2 aggregate port view, the command will take effect for all VLANs the port belongs to; if you specify a VLAN or multiple VLANs, the command will take effect only if the port belongs to the specified VLAN(s).
- If you do not specify any VLAN when using this command in port group view, the command will take effect on all the ports in this group; if you specify a VLAN or multiple VLANs, the command will take effect only on those ports in this group that belong to the specified VLAN(s).
- If the specified ACL does not exist or the ACL rule is null, all IPv6 multicast groups will be filtered out.
- You can configure different IPv6 ACL rules for each port in different VLANs; for a given VLAN, a newly configured IPv6 ACL rule will override the existing one.

Related commands: group-policy.

Examples

# Apply ACL 2000 as an IPv6 multicast group filter so that hosts on GigabitEthernet 1/0/1 in VLAN 2 can join ff03::101 only.

<Sysname> system-view
<Sysname> acl ipv6 number 2000
<Sysname-acl6-basic-2000> rule permit source ff03::101 16
<Sysname-acl6-basic-2000> quit
<Sysname> interface gigabitethernet 1/0/1
<Sysname-GigabitEthernet 1/0/1> mld-snooping group-policy 2000 vlan 2

mld-snooping host-aging-time

Syntax

mld-snooping host-aging-time interval
undo mld-snooping host-aging-time

View

VLAN view

Default Level

2: System level

Parameters

interval: Dynamic member port aging time, in seconds. The effective range is 200 to 1,000.
**Description**

Use the `mld-snooping host-aging-time` command to configure the aging time of dynamic member ports in the current VLAN.

Use the `undo mld-snooping host-aging-time` command to restore the system default.

By default, the dynamic member port aging time is 260 seconds.

This command takes effect only if MLD Snooping is enabled in the VLAN.

Related commands: `host-aging-time`.

**Examples**

```
Set the aging time of dynamic member ports to 300 seconds in VLAN 2.
<Sysname> system-view
<Sysname> vlan 2
<Sysname-vlan2> mld-snooping host-aging-time 300
```

**mld-snooping host-join**

**Syntax**

```
mld-snooping host-join ipv6-group-address [source-ip ipv6-source-address] vlan vlan-id
undo mld-snooping host-join ipv6-group-address [source-ip ipv6-source-address] vlan vlan-id
```

**View**

Ethernet port view, Layer 2 aggregate port view, port group view

**Default Level**

2: System level

**Parameters**

- `ipv6-group-address`: Address of IPv6 multicast group which the simulated host is to join. The effective range is FFxy::/16 (excluding FFx0::/16, FFx1::/16, FFx2::/16 and FF0y::), where x and y represent any hexadecimal number between 0 and F, inclusive.
- `ipv6-source-address`: Address of the IPv6 multicast source that the simulated host is to join.
- `vlan vlan-id`: Specifies a VLAN that comprises the port(s), where `vlan-id` is in the range of 1 to 4094.

**Description**

Use the `mld-snooping host-join` command to configure the current port(s) as simulated member host(s), namely configure the current port as member host for the specified IPv6 multicast group or source and group.

Use the `undo mld-snooping host-join` command to remove the current port(s) as simulated member host(s) for the specified IPv6 multicast group or source and group.

By default, no ports are configured as static member ports for any IPv6 multicast group or source and group.

Note that:

- This command works on MLD Snooping–enabled VLANs, and the version of MLD on the simulated host depends on the version of MLD Snooping running in the VLAN.
The **source-ip ipv6-source-address** option in the command is meaningful only for MLD Snooping version 2. If MLD Snooping version 1 is running, although you can include **source-ip ipv6-source-address** in your command, the simulated host responses with only an MLDv1 report when receiving a query message.

- If configured in Ethernet port view or Layer 2 aggregate port view, this feature takes effect only if the port belongs to the specified VLAN.
- If configured in port group view, this feature takes effect only on those ports in this port group that belong to the specified VLAN.

**Examples**

```bash
Configure GigabitEthernet 1/0/1 in VLAN 2 to join (2002::22, FF3E::101) as a simulated host.
<Sysname> system-view
[Sysname] mld-snooping
[Sysname-mld-snooping] quit
[Sysname] vlan 2
[Sysname-vlan2] mld-snooping enable
[Sysname-vlan2] mld-snooping version 2
[Sysname-vlan2] quit
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet 1/0/1] mld-snooping host-join ff3e::101 source-ip 2002::22 vlan 2
```

**mld-snooping last-listener-query-interval**

**Syntax**

```bash
mld-snooping last-listener-query-interval interval
undo mld-snooping last-listener-query-interval
```

**View**

VLAN view

**Default Level**

2: System level

**Parameters**

- `interval`: MLD last listener query interval in units of seconds, namely the length of time the device waits between sending IGMP multicast-address-specific queries. The effective range is 1 to 5.

**Description**

Use the `mld-snooping last-listener-query-interval` command to configure the MLD last-listener query interval in the VLAN.

Use the `undo mld-snooping last-listener-query-interval` command to restore the system default.

By default, the MLD last listener query interval is 1 second.

This command takes effect only if MLD Snooping is enabled in the VLAN.

Related commands: `last-listener-query-interval`.
Examples

# Set the MLD last-listener query interval to 3 seconds in VLAN 2.
<Sysname> system-view
[Sysname] vlan 2
[Sysname-vlan2] mld-snooping last-listener-query-interval 3

mld-snooping max-response-time

Syntax

mld-snooping max-response-time interval
undo mld-snooping max-response-time

View

VLAN view

Default Level

2: System level

Parameters

interval: Maximum response time for MLD general queries, in units of seconds. The effective range is 1 to 25.

Description

Use the mld-snooping max-response-time command to configure the maximum response time for MLD general queries in the VLAN.

Use the undo mld-snooping max-response-time command to restore the default setting.

By default, the maximum response time for MLD general queries is 10 seconds.

This command takes effect only if MLD Snooping is enabled in the VLAN.


Examples

# Set the maximum response time for MLD general queries to 5 seconds in VLAN 2.
<Sysname> system-view
[Sysname] vlan 2
[Sysname-vlan2] mld-snooping max-response-time 5

mld-snooping overflow-replace

Syntax

mld-snooping overflow-replace [ vlan vlan-list ]
undo mld-snooping overflow-replace [ vlan vlan-list ]

View

Ethernet port view, Layer 2 aggregate port view, port group view
Default Level

2: System level

Parameters

- **vlan vlan-list**: Defines one or multiple VLANs. You can provide up to 10 VLAN lists, by each of which you can specify an individual VLAN in the form of `vlan-id`, or a VLAN range in the form of `start-vlan-id to end-vlan-id`, where the end VLAN ID must be greater than the start VLAN ID. The effective range of a VLAN ID is 1 to 4094.

Description

Use the `mld-snooping overflow-replace` command to enable the IPv6 multicast group replacement function on the current port(s).

Use the `undo mld-snooping overflow-replace` command to disable the IPv6 multicast group replacement function on the current port(s).

By default, the IPv6 multicast group replacement function is disabled.

Note that:
- This command works on MLD Snooping–enabled VLANs.
- If you do not specify any VLAN when using this command in Ethernet port view or Layer 2 aggregate port view, the command will take effect for all VLANs the port belongs to; if you specify a VLAN or multiple VLANs, the command will take effect only if the port belongs to the specified VLAN(s).
- If you do not specify any VLAN when using this command in port group view, the command will take effect on all the ports in this group; if you specify a VLAN or multiple VLANs, the command will take effect only on those ports in this group that belong to the specified VLAN(s).

Related commands: `overflow-replace`.

Examples

# Enable the IPv6 multicast group replacement function on GigabitEthernet 1/0/1 in VLAN 2.

```bash
<Sysname> system-view
<Sysname> interface gigabitEthernet 1/0/1
<Sysname-GigabitEthernet 1/0/1> mld-snooping overflow-replace vlan 2
```

**mld-snooping querier**

Syntax

- `mld-snooping querier`
- `undo mld-snooping querier`

View

VLAN view

Default Level

2: System level
### Parameters

None

### Description

Use the `mld-snooping querier` command to enable the MLD Snooping querier function.

Use the `undo mld-snooping querier` command to disable the MLD Snooping querier function.

By default, the MLD Snooping querier function is disabled.

Note that:

- This command takes effect only if MLD Snooping is enabled in the VLAN.
- This command does not take effect in a sub-VLAN of an IPv6 multicast VLAN.

Related commands: `subvlan` command in *IPv6 Multicast VLAN Commands* in the *IP Multicast Volume*.

### Examples

```
Enable the MLD Snooping querier function in VLAN 2.
<Sysname> system-view
<Sysname> vlan 2
<Sysname-vlan2> mld-snooping querier
```

### mld-snooping query-interval

#### Syntax

```
mld-snooping query-interval interval
undo mld-snooping query-interval
```

#### View

VLAN view

#### Default Level

2: System level

#### Parameters

`interval`: MLD query interval in seconds, namely the length of time the device waits between sending MLD general queries. The effective range is 2 to 300.

#### Description

Use the `mld-snooping query-interval` command to configure the MLD query interval.

Use the `undo mld-snooping query-interval` command to restore the system default.

By default, the MLD query interval is 125 seconds.

This command takes effect only if MLD Snooping is enabled in the VLAN.

Examples

# Set the MLD query interval to 20 seconds in VLAN 2.
<Sysname> system-view
[Sysname] vlan 2
[Sysname-vlan2] mld-snooping query-interval 20

mld-snooping router-aging-time

Syntax

mld-snooping router-aging-time interval
undo mld-snooping router-aging-time

View

VLAN view

Default Level

2: System level

Parameters

interval: Dynamic router port aging time, in seconds. The effective range is 1 to 1,000.

Description

Use the mld-snooping router-aging-time command to configure the aging time of dynamic router ports in the current VLAN.

Use the undo mld-snooping router-aging-time command to restore the default setting.

By default, the dynamic router port aging time is 260 seconds.

This command takes effect only if MLD Snooping is enabled in the VLAN.

Related commands: router-aging-time.

Examples

# Set the aging time of dynamic router ports to 100 seconds in VLAN 2.
<Sysname> system-view
[Sysname] vlan 2
[Sysname-vlan2] mld-snooping router-aging-time 100

mld-snooping source-deny

Syntax

mld-snooping source-deny
undo mld-snooping source-deny

View

Ethernet port view, port group view
**Default Level**

2: System level

**Parameters**

None

**Description**

Use the `mld-snooping source-deny` command to enable IPv6 multicast source port filtering.

Use the `undo mld-snooping source-deny` command to disable IPv6 multicast source port filtering.

By default, IPv6 multicast source port filtering is disabled.

**Examples**

# Enable source port filtering for IPv6 multicast data on GigabitEthernet 1/0/1.

```
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet 1/0/1] mld-snooping source-deny
```

**mld-snooping special-query source-ip**

**Syntax**

```
mld-snooping special-query source-ip \{ current-interface \ ipv6-address \}
undo mld-snooping special-query source-ip
```

**View**

VLAN view

**Default Level**

2: System level

**Parameters**

- `current-interface`: Specifies the source IPv6 link-local address of the VLAN interface of the current VLAN as the source IPv6 address of MLD multicast-address-specific queries. If the current VLAN interface does not have an IPv6 address, the default IPv6 address FE80::02FF:FFFF:FE00:0001 will be used as the source IPv6 address of MLD multicast-address-specific queries.

- `ipv6-address`: Specifies an IPv6 link-local address as the source IPv6 address of MLD multicast-address-specific queries.

**Description**

Use the `mld-snooping special-query source-ip` command to configure the source IPv6 address of MLD multicast-address-specific queries.

Use the `undo mld-snooping special-query source-ip` command to restore the default configuration.

By default, the source IPv6 address of MLD multicast-address-specific queries is FE80::02FF:FFFF:FE00:0001.

This command takes effect only if MLD Snooping is enabled in the VLAN.
Examples

# In VLAN 2, specify FE80:0:0:1::1 as the source IPv6 address of MLD multicast-address-specific queries.

<Sysname> system-view
<Sysname> vlan 2
<Sysname-vlan2> mld-snooping special-query source-ip fe80:0:0:1::1

mld-snooping static-group

Syntax

mld-snooping static-group ipv6-group-address [ source-ip ipv6-source-address ] vlan vlan-id
undo mld-snooping static-group ipv6-group-address [ source-ip ipv6-source-address ] vlan vlan-id

View

Ethernet port view, Layer 2 aggregate port view, port group view

Default Level

2: System level

Parameters

ipv6-group-address: Address of a IPv6 multicast group the port(s) will be configured to join as static member port(s). The effective range is FFxy::/16 (excluding FFx0::/16, FFx1::/16, FFx2::/16 and FF0y::), where x and y represent any hexadecimal number between 0 and F, inclusive.

ipv6-source-address: Address of the IPv6 multicast source the port(s) will be configured to join as static member port(s).

vlan vlan-id: Specifies the VLAN that comprises the Ethernet port(s), where vlan-id is in the range of 1 to 4094.

Description

Use the mld-snooping static-group command to configure the static IPv6 (*, G) or (S, G) joining function, namely to configure the port or port group as static IPv6 multicast group or source-group member(s).

Use the undo mld-snooping static-group command to restore the system default.

By default, no ports are static member ports.

Note that:

- The source-ip ipv6-source-address option in the command is meaningful only for MLD Snooping version 2. If MLD Snooping version 1 is running, although you can include source-ip ipv6-source-address in your command, the simulated host responses with only an MLDv1 report when receiving a query message.
- If configured in Ethernet port view or Layer 2 aggregate port view, this feature takes effect only if the port belongs to the specified VLAN.
- If configured in port group view, this feature takes effect only on those ports in this port group that belong to the specified VLAN.
Examples

# Configure GigabitEthernet 1/0/1 in VLAN 2 to be a static member port for (2002::22, FF3E::101).

```
<Sysname> system-view
<Sysname> mld-snooping
<Sysname-mld-snooping] quit
<Sysname> vlan 2
<Sysname-vlan2] mld-snooping enable
<Sysname-vlan2] mld-snooping version 2
<Sysname-vlan2] quit
<Sysname> interface gigabitethernet 1/0/1
<Sysname-GigabitEthernet 1/0/1] mld-snooping static-group ff3e::101 source-ip 2002::22 vlan 2
```

**mld-snooping static-router-port**

**Syntax**

```
mld-snooping static-router-port vlan vlan-id
undo mld-snooping static-router-port vlan vlan-id
```

**View**

Ethernet port view, Layer 2 aggregate port view, port group view

**Default Level**

2: System level

**Parameters**

- **vlan vlan-id**: Specifies a VLAN in which one or more static router ports are to be configured, where `vlan-id` is in the range of 1 to 4094.

**Description**

Use the `mld-snooping static-router-port` command to configure the current port(s) as static router port(s).

Use the `undo mld-snooping static-router-port` command to restore the system default.

By default, no ports are static router ports.

Note that:

- This command works on MLD Snooping-enabled VLANs.
- This command does not take effect in a sub-VLAN of an IPv6 multicast VLAN.
- If configured in Ethernet port view or Layer 2 aggregate port view, this feature takes effect only if the port belongs to the specified VLAN.
- If configured in port group view, this feature takes effect only on those ports in this port group that belong to the specified VLAN.

Related commands: `subvlan` command in *IPv6 Multicast VLAN Commands* in the *IP Multicast Volume*. 
Examples

# Enable the static router port function on GigabitEthernet 1/0/1 in VLAN 2.
<Sysname> system-view
 [Sysname] interface gigabitethernet 1/0/1
 [Sysname-GigabitEthernet 1/0/1] mld-snooping static-router-port vlan 2

mld-snooping version

Syntax

        mld-snooping version version-number
        undo mld-snooping version

View

VLAN view

Default Level

2: System level

Parameters

version-number: MLD snooping version, in the range of 1 to 2.

Description

Use the mld-snooping version command to configure the MLD Snooping version.
Use the undo mld-snooping version command to restore the default setting.
By default, the MLD version is 1.

Note that:
  
  This command can take effect only if MLD Snooping is enabled in the VLAN.
  
  This command does not take effect in a sub-VLAN of an IPv6 multicast VLAN.

Related commands: mld-snooping enable; subvlan in IPv6 Multicast VLAN Commands in the IP Multicast Volume.

Examples

# Enable MLD Snooping in VLAN 2, and set the MLD Snooping version to version 2.
<Sysname> system-view
 [Sysname] mld-snooping
 [Sysname-mld-snooping] quit
 [Sysname] vlan 2
 [Sysname-vlan2] mld-snooping enable
 [Sysname-vlan2] mld-snooping version 2

overflow-replace (MLD-Snooping view)

Syntax

        overflow-replace [ vlan vlan-list ]
        undo overflow-replace [ vlan vlan-list ]
View

MLD-Snooping view

Default Level

2: System level

Parameters

vlan vlan-list: Defines one or multiple VLANs. You can provide up to 10 VLAN lists, by each of which you can specify an individual VLAN in the form of vlan-id, or a VLAN range in the form of start-vlan-id to end-vlan-id, where the end VLAN ID must be greater than the start VLAN ID. The effective range of a VLAN ID is 1 to 4094.

Description

Use the overflow-replace command to enable the IPv6 multicast group replacement function globally.

Use the undo overflow-replace command to disable the IPv6 multicast group replacement function globally.

By default, the IPv6 multicast group replacement function is disabled globally.

Note that:

- This command works on MLD Snooping–enabled VLANs.
- If you do not specify any VLAN, the command will take effect for all VLANs; if you specify a VLAN or multiple VLANs, the command will take effect for the specified VLAN(s) only.

Related commands: mld-snooping overflow-replace.

Examples

# Enable the IPv6 multicast group replacement function globally in VLAN 2.

<Sysname> system-view

[Sysname] mld-snooping

[Sysname-mld-snooping] overflow-replace vlan 2

report-aggregation (MLD-Snooping view)

Syntax

report-aggregation

undo report-aggregation

View

MLD-Snooping view

Default Level

2: System level

Parameters

None
Description

Use the `mld-snooping report-aggregation` command to enable MLD report suppression.
Use the `undo mld-snooping report-aggregation` command to disable MLD report suppression.
By default, MLD report suppression is enabled.
This command works on MLD Snooping–enabled VLANs.

Examples

```
Disable MLD report suppression.
<Sysname> system-view
<Sysname> mld-snooping
<Sysname-mld-snooping> undo report-aggregation
```

reset mld-snooping group

Syntax

```
reset mld-snooping group { ipv6-group-address | all } [vlan vlan-id]
```

View

User view

Default Level

2: System level

Parameters

- `ipv6-group-address`: Clears the information about the specified multicast group. The effective range of `ipv6-group-address` is FFxy::/16 (excluding FFx0::/16, FFx1::/16, FFx2::/16 and FF0y::), where x and y represent any hexadecimal number between 0 and F, inclusive.
- `all`: Clears all MLD Snooping multicast group information.
- `vlan vlan-id`: Clears the MLD Snooping multicast group information in the specified VLAN. The effective range of `vlan-id` is 1 to 4094.

Description

Use the `reset mld-snooping group` command to clear MLD Snooping multicast group information.

Note that:

- This command works on MLD Snooping–enabled VLANs.
- This command cannot clear MLD Snooping multicast group information of static joining.

Examples

```
Clear all MLD Snooping multicast group information.
<Sysname> reset mld-snooping group all
```

reset mld-snooping statistics

Syntax

```
reset mld-snooping statistics
```
View

User view

Default Level

2: System level

Parameters

None

Description

Use the **reset mld-snooping statistics** command to clear the statistics information of MLD messages learned by MLD Snooping.

Examples

```
Clear the statistics information of all kinds of MLD messages learned by MLD Snooping.
<Sysname> reset mld-snooping statistics
```

**router-aging-time (MLD-Snooping view)**

Syntax

```
router-aging-time interval
undo router-aging-time
```

View

MLD-Snooping view

Default Level

2: System level

Parameters

- **interval**: Dynamic router port aging time, in seconds. The effective range is 1 to 1,000.

Description

Use the **router-aging-time** command to configure the aging time of dynamic router ports globally.
Use the **undo router-aging-time** command to restore the default setting.
By default, the dynamic router port aging time is 260 seconds.
This command works on MLD Snooping–enabled VLANs.
Related commands: **mld-snooping router-aging-time**.

Examples

```
Set the aging time of dynamic router ports globally to 100 seconds.
<Sysname> system-view
<Sysname> mld-snooping
<Sysname-mld-snooping> router-aging-time 100
```
source-deny (MLD-Snooping view)

Syntax

```plaintext
source-deny port interface-list
undo source-deny port interface-list
```

View

MLD-Snooping view

Default Level

2: System level

Parameters

`interface-list`: Port list. You can specify multiple ports or port ranges by providing the this argument in the form of `interface-list = { interface-type interface-number [ to interface-type interface-number ] }`, where `interface-type` is port type and `interface-number` is port number.

Description

Use the `source-deny` command to enable IPv6 multicast source port filtering, namely to filter out all the received IPv6 multicast packets.

Use the `undo source-deny` command to disable IPv6 multicast source port filtering.

By default, IPv6 multicast source port filtering is disabled.

This command works on MLD Snooping–enabled VLANs.

Examples

```plaintext
Enable source port filtering for IPv6 multicast data on interfaces GigabitEthernet1/0/1 through GigabitEthernet1/0/4.
<Sysname> system-view
<Sysname> mld-snooping
<Sysname-mld-snooping> source-deny port gigabitethernet1/0/1 to gigabitethernet1/0/4
```
IPv6 Multicast VLAN Configuration Commands

display multicast-vlan ipv6

Syntax

    display multicast-vlan ipv6 [ vlan-id ]

View

Any view

Default Level

1: Monitor level

Parameters

  vlan-id: VLAN ID of an IPv6 multicast VLAN, in the range of 1 to 4094. If this argument is not provided, the information about all IPv6 multicast VLANs will be displayed.

Description

Use the `display multicast-vlan ipv6` command to view the information about the specified IPv6 multicast VLAN or all IPv6 multicast VLANs.

Examples

    # View the information about all IPv6 multicast VLANs.
    <Sysname> display multicast-vlan ipv6
    Total 1 IPv6 multicast-vlan(s)
    IPv6 Multicast vlan 100
      subvlan list:
        vlan 2  4-6
      port list:
        no port

Table 4-1 display multicast-vlan ipv6 command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total 1 IPv6 multicast-vlan(s)</td>
<td>Total number of IPv6 multicast VLANs</td>
</tr>
<tr>
<td>IPv6 Multicast vlan</td>
<td>An IPv6 multicast VLAN</td>
</tr>
<tr>
<td>subvlan list</td>
<td>List of sub-VLANs of the IPv6 multicast VLAN</td>
</tr>
<tr>
<td>port list</td>
<td>Port list of the IPv6 multicast VLAN</td>
</tr>
</tbody>
</table>
multicast-vlan ipv6

Syntax

multicast-vlan ipv6 vlan-id
undo multicast-vlan ipv6 { all | vlan-id }

View

System view

Default Level

2: System level

Parameters

vlan-id: Specifies a VLAN by its ID, in the range of 1 to 4094.
all: Deletes all IPv6 multicast VLANs.

Description

Use the multicast-vlan ipv6 command to configure the specified VLAN as an IPv6 multicast VLAN and enter IPv6 multicast VLAN view.

Use the undo multicast-vlan ipv6 command to remove the specified VLAN as an IPv6 multicast VLAN.

No VLAN is an IPv6 multicast VLAN by default.

Note that:

- The specified VLAN to be configured as an IPv6 multicast VLAN must exist.
- For a sub-VLAN-based IPv6 multicast VLAN, you need to enable MLD Snooping only in the IPv6 multicast VLAN; for a port-based IPv6 multicast VLAN, you need to enable MLD Snooping in both the IPv6 multicast VLAN and all the user VLANs.

Related commands: mld-snooping enable in the MLD Snooping Commands in the IP Multicast Volume.

Examples

# Enable MLD Snooping in VLAN 100. Configure it as an IPv6 multicast VLAN and enter IPv6 multicast VLAN view.

<Sysname> system-view
[Sysname] mld-snooping
[Sysname-mld-snooping] quit
[Sysname] vlan 100
[Sysname-vlan100] mld-snooping enable
[Sysname-vlan100] quit
[Sysname] multicast-vlan ipv6 100
[Sysname-ipv6-mvlan-100]
port (IPv6 multicast VLAN view)

Syntax

```
port interface-list
undo port { all | interface-list }
```

View

IPv6 multicast VLAN view

Default Level

2: System level

Parameters

```
interface-list: Specifies a port in the form of interface-type interface-number, or a port range in the form of interface-type start-interface-number to interface-type end-interface-number, where the end interface number must be greater than the start interface number.
```

```
all: Deletes all the ports in the current IPv6 multicast VLAN.
```

Description

Use the `port` command to assign port(s) to the current IPv6 multicast VLAN.
Use the `undo port` command to delete port(s) from the current IPv6 multicast VLAN.
By default, an IPv6 multicast VLAN has no ports.

Note that:
- A port can belong to only one IPv6 multicast VLAN.
- Only the following types of ports can be configured as IPv6 multicast VLAN ports: Ethernet, and Layer 2 aggregate ports.

Examples

```
Assign ports GigabitEthernet1/0/1 through GigabitEthernet1/0/5 to IPv6 multicast VLAN 100.
<Sysname> system-view
[Sysname] multicast-vlan ipv6 100
[Sysname-ipv6-mvlan-100] port gigabitethernet1/0/1 to gigabitethernet1/0/5
```

port multicast-vlan ipv6

Syntax

```
port multicast-vlan ipv6 vlan-id
undo port multicast-vlan ipv6
```

View

Ethernet port view, Layer 2 aggregate port view, port group view.

Default Level

2: System level
Parameters

*vlan-id*: VLAN ID of the IPv6 multicast VLAN you want to assign the current port(s) to, in the range of 1 to 4094.

Description

Use the `port multicast-vlan ipv6` command to assign the current port(s) to the specified IPv6 multicast VLAN.

Use the `undo port multicast-vlan ipv6` command to restore the system default.

By default, a port does not belong to any IPv6 multicast VLAN.

Note that a port can belong to only one IPv6 multicast VLAN.

Examples

# Assign GigabitEthernet1/0/1 to IPv6 multicast VLAN 100.

```
<Sysname> system-view
[Sysname] interface gigabitethernet1/0/1
[Sysname-GigabitEthernet1/0/1] port multicast-vlan ipv6 100
```

subvlan (IPv6 multicast VLAN view)

Syntax

```
subvlan vlan-list
undo subvlan { all | vlan-list }
```

View

IPv6 multicast VLAN view

Default Level

2: System level

Parameters

*vlan-list*: Specifies a VLAN in the form of *vlan-id*, or a VLAN range in the form of `start-vlan-id` to `end-vlan-id`, where the end VLAN ID must be greater than the start VLAN ID. The effective range of a VLAN ID is 1 to 4094.

*all*: Deletes all the sub-VLANs of the current IPv6 multicast VLAN.

Description

Use the `subvlan` command to configure sub-VLAN(s) for the current IPv6 multicast VLAN.

Use the `undo subvlan` command to remove the specified sub-VLAN(s) or all sub-VLANs from the current IPv6 multicast VLAN.

An IPv6 multicast VLAN has no sub-VLANs by default.

Note that:

- The VLANs to be configured as the sub-VLANs of the IPv6 multicast VLAN must exist and must not be IPv6 multicast VLANs or sub-VLANs of another IPv6 multicast VLAN.
- The number of sub-VLANs of the multicast VLAN must not exceed 63.
Examples

# Configure VLAN 10 through VLAN 15 as sub-VLANs of IPv6 multicast VLAN 100.

<Sysname> system-view
[Sysname] multicast-vlan ipv6 100
[Sysname-ipv6-mvlan-100] subvlan 10 to 15
### Table of Contents

1 QoS Policy Configuration Commands ................................. 1-1
   Commands for Defining Classes ........................................ 1-1
      display traffic classifier .......................................... 1-1
      if-match ..................................................................... 1-2
      traffic classifier ....................................................... 1-5

   Traffic Behavior Configuration Commands .......................... 1-6
      accounting ................................................................... 1-6
      car ............................................................................ 1-6
      display traffic behavior .............................................. 1-8
      filter ......................................................................... 1-9
      redirect ....................................................................... 1-9
      remark dot1p ............................................................... 1-10
      remark drop-precedence ............................................. 1-11
      remark dscp ................................................................. 1-11
      remark ip-precedence ................................................. 1-13
      remark local-precedence .......................................... 1-13
      traffic behavior ............................................................ 1-14

   QoS Policy Configuration Commands ................................ 1-15
      classifier behavior ....................................................... 1-15
      display qos policy ...................................................... 1-15
      display qos policy global ........................................... 1-16
      display qos policy interface ........................................ 1-18
      display qos vlan-policy ............................................. 1-19
      qos apply policy ......................................................... 1-21
      qos apply policy global ............................................. 1-21
      qos policy ................................................................. 1-22
      qos vlan-policy ............................................................ 1-23
      reset qos policy global ............................................. 1-23
      reset qos vlan-policy .................................................. 1-24

2 Priority Mapping Configuration Commands ........................ 2-1
   Priority Mapping Table Configuration Commands ................ 2-1
      display qos map-table .............................................. 2-1
      qos map-table .............................................................. 2-2
      import ....................................................................... 2-2

   Port Priority Configuration Commands ................................ 2-3
      qos priority ................................................................. 2-3

   Port Priority Trust Mode Configuration Commands ............ 2-4
      display qos trust interface ....................................... 2-4
      qos trust ................................................................. 2-5

3 Traffic Shaping and Line Rate Configuration Commands .... 3-1
   Traffic Shaping Configuration Commands .......................... 3-1
      display qos gts interface .......................................... 3-1
      qos gts ................................................................... 3-2
Line Rate Configuration Commands ................................................................. 3-2
  display qos lr interface ............................................................................. 3-2
  qos lr outbound ......................................................................................... 3-3

4 Congestion Management Configuration Commands ...................................... 4-1
  Congestion Management Configuration Commands .................................... 4-1
    display qos sp interface ......................................................................... 4-1
    display qos wfq interface ...................................................................... 4-1
    display qos wrr interface ...................................................................... 4-2
    qos bandwidth queue .............................................................................. 4-4
    qos sp .................................................................................................. 4-4
    qos wfq ................................................................................................ 4-5
    qos wfq weight .................................................................................... 4-6
    qos wrr ................................................................................................ 4-6
    qos wrr group ...................................................................................... 4-7

5 Traffic Mirroring Configuration Commands .................................................. 5-1
  Traffic Mirroring Configuration Commands ................................................ 5-1
    mirror-to ............................................................................................... 5-1

6 User Profile Configuration Commands ....................................................... 6-1
  User Profile Configuration Commands ....................................................... 6-1
    display user-profile ............................................................................... 6-1
    user-profile enable ................................................................................. 6-2
    user-profile .......................................................................................... 6-2
QoS Policy Configuration Commands

Commands for Defining Classes

display traffic classifier

Syntax

display traffic classifier user-defined [classifier-name]

View

Any view

Default Level

1: Monitor level

Parameters

classifier-name: Class name.

Description

Use the display traffic classifier command to display the information about a class.

If no class name is provided, this command displays the information about all the user-defined classes.

Examples

# Display the information about the user-defined classes.
<Sysname> display traffic classifier user-defined

User Defined Classifier Information:
Classifier: p
Operator: AND
Rule(s) : If-match acl 2001

Table 1-1: display traffic classifier user-defined command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Defined Classifier Information</td>
<td>The information about the user-defined classes is displayed.</td>
</tr>
<tr>
<td>Classifier</td>
<td>Class name and its contents, which could be of multiple types</td>
</tr>
<tr>
<td>Operator</td>
<td>Logical relationship among the classification rules</td>
</tr>
<tr>
<td>Rule</td>
<td>Classification rules</td>
</tr>
</tbody>
</table>
**if-match**

**Syntax**

```markdown
if-match match-criteria
undo if-match match-criteria
```

**View**

Class view

**Default Level**

2: System Level

**Parameters**

`match-criteria`: Matching rule to be defined. Table 1-2 describes the available forms of this argument.

**Table 1-2 The forms of the `match-criteria` argument**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>acl access-list-number</td>
<td>Specifies an ACL to match packets. The <code>access-list-number</code> argument is a number in the range 2000 to 4999 or an ACL name. In a class configured with the operator <code>and</code>, the logical relationship between rules defined in the referenced IPv4 ACL is or.</td>
</tr>
<tr>
<td>acl ipv6 access-list-number</td>
<td>Specifies an IPv6 ACL to match IPv6 packets. The <code>access-list-number</code> argument is a number in the range 2000 to 3999 or an ACL name. In a class configured with the operator <code>and</code>, the logical relationship between rules defined in the referenced IPv6 ACL is or.</td>
</tr>
<tr>
<td>any</td>
<td>Specifies to match all packets.</td>
</tr>
<tr>
<td>customer-dot1p 8021p-list</td>
<td>Specifies to match packets by 802.1p precedence of the customer network. The <code>8021p-list</code> argument is a list of CoS values, in the range of 0 to 7.</td>
</tr>
<tr>
<td>customer-vlan-id vlan-id-list</td>
<td>Specifies to match the packets of specified VLANs of user networks. The <code>vlan-id-list</code> argument specifies a list of VLAN IDs, in the form of <code>vlan-id to vlan-id</code> or multiple discontinuous VLAN IDs (separated by space). You can specify up to eight VLAN IDs for this argument at a time. VLAN ID is in the range 1 to 4094. In a class configured with the operator <code>and</code>, the logical relationship between the customer VLAN IDs specified for the <code>customer-vlan-id</code> keyword is or.</td>
</tr>
</tbody>
</table>

**Note**

Even though you can provide up to eight space-separated CoS values for this argument, the Switch 4210G series switches support only one CoS value in a rule. If you configure multiple CoS values in a rule, the rule cannot be issued.
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>dscp dscp-list</strong></td>
<td>Specifies to match packets by DSCP precedence. The <em>dscp-list</em> argument is a list of DSCP values in the range of 0 to 63 or keywords shown in Table 1-4.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong></td>
</tr>
<tr>
<td></td>
<td>Even though you can provide up to eight space-separated DSCP values for this argument, the Switch 4210G series switches support only one DSCP value in a rule. If you configure multiple DSCP values in a rule, the rule cannot be issued.</td>
</tr>
<tr>
<td><strong>destination-mac</strong></td>
<td>mac-address</td>
</tr>
<tr>
<td></td>
<td>Specifies to match the packets with a specified destination MAC address.</td>
</tr>
<tr>
<td><strong>ip-precedence</strong></td>
<td>ip-precedence-list</td>
</tr>
<tr>
<td></td>
<td>Specifies to match packets by IP precedence. The <em>ip-precedence-list</em> argument is a list of IP precedence values in the range of 0 to 7.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong></td>
</tr>
<tr>
<td></td>
<td>Even though you can provide up to eight space-separated IP precedence values for this argument, the Switch 4210G series switches support only one IP precedence value in a rule. If you configure multiple IP precedence values in a rule, the rule cannot be issued.</td>
</tr>
<tr>
<td><strong>protocol</strong></td>
<td>protocol-name</td>
</tr>
<tr>
<td></td>
<td>Specifies to match the packets of a specified protocol. The <em>protocol-name</em> argument can be IP or IPv6.</td>
</tr>
<tr>
<td><strong>service-dot1p</strong></td>
<td>8021p-list</td>
</tr>
<tr>
<td></td>
<td>Specifies to match packets by 802.1p precedence of the service provider network. The <em>8021p-list</em> argument is a list of CoS values in the range of 0 to 7.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong></td>
</tr>
<tr>
<td></td>
<td>Even though you can provide up to eight space-separated CoS values for this argument, the Switch 4210G series switches support only one CoS value in a rule. If you configure multiple CoS values in a rule, the rule cannot be issued.</td>
</tr>
<tr>
<td><strong>service-vlan-id</strong></td>
<td>vlan-id-list</td>
</tr>
<tr>
<td></td>
<td>Specifies to match the packets of specified VLANs of the operator’s network. The <em>vlan-id-list</em> argument is a list of VLAN IDs, in the form of vlan-id to vlan-id or multiple discontinuous VLAN IDs (separated by space). You can specify up to eight VLAN IDs for this argument at a time. VLAN ID is in the range 1 to 4094.</td>
</tr>
<tr>
<td></td>
<td>In a class configured with the operator and, the logical relationship between the service VLAN IDs specified for the <em>service-vlan-id</em> keyword is or.</td>
</tr>
<tr>
<td><strong>source-mac</strong></td>
<td>mac-address</td>
</tr>
<tr>
<td></td>
<td>Specifies to match the packets with a specified source MAC address.</td>
</tr>
</tbody>
</table>

**Description**

Use the **if-match** command to define a rule to match a specific type of packets.

Use the **undo if-match** command to remove a matching rule.
Suppose the logical relationship between classification rules is and. Note the following when using the if-match command to define matching rules.

- If multiple matching rules with the acl or acl ipv6 keyword specified are defined in a class, the actual logical relationship between these rules is or when the policy is applied.
- If multiple matching rules with the customer-vlan-id or service-vlan-id keyword specified are defined in a class, the actual logical relationship between these rules is or when the policy is applied.

Examples

# Define a rule for class1 to match the packets with their destination MAC addresses being 0050-ba27-bed3.
<Sysname> system-view
[Sysname] traffic classifier class1
[Sysname-classifier-class1] if-match destination-mac 0050-ba27-bed3

# Define a rule for class2 to match the packets with their source MAC addresses being 0050-ba27-bed2.
<Sysname> system-view
[Sysname] traffic classifier class2
[Sysname-classifier-class2] if-match source-mac 0050-ba27-bed2

# Define a rule for class3 to match the advanced IPv4 ACL 3101.
<Sysname> system-view
[Sysname] traffic classifier class3
[Sysname-classifier-class3] if-match acl 3101

# Define a rule for class4 to match the advanced IPv6 ACL 3101.
<Sysname> system-view
[Sysname] traffic classifier class4
[Sysname-classifier-class4] if-match acl ipv6 3101

# Define a rule for class5 to match all the packets.
<Sysname> system-view
[Sysname] traffic classifier class5
[Sysname-classifier-class5] if-match any

# Define a rule for class6 to match the packets with their DSCP precedence values being 1.
<Sysname> system-view
[Sysname] traffic classifier class6
[Sysname-classifier-class6] if-match dscp 1

# Define a rule for class7 to match the packets with their IP precedence values being 1.
<Sysname> system-view
[Sysname] traffic classifier class7
[Sysname-classifier-class7] if-match ip-precedence 1

# Define a rule for class8 to match IP packets.
traffic classifier

Syntax

traffic classifier classifier-name [ operator { and | or } ]
undo traffic classifier classifier-name

View

System view

Default Level

2: System Level

Parameters

and: Specifies the relationship among the rules in the class as logic AND. That is, a packet is matched only when it matches all the rules defined for the class.

or: Specifies the relationship among the rules in the class as logic OR. That is, a packet is matched if it matches a rule defined for the class.

classifier-name: Name of the class to be created.

Description

Use the traffic classifier command to create a class. This command also leads you to class view.
Use the undo traffic classifier command to remove a class.
By default, a packet is matched only when it matches all the rules configured for the class.
Examples

# Create a class named class 1.
<Sysname> system-view
[Sysname] traffic classifier class1
[Sysname-classifier-class1]

Traffic Behavior Configuration Commands

accounting

Syntax

    accounting
    undo accounting

View

    Traffic behavior view

Default Level

    2: System Level

Parameters

    None

Description

    Use the accounting command to configure the traffic accounting action for a traffic behavior.
    Use the undo accounting command to remove the traffic accounting action.

    Related commands: qos policy, traffic behavior, classifier behavior.

Examples

# Configure the traffic accounting action for a traffic behavior.
<Sysname> system-view
[Sysname] traffic behavior database
[Sysname-behavior-database] accounting

car

Syntax

    car cir committed-information-rate [ cbs committed-burst-size [ ebs excess-burst-size ] ] [ pir peak-information-rate ] [ green action ] [ red action ] [ yellow action ]
    undo car

View

    Traffic behavior view

Default Level

    2: System Level
Parameters

- **cir committed-information-rate**: Specifies the committed information rate (CIR) in kbps. The `committed-information-rate` argument ranges from 64 to 32000000 and must be a multiple of 64.

- **cbs committed-burst-size**: Specifies the committed burst size (CBS) in bytes. The `committed-burst-size` argument ranges from 4000 to 16000000, the default is 4000.

- **ebs excess-burst-size**: Specifies excess burst size (EBS) in bytes. The `excess-burst-size` argument ranges from 0 to 16000000, the default is 4000.

- **pir peak-information-rate**: Specifies the peak information rate (PIR) in kbps. The `peak-information-rate` argument ranges from 64 to 32000000 and must be a multiple of 64.

**green action**: Specifies the action to be conducted for the traffic conforming to CIR. The `action` argument can be:
- **discard**: Drops the packets.
- **pass**: Forwards the packets.
- **remark-dscp-pass new-dscp**: Marks the packets with a new DSCP precedence and forwards them to their destinations. The `new-dscp` argument is in the range 0 to 63.

By default, packets conforming to CIR are forwarded.

**red action**: Specifies the action to be conducted for the traffic conforms to neither CIR nor PIR. The `action` argument can be:
- **discard**: Drops the packets.
- **pass**: Forwards the packets.
- **remark-dscp-pass new-dscp**: Marks the packets with a new DSCP precedence and forwards them to their destinations. The `new-dscp` argument is in the range 0 to 63.

By default, packets conforming to neither CIR nor PIR are dropped.

**yellow action**: Specifies the action to be conducted for the traffic conforms to PIR but does not conform to CIR. The `action` argument can be:
- **discard**: Drops the packets.
- **pass**: Forwards the packets.
- **remark-dscp-pass new-dscp**: Marks the packets with a new DSCP precedence and forwards them to their destinations. The `new-dscp` argument is in the range 0 to 63.

By default, packets conforming to PIR but not conforming to CIR are forwarded.

Description

Use the `car` command to configure TP action for a traffic behavior.

Use the `undo car` command to remove the TP action.

Note that, if you configure the TP action for a traffic behavior for multiple times, only the last configuration takes effect.

Related commands: `qos policy`, `traffic behavior`, `classifier behavior`.

Examples

```bash
Configure TP action for a traffic behavior. When the traffic rate is lower than 6400 kbps, packets are forwarded normally. When the traffic rate exceeds 6400 kbps, the packets beyond 6400 kbps are dropped.
<Sysname> system-view
```
display traffic behavior

Syntax

display traffic behavior user-defined [ behavior-name ]

View

Any view

Default Level

1: Monitor level

Parameters

behavior-name: Name of a user defined traffic behavior.

Description

Use the display traffic behavior command to display the information about a user defined traffic behavior.

If no behavior name is provided, this command displays the information about all the user-defined behaviors.

Examples

# Display the information about all the user defined traffic behaviors.
<Sysname> display traffic behavior user-defined

User Defined Behavior Information:
Behavior: test
Marking:
    Remark dot1p COS 4
Committed Access Rate:
    CIR 64 (kbps), CBS 4000 (byte), EBS 4000 (byte), PIR 640 (kbps)
Green Action: pass
Red Action: discard
Yellow Action: pass

Table 1-3 display traffic behavior user-defined command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Defined Behavior Information</td>
<td>The information about user defined traffic behaviors is displayed</td>
</tr>
<tr>
<td>Behavior</td>
<td>Name of a traffic behavior, which can be of multiple types</td>
</tr>
<tr>
<td>Marking</td>
<td>Information about priority marking</td>
</tr>
<tr>
<td>Committed Access Rate</td>
<td>Information about traffic rate limit</td>
</tr>
<tr>
<td>CIR</td>
<td>Committed information rate in bytes</td>
</tr>
<tr>
<td>CBS</td>
<td>Committed burst size in bytes</td>
</tr>
</tbody>
</table>
### filter

**Syntax**

```
filter { deny | permit }
undo filter
```

**View**

Traffic behavior view

**Default Level**

2: System Level

**Parameters**

- **deny**: Drops packets.
- **permit**: Forwards packets.

**Description**

Use the `filter` command to configure traffic filtering action for a traffic behavior.

Use the `undo filter` command to remove the traffic filtering action.

Related commands: `qos policy`, `traffic behavior`, `classifier behavior`.

**Examples**

```
Configure traffic filtering action for a traffic behavior.
<Sysname> system-view
<Sysname> traffic behavior database
<Sysname-behavior-database> filter deny
```

### redirect

**Syntax**

```
redirect { cpu | interface interface-type interface-number }
undo redirect { cpu | interface interface-type interface-number }
```

**View**

Traffic behavior view
Default Level

2: System Level

Parameters

cpu: Redirects traffic to the CPU.

interface interface-type interface-number: Redirects traffic to an interface identified by its type and number.

Description

Use the redirect command to configure traffic redirecting action for a traffic behavior.
Use the undo redirect command to remove the traffic redirecting action.
Related commands: qos policy, traffic behavior, classifier behavior.

Examples

# Configure the redirecting action to redirect traffic to GigabitEthernet 1/0/1 port.
<Sysname> system-view
[Sysname] traffic behavior database
[Sysname-behavior-database] redirect interface GigabitEthernet 1/0/1

remark dot1p

Syntax

remark dot1p 8021p
undo remark dot1p

View

Traffic behavior view

Default Level

2: System Level

Parameters

8021p: 802.1p precedence to be set for packets, in the range 0 to 7.

Description

Use the remark dot1p command to configure the action of setting 802.1p precedence for a traffic behavior.
Use the undo remark dot1p command to remove the action of setting 802.1p precedence

Note that, when the remark dot1p command is used together with the remark local-precedence command, the 802.1p precedence to be set for packets must be the same as the local precedence to be set for packets. Otherwise, the corresponding policy cannot be applied successfully.
Related commands: qos policy, traffic behavior, classifier behavior.

Examples

# Configure the action to set 802.1p precedence to 2 for a traffic behavior.
remark drop-precedence

Syntax

remark drop-precedence drop-precedence-value
undo remark drop-precedence

View

Traffic behavior view

Default Level

2: System Level

Parameters

drop-precedence-value: Drop precedence to be set for packets, in the range 0 to 2.

Description

Use the remark drop-precedence command to configure the action of setting drop precedence for a traffic behavior.

Use the undo remark drop-precedence command to remove the action of setting drop precedence.

Related commands: qos policy, traffic behavior, classifier behavior.

Examples

# Configure the action to set drop precedence to 2 for a traffic behavior.
<Sysname> system-view
[Sysname] traffic behavior database
[Sysname-behavior-database] remark dot1p 2

remark dscp

Syntax

remark dscp dscp-value
undo remark dscp

View

Traffic behavior view

Default Level

2: System Level

Parameters

dscp-value: DSCP precedence to be set for packets, in the range of 0 to 63. This argument can also be the keywords listed in Table 1-4.
Table 1-4 DSCP keywords and values

<table>
<thead>
<tr>
<th>Keyword</th>
<th>DSCP value (binary)</th>
<th>DSCP value (decimal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>000000</td>
<td>0</td>
</tr>
<tr>
<td>af11</td>
<td>001010</td>
<td>10</td>
</tr>
<tr>
<td>af12</td>
<td>001100</td>
<td>12</td>
</tr>
<tr>
<td>af13</td>
<td>001110</td>
<td>14</td>
</tr>
<tr>
<td>af21</td>
<td>010010</td>
<td>18</td>
</tr>
<tr>
<td>af22</td>
<td>010100</td>
<td>20</td>
</tr>
<tr>
<td>af23</td>
<td>010110</td>
<td>22</td>
</tr>
<tr>
<td>af31</td>
<td>011010</td>
<td>26</td>
</tr>
<tr>
<td>af32</td>
<td>011100</td>
<td>28</td>
</tr>
<tr>
<td>af33</td>
<td>011110</td>
<td>30</td>
</tr>
<tr>
<td>af41</td>
<td>100010</td>
<td>34</td>
</tr>
<tr>
<td>af42</td>
<td>100100</td>
<td>36</td>
</tr>
<tr>
<td>af43</td>
<td>100110</td>
<td>38</td>
</tr>
<tr>
<td>cs1</td>
<td>001000</td>
<td>8</td>
</tr>
<tr>
<td>cs2</td>
<td>010000</td>
<td>16</td>
</tr>
<tr>
<td>cs3</td>
<td>011000</td>
<td>24</td>
</tr>
<tr>
<td>cs4</td>
<td>100000</td>
<td>32</td>
</tr>
<tr>
<td>cs5</td>
<td>101000</td>
<td>40</td>
</tr>
<tr>
<td>cs6</td>
<td>110000</td>
<td>48</td>
</tr>
<tr>
<td>cs7</td>
<td>111000</td>
<td>56</td>
</tr>
<tr>
<td>ef</td>
<td>101110</td>
<td>46</td>
</tr>
</tbody>
</table>

**Description**

Use the `remark dscp` command to configure the action of setting DSCP precedence for a traffic behavior.

Use the `undo remark dscp` command to remove the action of setting DSCP precedence.

Related commands: qos policy, traffic behavior, classifier behavior.

**Examples**

# Configure the action to set DSCP precedence to 6 for a traffic behavior.

```
<Sysname> system-view
[Sysname] traffic behavior database
[Sysname-behavior-database] remark dscp 6
```
remark ip-precedence

Syntax

remark ip-precedence ip-precedence-value
undo remark ip-precedence

View

Traffic behavior view

Default Level

2: System Level

Parameters

ip-precedence-value: IP precedence to be set for packets, in the range of 0 to 7.

Description

Use the remark ip-precedence command to configure the action of setting IP precedence for a traffic behavior.

Use the undo remark ip-precedence command to remove the action of setting IP precedence.

Related commands: qos policy, traffic behavior, classifier behavior.

Examples

# Configure the action to set IP precedence to 6 for a traffic behavior.
<Sysname> system-view
<Sysname> traffic behavior database
<Sysname-behavior-database> remark ip-precedence 6

remark local-precedence

Syntax

remark local-precedence local-precedence
undo remark local-precedence

View

Traffic behavior view

Default Level

2: System Level

Parameters

local-precedence: Local precedence to be set for packets, in the range of 0 to 7.

Description

Use the remark local-precedence command to configure the action of setting local precedence for a traffic behavior.
Use the **undo remark local-precedence** command to remove the action of remarking local precedence.

Note that, when the **remark dot1p** command is used together with the **remark local-precedence** command, the 802.1p precedence to be set for packets must be the same as the local precedence to be set for packets. Otherwise, the corresponding policy cannot be applied successfully.

Related commands: **qos policy, traffic behavior, classifier behavior**.

**Examples**

```plaintext
Configure the action to set local precedence to 2 for a traffic behavior.
<Sysname> system-view
[Sysname] traffic behavior database
[Sysname-behavior-database] remark local-precedence 2
```

**traffic behavior**

**Syntax**

```
traffic behavior behavior-name
undo traffic behavior behavior-name
```

**View**

System view

**Default Level**

2: System Level

**Parameters**

`behavior-name`: Name of the traffic behavior to be created, a case-sensitive string of 1 to 31 characters. No spaces are allowed in a traffic behavior name.

**Description**

Use the **traffic behavior** command to create a traffic behavior. This command also leads you to traffic behavior view.

Use the **undo traffic classifier** command to remove a traffic behavior.

Related commands: **qos policy, qos apply policy, classifier behavior**.

**Examples**

```plaintext
Define a traffic behavior named behavior1.
<Sysname> system-view
[Sysname] traffic behavior behavior1
[Sysname-behavior-behavior1]
```
QoS Policy Configuration Commands

classifier behavior

Syntax

classifier classifier-name behavior behavior-name
undo classifier classifier-name

View

Policy view

Default Level

2: System Level

Parameters

classifier-name: Name of an existing class, a case-sensitive string of 1 to 31 characters. No spaces are allowed in a class name.

behavior-name: Name of an existing traffic behavior, a case-sensitive string of 1 to 31 characters. No spaces are allowed in a behavior name.

Description

Use the classifier behavior command to associate a traffic behavior with a class.
Use the undo classifier command to remove a class from a policy.
Note that each class can be associated with only one traffic behavior.
Related commands: qos policy.

Examples

# Associate the behavior named test with the class named database in the policy user1.
<Sysname> system-view
[Sysname] qos policy user1
[Sysname-qospolicy-user1] classifier database behavior test

display qos policy

Syntax

display qos policy user-defined [ policy-name [ classifier classifier-name ] ]

View

Any view

Default Level

1: Monitor level
Parameters

*policy-name*: Policy name, a case-sensitive string of 1 to 31 characters. No spaces are allowed in a policy name. If no policy is specified, the configuration of all user defined policies is displayed.

*classifier-name*: Name of a class in the policy, a case-sensitive string of 1 to 31 characters. No spaces are allowed in a class name. If no class is specified, all the classes in the policy are specified.

Description

Use the `display qos policy` command to display the configuration of a user-defined policy, including the configuration of the classes and the associated traffic behaviors in the policy.

Examples

# Display the configuration of all the user specified policies.

```bash
<Sysname> display qos policy user-defined
```

User Defined QoS Policy Information:

Policy: test
Classifier: test
Behavior: test
Accounting Enable
Committed Access Rate:
CIR 64 (kbps), CBS 4000 (byte), EBS 4000 (byte), PIR 640 (kbps)
Green Action: pass
Red Action: discard
Yellow Action: pass

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy</td>
<td>Policy name</td>
</tr>
<tr>
<td>Classifier</td>
<td>Class name and the corresponding configuration information</td>
</tr>
<tr>
<td>Behavior</td>
<td>Traffic behavior name and the corresponding configuration information</td>
</tr>
</tbody>
</table>

`display qos policy global`

Syntax

```bash
display qos policy global [slot slot-number] [inbound]
```

View

Any view

Default Level

1: Monitor level
Parameters

**inbound**: Displays the QoS policy applied globally in the inbound direction of all ports.

**slot slot-number**: Displays the global QoS policy configuration of the specified device in the IRF. If the *slot-number* argument is not specified, the global QoS policy configuration of all devices in the IRF is displayed. If no IRF is formed, the global QoS policy configuration of the current device is displayed. The range for the *slot-number* argument depends on the number of devices and the numbering of the devices in the IRF.

Description

Use the `display qos policy global` command to display information about a global QoS policy.

Examples

```bash
Display information about the global QoS policy in the inbound direction.
<Sysname> display qos policy global inbound

Direction: Inbound

Policy: abc_policy
Classifier: abc
 Operator: AND
 Rule(s) : If-match dscp cs1
 Behavior: abc
 Committed Access Rate:
 CIR 640 (kbps), CBS 4000 (byte), EBS 4000 (byte)
 Green Action: pass
 Red Action: discard
 Yellow Action: pass
 Green : 0(Packets)
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction</td>
<td>Direction in which the policy is applied globally</td>
</tr>
<tr>
<td>Policy</td>
<td>Policy name</td>
</tr>
<tr>
<td>Classifier</td>
<td>Class name</td>
</tr>
<tr>
<td></td>
<td><strong>Failed</strong> indicates that the policy is not successfully applied</td>
</tr>
<tr>
<td>Operator</td>
<td>Logical relationship between match criteria</td>
</tr>
<tr>
<td>Rule(s)</td>
<td>Match criteria</td>
</tr>
<tr>
<td>Behavior</td>
<td>Name and the corresponding configuration information of a behavior</td>
</tr>
<tr>
<td>Committed Access Rate</td>
<td>Rate limiting information</td>
</tr>
<tr>
<td>CIR</td>
<td>Committed information rate in kbps</td>
</tr>
<tr>
<td>CBS</td>
<td>Committed burst size in bytes, that is, the depth of the token bucket for holding burst traffic</td>
</tr>
<tr>
<td>EBS</td>
<td>Excess burst size in bytes, that is, the traffic exceeding CBS when two token buckets are used</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Green Action</td>
<td>Action to conduct for green packets</td>
</tr>
<tr>
<td>Red Action</td>
<td>Action to conduct for red packets</td>
</tr>
<tr>
<td>Yellow Action</td>
<td>Action to conduct for yellow packets</td>
</tr>
<tr>
<td>Green</td>
<td>Traffic statistics on green packets</td>
</tr>
</tbody>
</table>

**display qos policy interface**

**Syntax**

`display qos policy interface [interface-type interface-number] [inbound]`

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

- `interface-type`: Port type.
- `interface-number`: Port number.
- `inbound`: Specifies the inbound direction.

**Description**

Use the `display qos policy interface` command to display the configuration and statistics information about the policy applied on a port.

If no interface is provided, the configuration and statistics information about the policies applied on all the ports is displayed.

**Examples**

```bash
Display the configuration and statistics information about the policy applied to port GigabitEthernet 1/0/1.
<Sysname> display qos policy interface GigabitEthernet 1/0/1

Interface: GigabitEthernet1/0/1

Direction: Inbound

Policy: abc_policy
Classifier: abc
Operator: AND
Rule(s) : If-match dscp cs1
Behavior: abc
Committed Access Rate:
CIR 64 (kbps), CBS 4000 (byte), EBS 4000 (byte)
```
Table 1-7 display qos policy interface command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Port name, comprising of port type and port number</td>
</tr>
<tr>
<td>Direction</td>
<td>Direction of the port where the policy is applied</td>
</tr>
<tr>
<td>Policy</td>
<td>Name and configuration information of the policy</td>
</tr>
<tr>
<td>Classifier</td>
<td>Name and configuration information of the class</td>
</tr>
<tr>
<td></td>
<td>Failed indicates that the policy is not successfully applied</td>
</tr>
<tr>
<td>Operator</td>
<td>Logical relationship among the classification rules in a class</td>
</tr>
<tr>
<td>Rule(s)</td>
<td>Classification rules in the class</td>
</tr>
<tr>
<td>Behavior</td>
<td>Name and configuration information of the behavior</td>
</tr>
</tbody>
</table>

display qos vlan-policy

Syntax

```
display qos vlan-policy { name policy-name | vlan [vlan-id] } [slot slot-number] [inbound]
```

View

Any view

Default Level

1: Monitor level

Parameters

- **name policy-name**: Specifies to display the information about the VLAN policy with the specified name, a case-sensitive string of 1 to 31 characters. No spaces are allowed in a VLAN policy name.
- **vlan vlan-id**: Specifies to display the information about the VLAN policy applied to the specified VLAN. If no VLAN ID is specified, the VLAN policy information of all VLANs is displayed.
- **slot-number**: Specifies to display VLAN QoS policy information about the specified device in the IRF. If the **slot-number** argument is not specified, the VLAN QoS policy information of all devices in the IRF is displayed. If no IRF is formed, the VLAN QoS policy information of the current device is displayed. The range for the **slot-number** argument depends on the number of devices and the numbering of the devices in the IRF.

Description

Use the **display qos vlan-policy** command to display the information about VLAN QoS policies.

Examples

```
Display the information about the VLAN QoS policy test.
<Sysname> display qos vlan-policy name test
```
Policy test
Vlan 300: inbound

Table 1-8 display qos vlan-policy command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy</td>
<td>Name of the VLAN policy</td>
</tr>
<tr>
<td>Vlan 300</td>
<td>ID of the VLAN where the VLAN policy is applied</td>
</tr>
<tr>
<td>inbound</td>
<td>VLAN policy is applied in the inbound direction of the VLAN.</td>
</tr>
</tbody>
</table>

# Display the information about the VLAN policy applied to VLAN 300.

<Sysname> display qos vlan-policy vlan 300

Vlan 300

Direction: Inbound

Policy: test
Classifier: test
   Operator: AND
   Rule(s) : If-match customer-vlan-id 3
Behavior: test
   Accounting Enable:
      0 (Packets)
Committed Access Rate:
   CIR 6400 (kbps), CBS 4000 (byte), EBS 4000 (byte)
   Green Action: pass
   Red Action: discard
   Yellow Action: pass
   Green : 0 (Packets)

Table 1-9 display qos vlan-policy command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlan 300</td>
<td>ID of the VLAN where the VLAN policy is applied</td>
</tr>
<tr>
<td>Inbound</td>
<td>VLAN policy is applied in the inbound direction of the VLAN.</td>
</tr>
<tr>
<td>Classifier</td>
<td>Name of the class in the policy and its configuration</td>
</tr>
<tr>
<td>Operator</td>
<td>Logical relationship between classification rules</td>
</tr>
<tr>
<td>Rule(s)</td>
<td>Classification rules</td>
</tr>
<tr>
<td>Behavior</td>
<td>Name of the behavior in the policy and its configuration</td>
</tr>
<tr>
<td>Accounting</td>
<td>Traffic accounting action</td>
</tr>
<tr>
<td>Committed Access Rate</td>
<td>Rate limiting information</td>
</tr>
<tr>
<td>CIR</td>
<td>Committed information rate in kbps</td>
</tr>
<tr>
<td>CBS</td>
<td>Committed burst size in bytes, that is, the depth of the token bucket for holding burst traffic</td>
</tr>
</tbody>
</table>
### qos apply policy

**Syntax**

```
qos apply policy policy-name inbound
undo qos apply policy inbound
```

**View**

- Ethernet interface view, port group view

**Default Level**

2: System Level

**Parameters**

- `inbound`: Specifies the inbound direction.
- `policy-name`: Specifies a QoS policy name, a case-sensitive string of 1 to 31 characters. No spaces are allowed in a QoS policy name.

**Description**

Use the `qos apply policy` command to apply a QoS policy on a port or a port group.

Use the `undo qos apply policy` command to remove the policy applied on a port or a port group.

**Examples**

```
Apply the policy named test in the inbound direction of GigabitEthernet1/0/1 port.
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] qos apply policy test inbound
```

### qos apply policy global

**Syntax**

```
qos apply policy policy-name global inbound
undo qos apply policy global inbound
```

**View**

- System view

---

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBS</td>
<td>Excess burst size in bytes, namely, the traffic exceeding CBS when two token buckets are used</td>
</tr>
<tr>
<td>Green Action</td>
<td>Action to conduct for green packets</td>
</tr>
<tr>
<td>Red Action</td>
<td>Action to conduct for red packets</td>
</tr>
<tr>
<td>Yellow Action</td>
<td>Action to conduct for yellow packets</td>
</tr>
<tr>
<td>Green Traffic</td>
<td>Traffic statistics about green packets</td>
</tr>
</tbody>
</table>
Default Level

2: System Level

Parameters

policy-name: Policy name, a case-sensitive string of 1 to 31 characters. No spaces are allowed in a QoS policy name.

inbound: Applies the QoS policy to the incoming packets on all ports.

Description

Use the qos apply policy global command to apply a QoS policy globally. A QoS policy applied globally takes effect on all inbound traffic depending on the direction in which the policy is applied.

Use the undo qos apply policy global command to cancel the global application of the QoS policy.

Examples

# Apply the QoS policy user1 in the inbound direction globally.

<Sysname> system-view

[Sysname] qos apply policy user1 global inbound

qos policy

Syntax

qos policy policy-name

undo qos policy policy-name

View

System view

Default Level

2: System Level

Parameters

policy-name: Name of the policy to be created, a case-sensitive string of 1 to 31 characters. No spaces are allowed in a policy name.

Description

Use the qos policy command to create a policy. This command also leads you to policy view.

Use the undo qos policy command to remove a policy.

To remove a policy that is currently applied on a port, you need to disable it on the port first.

Related commands: classifier behavior, qos apply policy.

Examples

# Create a policy named user1.

<Sysname> system-view

[Sysname] qos policy user1

[Sysname-qospolicy-user1]
qos vlan-policy

Syntax

qos vlan-policy policy-name vlan vlan-id-list inbound
undo qos vlan-policy vlan vlan-id-list inbound

View

System view

Default Level

2: System Level

Parameters

policy-name: Policy name, a case-sensitive string of 1 to 31 characters. No spaces are allowed in a policy name.

vlan-id-list: List of VLAN IDs, presented in the form of vlan-id to vlan-id or discontinuous VLAN IDs. Up to eight VLAN IDs can be specified at a time.

inbound: Specifies to apply the VLAN policy in the inbound direction of the VLAN.

Description

Use the qos vlan-policy command to apply the VLAN policy to the specific VLAN(s).
Use the undo qos vlan-policy command to remove the VLAN policy from the specific VLAN(s).

Note

Do not apply policies to a VLAN and the ports in the VLAN at the same time.

Examples

# Apply the VLAN policy named test in the inbound direction of VLAN 200, VLAN 300, VLAN 400, VLAN 500, VLAN 600, VLAN 700, VLAN 800, and VLAN 900.
<Sysname> system-view
[Sysname] qos vlan-policy test vlan 200 300 400 500 600 700 800 900 inbound

reset qos policy global

Syntax

reset qos policy global [ inbound ]

View

User view

Default Level

1: Monitor level
Parameters

- inbound: Specifies the inbound direction.

Description

Use the `reset qos vlan-policy` command to clear the statistics of a global QoS policy. If no direction is specified, all global QoS policy statistics are cleared.

Examples

```bash
Clear the statistics of the global QoS policy in the inbound direction.
<Sysname> reset qos policy global inbound
```

**reset qos vlan-policy**

Syntax

```
reset qos vlan-policy [vlan vlan-id] [inbound]
```

View

User view

Default Level

1: Monitor level

Parameters

- `vlan-id`: VLAN ID, in the range 1 to 4,094.
- inbound: Clears the QoS policy statistics in the inbound direction of the specified VLAN.

Description

Use the `reset qos vlan-policy` command to clear the statistics information about VLAN QoS policies. If no VLAN ID is specified, QoS policy statistics of all VLANs are cleared.

Examples

```bash
Clear the statistics information about the QoS policy applied to VLAN 2.
<Sysname> reset qos vlan-policy vlan 2
```
Priority Mapping Configuration Commands

Priority Mapping Table Configuration Commands

display qos map-table

Syntax

display qos map-table [dot1p-dp | dot1p-lp | dscp-dot1p | dscp-dp | dscp-dscp]

View

Any view

Default Level

1: Monitor level

Parameters

dot1p-lp: Specifies the 802.1p precedence-to-local precedence mapping table.
dot1p-dp: Specifies the 802.1p precedence-to-drop precedence mapping table.
dscp-dp: Specifies the DSCP-to-drop precedence mapping table.
dscp-dot1p: Specifies the DSCP-to-802.1p precedence mapping table.
dscp-dscp: Specifies the DSCP-to-DSCP mapping table.

Description

Use the display qos map-table command to display the configuration of a priority mapping table.

If the type of the priority mapping table is not specified, the configuration of all the priority mapping tables is displayed.

Related commands: qos map-table.

Examples

# Display the configuration of the 802.1p precedence-to-drop precedence mapping table.
<Sysname> display qos map-table dot1p-dp
MAP-TABLE NAME: dot1p-dp   TYPE: pre-define
IMPORT :   EXPORT
0 :   2
1 :  2
2 :  2
3 : 1
4 : 1
5 : 1
6 : 0
7 : 0
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP-TABLE NAME</td>
<td>Name of the mapping table</td>
</tr>
<tr>
<td>TYPE</td>
<td>Type of the mapping table</td>
</tr>
<tr>
<td>IMPORT</td>
<td>Input entries of the mapping table</td>
</tr>
<tr>
<td>EXPORT</td>
<td>Output entries of the mapping table</td>
</tr>
</tbody>
</table>

**qos map-table**

**Syntax**

```plaintext
qos map-table { dot1p-dp | dot1p-lp | dscp-dot1p | dscp-dp | dscp-dscp }
```

**View**

System view

**Default Level**

2: System Level

**Parameters**

- `dot1p-lp`: Specifies the 802.1p precedence-to-local precedence mapping table.
- `dot1p-dp`: Specifies the 802.1p precedence-to-drop precedence mapping table.
- `dscp-dp`: Specifies the DSCP-to-drop precedence mapping table.
- `dscp-dot1p`: Specifies the DSCP-to-802.1p precedence mapping table.
- `dscp-dscp`: Specifies the DSCP-to-DSCP mapping table.

**Description**

Use the `qos map-table` command to enter specific priority mapping table view.

Related commands: `display qos map-table`.

**Examples**

# Enter 802.1p precedence-to-drop precedence mapping table view.

```plaintext
<Sysname> system-view
[Sysname] qos map-table dot1p-dp
[Sysname-maptbl-dot1p-dp]
```

**import**

**Syntax**

```plaintext
import import-value-list export export-value
undo import { import-value-list | all }
```

**View**

Priority mapping table view
Default Level

2: System Level

Parameters

import-value-list: List of input parameters, in the range of 0 to 7.
export-value: Output parameter in the mapping table, in the range of 0 to 2.
all: Removes all the parameters in the priority mapping table.

Description

Use the import command to configure entries for a priority mapping table, that is, to define one or more mapping rules.

Use the undo import command to restore specific entries of a priority mapping table to the default.

Note that, you cannot configure to map any DSCP value to drop precedence 1.

Related commands: display qos map-table.

Examples

# Configure the 802.1p precedence-to-drop precedence mapping table to map 802.1p precedence 4 and 5 to drop precedence 1.

<Sysname> system-view
[Sysname] qos map-table dot1p-dp
[Sysname-maptbl-dot1p-dp] import 4 5 export 1

Port Priority Configuration Commands

qos priority

Syntax

qos priority priority-value
undo qos priority

View

Ethernet interface view, port group view

Default Level

2: System Level

Parameters

priority-value: Port priority to be configured. This argument is in the range 0 to 7.

Description

Use the qos priority command to set the port priority for a port.

Use the undo qos priority command to restore the default port priority.

By default, the port priority is 0.
Note that, if a port receives packets without an 802.1q tag, the switch takes the priority of the receiving port as the 802.1p precedence of the packets and then searches the dot1p-dp/lp mapping table for the local/drop precedence for the packets according to the priority of the receiving port.

Examples

# Set the port priority of GigabitEthernet1/0/1 port to 2.

```<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] qos priority 2```

Port Priority Trust Mode Configuration Commands

display qos trust interface

Syntax

```
display qos trust [ interface-type interface-number ]
```

View

Any view

Default Level

1: Monitor level

Parameters

- `interface-type`: Port type.
- `interface-number`: Port number.

Description

Use the `display qos trust interface` command to display the port priority trust mode of a port.

If no port is specified, this command displays the port priority trust modes of all the ports.

Examples

Display the port priority trust mode of GigabitEthernet1/0/1 port.

```<Sysname> display qos trust interface GigabitEthernet 1/0/1
Interface: GigabitEthernet1/0/1
Port priority information
Port priority :0
Port priority trust type : dscp```

Table 2-2 display qos trust interface command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Port name, comprising of port type and port number</td>
</tr>
<tr>
<td>Port priority</td>
<td>Port priority</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| Port priority trust type | Port priority trust mode  
  - dscp indicates that the DSCP precedence of the received packets is trusted  
  - dot1p indicates that the 802.1p precedence of the received packets is trusted  
  - untrust indicates that the port priority is trusted |

**qos trust**

**Syntax**

```plaintext
qos trust { dot1p | dscp }
undo qos trust
```

**View**

Ethernet interface view, port group view

**Default Level**

2: System Level

**Parameters**

- **dscp**: Specifies to trust DSCP precedence carried in the packet and adopt this priority for priority mapping.
- **dot1p**: Specifies to trust 802.1p precedence carried in the packet and adopt this priority for priority mapping.

**Description**

Use the `qos trust` command to configure the port priority trust mode.

Use the `undo qos trust` command to restore the default port priority trust mode.

By default, the port priority is trusted.

**Examples**

# Specify to trust the DSCP precedence carried in packets on GigabitEthernet1/0/1 port.

```plaintext
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] qos trust dscp
```
Traffic Shaping and Line Rate Configuration Commands

Traffic Shaping Configuration Commands

display qos gts interface

Syntax

    display qos gts interface [ interface-type interface-number ]

View

Any view

Default Level

1: Monitor level

Parameters

    interface-type: Port type.
    interface-number: Port number.

Description

Use the **display qos gts interface** command to display traffic shaping configuration information. If no port is specified, traffic shaping configuration information of all ports is displayed.

Examples

    # Display traffic shaping configuration information of all ports.
    <Sysname> display qos gts interface
    Interface: GigabitEthernet1/0/1
    Rule(s): If-match queue 2
    CIR 640 (kbps), CBS 40960 (byte)

<table>
<thead>
<tr>
<th>Table 3-1 display qos gts command output description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Field</strong></td>
</tr>
<tr>
<td>Interface</td>
</tr>
<tr>
<td>Rule(s)</td>
</tr>
<tr>
<td>CIR</td>
</tr>
<tr>
<td>CBS</td>
</tr>
</tbody>
</table>
**qos gts**

**Syntax**

```
qos gts queue queue-number cir committed-information-rate [cbs committed-burst-size]
undo qos gts queue queue-number
```

**View**

Ethernet interface view, port group view

**Default Level**

2: System level

**Parameters**

- `queue queue-number`: Specifies a queue by its number, which ranges from 0 to 7.
- `cir committed-information-rate`: Specifies the committed information rate (CIR) in kbps, which must be a multiple of 64, and CIR ranges from 64 to 16777216.
- `cbs committed-burst-size`: Specifies the CBS (in bytes), which ranges from 4096 to 16777216 and must be a multiple of 4096.

If the `cbs` keyword is not specified, the default CBS is \( 62.5 \text{ ms} \times \text{committed-information-rate} \) and must be a multiple of 4096. If \( 62.5 \text{ ms} \times \text{committed-information-rate} \) is not a multiple of 4096, the default CBS is the multiple of 4096 that is bigger than and nearest to \( 62.5 \text{ ms} \times \text{committed-information-rate} \). The maximum CBS is 16777216. For example, if the CIR is 640 kbps, then \( 62.5 \text{ ms} \times \text{CIR} = 62.5 \text{ ms} \times 640 = 40000 \). As 40000 is not a multiple of 4096, 40960, which is the multiple of 4096 that is bigger than and nearest to 40000, is taken as the default CBS.

**Description**

Use the `qos gts` command to configure traffic shaping.

Use the `undo qos gts` command to remove the traffic shaping configuration.

In Ethernet interface view, the configuration takes effect on the current port. In port group view, the configuration takes effect on all ports in the port group.

**Examples**

```
Configure traffic shaping on GigabitEthernet 1/0/1 to limit the outgoing traffic rate of queue 2 to 640 kbps.
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] qos gts queue 2 cir 640
```

**Line Rate Configuration Commands**

**display qos lr interface**

**Syntax**

```
display qos lr interface [interface-type interface-number]
```
View

Any view

Default Level

1: Monitor level

Parameters

interface-type: Port type.
interface-number: Port number.

Description

Use the display qos lr interface command to display the line rate configuration information of the specified port or all ports if no port is specified.

Examples

# Display the line rate configuration and statistics information of all the interfaces.
<Sysname> display qos lr interface
Interface: GigabitEthernet1/0/1
Direction: Inbound
CIR 6400 (kbps), CBS 400000 (byte)

Table 3-2 display qos lr command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Port name, composed of port type and port number</td>
</tr>
<tr>
<td>Direction</td>
<td>Specify the direction of limited rate as inbound</td>
</tr>
<tr>
<td>CIR</td>
<td>Committed information rate, in kbps</td>
</tr>
<tr>
<td>CBS</td>
<td>Committed burst size, in byte</td>
</tr>
</tbody>
</table>

qos lr outbound

Syntax

qos lr outbound cir committed-information-rate [ cbs committed-burst-size ]
undo qos lr outbound

View

Ethernet interface view, port group view

Default Level

2: System Level

Parameters

outbound: Limits the rate of the outbound traffic.
cir committed-information-rate: Specifies the committed information rate (CIR) in kbps. The range of CIR varies with port types as follows:
- GigabitEthernet port: 64 to 1000000
- Ten-GigabitEthernet port: 64 to 10000000

Note that the **committed-information-rate** argument must be a multiple of 64.

**cbs committed-burst-size:** Specifies the committed burst size in bytes.

- The **committed-burst-size** argument ranges from 4000 to 16000000.
- If the **cbs** keyword is not used, the system uses the default committed burst size, that is, $62.5 \text{ ms} \times \text{committed-information-rate}$, or 16000000 if the multiplication is more than 16000000.

### Description

Use the **qos lr outbound** command to limit the rate of outbound traffic via physical interfaces.

Use the **undo qos lr outbound** command to cancel the limit.

### Examples

```bash
Limit the outbound traffic rate on GigabitEthernet 1/0/1 within 640 kbps.
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] qos lr outbound cir 640
```
Congestion Management Configuration Commands

display qos sp interface

Syntax

display qos sp interface [ interface-type interface-number ]

View

Any view

Default Level

1: Monitor level

Parameters

interface-type: Port type.
interface-number: Port number.

Description

Use the display qos sp interface command to display the strict priority (SP) queuing configuration on a specified port.

If no port is specified, this command displays the SP queuing configuration on all ports.

Related commands: qos sp.

Examples

# Display the SP queuing configuration on GigabitEthernet 1/0/1.
<Sysname> display qos sp interface GigabitEthernet 1/0/1
Interface: GigabitEthernet1/0/1
Output queue: Strict-priority queue

display qos wfq interface

Syntax

display qos wfq interface [ interface-type interface-number ]

View

Any view
Default Level

1: Monitor level

Parameters

interface-type: Port type.
interface-number: Port number.

Description

Use the `display qos wfq interface` command to display the configuration of Weighted Fair Queuing (WFQ) queues of a port.

If no port number is specified, the command displays the configurations of WFQ queues of all ports.

Related commands: `qos wfq`.

Examples

# Display the configuration of the WFQ queues on port GigabitEthernet 1/0/1.

```shell
<Sysname> display qos wfq interface GigabitEthernet 1/0/1
```

```
Interface: GigabitEthernet1/0/1
Output queue: Hardware weighted fair queue
Queue ID Weight Min-Bandwidth
--
0 1 64
1 2 64
2 4 64
3 6 64
4 8 64
5 10 64
6 12 64
7 14 64
```

Table 4-1 `display qos wfq interface` command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Port name, composed of port type and port number</td>
</tr>
<tr>
<td>Output queue</td>
<td>The type of the current output queue</td>
</tr>
<tr>
<td>Queue ID</td>
<td>ID of the queue</td>
</tr>
<tr>
<td>Weight</td>
<td>The weight of each queue during scheduling.</td>
</tr>
<tr>
<td>Min-Bandwidth</td>
<td>Minimum guaranteed bandwidth of the queue</td>
</tr>
</tbody>
</table>

`display qos wrr interface`

Syntax

```shell
display qos wrr interface [interface-type interface-number]
```
View

Any view

Default Level

1: Monitor level

Parameters

*interface-type*: Port type.

*interface-number*: Port number.

Description

Use the **display qos wrr interface** command to display the configuration of weighted round robin (WRR) queues of a port.

If no port number is specified, the command displays the configurations of WRR queues of all ports.

Related commands: **qos wrr**.

Examples

# Display the configuration of WRR queues of GigabitEthernet 1/0/1.

```
<Sysname> display qos wrr interface GigabitEthernet 1/0/1
Interface: GigabitEthernet1/0/1
Output queue: Weighted round robin queue
Queue ID Group Weight

0 sp N/A
1 sp N/A
2 1 3
3 1 4
4 1 5
5 1 6
6 1 7
7 1 8
```

**Table 4-2 display qos wrr interface** command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Port name, composed of port type and port number</td>
</tr>
<tr>
<td>Output queue</td>
<td>The type of the current output queue</td>
</tr>
<tr>
<td>Queue ID</td>
<td>ID of the queue</td>
</tr>
<tr>
<td>Group</td>
<td>Group ID, indicating which group a queue belongs to.</td>
</tr>
<tr>
<td>Weight</td>
<td>The weight of each queue during scheduling. N/A indicates that SP queue scheduling algorithm is adopted.</td>
</tr>
</tbody>
</table>
**qos bandwidth queue**

**Syntax**

```
qos bandwidth queue queue-id min bandwidth-value
undo qos bandwidth queue queue-id [min bandwidth-value]
```

**View**

Ethernet interface view, port group view

**Default Level**

2: System level

**Parameters**

- `queue-id`: Queue ID, in the range of 0 to 7.
- `bandwidth-value`: Minimum guaranteed bandwidth (in kbps), that is, the minimum bandwidth guaranteed for a queue when the port is congested. The range for the `bandwidth-value` argument is 64 to 1048576.

**Description**

Use the `qos bandwidth queue` command to set the minimum guaranteed bandwidth for a specified queue on the port or ports in the port group.

Use the `undo qos bandwidth queue` command to remove the configuration.

By default, the minimum guaranteed bandwidth of a queue is 64 kbps.

Note that:

- In Ethernet interface view, the configuration takes effect only on the current port; in port group view, the configuration takes effect on all ports in the port group.
- To configure minimum guaranteed bandwidth for queues on a port/port group, enable WFQ on the port/port group first.

**Examples**

```
Set the minimum guaranteed bandwidth to 100 kbps for queue 0 on GigabitEthernet 1/0/1.
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet 1/0/1] qos wfq
[Sysname-GigabitEthernet 1/0/1] qos bandwidth queue 0 min 100
```

**qos sp**

**Syntax**

```
qos sp
undo qos sp
```

**View**

Ethernet interface view, port group view
Default Level

2: System Level

Parameters

None

Description

Use the `qos sp` command to configure SP queuing on the current port.
Use the `undo qos sp` command to restore the default queuing algorithm on the port.

By default, all the ports adopt the WRR queue scheduling algorithm, with the weight values assigned to queue 0 through queue 7 being 1, 2, 3, 4, 5, 9, 13, and 15.

Related commands: `display qos sp interface`.

Examples

# Configure SP queuing on GigabitEthernet1/0/1.
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] qos sp

qos wfq

Syntax

qos wfq
undo qos wfq

View

Ethernet interface view, port group view

Default Level

2: System Level

Parameters

None

Description

Use the `qos wfq` command to enable weighted fair queuing (WFQ) on a port or port group.
Use the `undo qos wfq` command to restore the default.

By default, all the ports adopt the WRR queue scheduling algorithm, with the weight values assigned to queue 0 through queue 7 being 1, 2, 3, 4, 5, 9, 13, and 15.

Related commands: `display qos wrr interface`.

Examples

# Enable WFQ on GigabitEthernet 1/0/1.
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
qos wfq weight

Syntax

```
qos wfq queue-id weight schedule-value
undo qos wfq queue-id weight
```

View

Ethernet interface view, port group view

Default Level

2: System Level

Parameters

```
queue-id: ID of the queue, in the range of 0 to 7.
weight schedule-value: Specifies the scheduling weight of a queue, ranges from 0 to 15, and each queue is allocated with part of the allocable bandwidth based on its scheduling weight.
```

Description

Use the `qos wfq` command to enable weighted fair queuing (WFQ) on a port or port group and configure a scheduling weight for the specified queue.

Use the `undo qos wfq` command to restore the default.

On a WFQ-enable port/port group, the scheduling weight of a queue is 1 by default.

Related commands: `display qos wfq interface`, `qos bandwidth queue`.

Examples

```
Enable WFQ on GigabitEthernet 1/0/1 and assign weight values 1, 2, 4, 6, 8, 10, 12, and 14 to queues 0 through 7.
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] qos wfq
[Sysname-GigabitEthernet1/0/1] qos wfq 0 weight 1
[Sysname-GigabitEthernet1/0/1] qos wfq 1 weight 2
[Sysname-GigabitEthernet1/0/1] qos wfq 2 weight 4
[Sysname-GigabitEthernet1/0/1] qos wfq 3 weight 6
[Sysname-GigabitEthernet1/0/1] qos wfq 4 weight 8
[Sysname-GigabitEthernet1/0/1] qos wfq 5 weight 10
[Sysname-GigabitEthernet1/0/1] qos wfq 6 weight 12
[Sysname-GigabitEthernet1/0/1] qos wfq 7 weight 14
```

qos wrr

Syntax

```
qos wrr
undo qos wrr
```

View

Ethernet interface view, port group view

Default Level

2: System Level

Parameters

None

Description

Use the `qos wrr` command to enable weighted round robin (WRR) on a port or port group.

Use the `undo qos wrr` command to restore the default.

By default, all the ports adopt the WRR queue scheduling algorithm, with the weight values assigned to queue 0 through queue 7 being 1, 2, 3, 4, 5, 9, 13, and 15.

Related commands: `display qos wrr interface`.

Examples

```plaintext
Enable WRR on GigabitEthernet 1/0/1.
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] qos wrr
```

**qos wrr group**

Syntax

```
qos wrr queue-id group { sp | group-id weight schedule-value }
undo qos wrr
```

View

Ethernet interface view, port group view

Default Level

2: System Level

Parameters

- `queue-id`: ID of the queue, in the range of 0 to 7.
- `group-id`: It can only be 1.
- `weight schedule-value`: Specifies the scheduling weight of a queue, range from 1 to 15.
- `sp`: Configures SP queuing.

Description

Use the `qos wrr` command to configure Weighted Round Robin (WRR) queue scheduling algorithm or the SP + WRR queue scheduling algorithm on a port or port group.

Use the `undo qos wrr` command to restore the default queue-scheduling algorithm on the port.
By default, all the ports adopt the WRR queue scheduling algorithm, with the weight values assigned to queue 0 through queue 7 being 1, 2, 3, 4, 5, 9, 13, and 15.

As required, you can configure part of the queues on the port to adopt the SP queue-scheduling algorithm and parts of queues to adopt the WRR queue-scheduling algorithm. Through adding the queues on a port to the SP scheduling group and WRR scheduling group (namely, group 1), the SP + WRR queue scheduling is implemented. During the queue scheduling process, the queues in the SP scheduling group is scheduled preferentially. When no packet is to be sent in the queues in the SP scheduling group, the queues in the WRR scheduling group are scheduled. The queues in the SP scheduling group are scheduled according to the strict priority of each queue, while the queues in the WRR queue scheduling group are scheduled according the weight value of each queue.

Related commands: `display qos wrr interface`.

**Examples**

# Configure SP+WRR queue scheduling algorithm on GigabitEthernet 1/0/1 as follows: assign queue 0, queue 1, queue 2, and queue 3 to the SP scheduling group; and assign queue 4, queue 5, queue 5, and queue 7 to WRR scheduling group, with the weight 2, 4, 6, and 8.

<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] qos wrr
[Sysname-GigabitEthernet1/0/1] qos wrr 0 group sp
[Sysname-GigabitEthernet1/0/1] qos wrr 1 group sp
[Sysname-GigabitEthernet1/0/1] qos wrr 2 group sp
[Sysname-GigabitEthernet1/0/1] qos wrr 3 group sp
[Sysname-GigabitEthernet1/0/1] qos wrr 4 group 1 weight 2
[Sysname-GigabitEthernet1/0/1] qos wrr 5 group 1 weight 4
[Sysname-GigabitEthernet1/0/1] qos wrr 6 group 1 weight 6
[Sysname-GigabitEthernet1/0/1] qos wrr 7 group 1 weight 8
Traffic Mirroring Configuration Commands

mirror-to

Syntax

    mirror-to { cpu | interface interface-type interface-number }
    undo mirror-to { cpu | interface interface-type interface-number }

View

    Traffic behavior view

Default Level

    2: System Level

Parameters

    cpu: Redirects packets to the CPU.
    interface interface-type interface-number: Port type and port number of the destination port for the traffic mirroring action.

Description

    Use the mirror-to command to configure traffic mirroring action for a traffic behavior.
    Use the undo mirror-to command to remove the traffic mirroring action.

Examples

    # Configure traffic behavior 1 and define the action of mirroring traffic to GigabitEthernet1/0/2 in the traffic behavior.
    <Sysname> system-view
    [Sysname] traffic behavior 1
    [Sysname-behavior-1] mirror-to interface GigabitEthernet 1/0/2
User Profile Configuration Commands

display user-profile

Syntax

display user-profile

View

Any view

Default Level

2: System level

Parameters

None

Description

Use the **display user-profile** command to display information of all the user profiles that have been created.

Examples

# Display information of all the user profiles that have been created.

```bash
<Sysname> display user-profile
Status User profile AuthType
enabled b123 DOT1X

----Total user profiles: 1-------

----Enabled user profiles: 1-------
```

**Table 6-1 display user-profile command output description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Status of the current user profile:</td>
</tr>
<tr>
<td></td>
<td>enabled</td>
</tr>
<tr>
<td></td>
<td>disabled</td>
</tr>
<tr>
<td>User profile</td>
<td>User profile name</td>
</tr>
<tr>
<td>AuthType</td>
<td>Authentication type of the current user profile</td>
</tr>
<tr>
<td>Total user profiles</td>
<td>Total number of user profiles that have been created</td>
</tr>
<tr>
<td>Enabled user profiles</td>
<td>Total number of user profiles that have been enabled</td>
</tr>
</tbody>
</table>
user-profile enable

Syntax

user-profile profile-name enable
undo user-profile profile-name enable

View

System view

Default Level

2: System level

Parameters

profile-name: Use profile name, a string of 1 to 31 characters, case sensitive. It can only contain English letters, numbers, underlines, and must start with an English letter.

Description

Use the user-profile enable command to enable a user profile.

Use the undo user-profile enable command to disable the specified user profile.

By default, a created user profile is disabled.

Note that:

• When you execute the command, the specified user profile must be created; otherwise, the command fails.
• Only an enabled user profile can be used by users. You cannot modify or remove the configuration items in a user profile until the user profile is disabled.
• Disabling a user profile logs out the users using the user profile.

Examples

# Enable user profile a123.

<Sysname> system-view
[Sysname] user-profile a123 enable

user-profile

Syntax

user-profile profile-name [ dot1x ]
undo user-profile profile-name [ dot1x ]

View

System view

Default Level

2: System level
Parameters

profile-name: Use profile name, a string of 1 to 31 characters, case sensitive. It can only contain English letters, numbers, underlines, and must start with an English letter. A user profile name must be globally unique.

dot1x: Uses 802.1X authentication when users access the device. Refer to 802.1X Configuration in the Security Volume for the detailed information about 802.1X.

Description

Use the user-profile command to create a user profile and enter the corresponding user profile view. If the specified user profile already exists, you will directly enter the corresponding user profile view, without the need to create a user profile. Use the undo user-profile command to remove an existing, disabled user profile.

By default, no user profiles exist on the device.

Note that:

- The dot1x keyword is required when you creating a user profile, and it’s optional when you entering the user profile view or deleting an existing user profile.
- An enabled user profile cannot be removed.

Related commands: user-profile enable.

Examples

# Create a user profile a123, using 802.1X authentication.

<Sysname> system-view
[Sysname] user-profile a123 DOT1X
[Sysname-user-profile-DOT1X-a123]

# Enter the corresponding user profile view of a123.

<Sysname> system-view
[Sysname] user-profile a123
[Sysname-user-profile-DOT1X-a123]
# Table of Contents

1 AAA Configuration Commands

- AAA Configuration Commands
  - access-limit enable
  - access-limit
  - accounting command
  - accounting default
  - accounting lan-access
  - accounting login
  - accounting optional
  - authentication default
  - authentication lan-access
  - authentication login
  - authorization command
  - authorization default
  - authorization lan-access
  - authorization login
  - authorization-attribute
  - bind-attribute
  - cut connection
  - display connection
  - display domain
  - display local-user
  - display user-group
  - domain
  - domain default enable
  - expiration-date
  - group
  - idle-cut enable
  - local-user
  - local-user password-display-mode
  - password
  - self-service-url enable
  - service-type
  - state
  - user-group

2 RADIUS Configuration Commands

- RADIUS Configuration Commands
  - data-flow-format (RADIUS scheme view)
  - display radius scheme
  - display radius statistics
  - display stop-accounting-buffer
  - key (RADIUS scheme view)
  - nas-ip (RADIUS scheme view)
primary accounting (RADIUS scheme view) ................................................................. 2-9
primary authentication (RADIUS scheme view) .......................................................... 2-10
radius client .................................................................................................................. 2-11
radius nas-ip .................................................................................................................. 2-12
radius scheme .............................................................................................................. 2-13
radius trap .................................................................................................................... 2-14
reset radius statistics ................................................................................................. 2-14
reset stop-accounting-buffer ..................................................................................... 2-15
retry ............................................................................................................................... 2-16
retry realtime-accounting ............................................................................................ 2-17
retry stop-accounting (RADIUS scheme view) ............................................................ 2-18
secondary accounting (RADIUS scheme view) ............................................................ 2-18
secondary authentication (RADIUS scheme view) ....................................................... 2-19
security-policy-server ................................................................................................. 2-20
server-type .................................................................................................................. 2-21
state .............................................................................................................................. 2-22
stop-accounting-buffer enable (RADIUS scheme view) ............................................. 2-23
timer quiet (RADIUS scheme view) ........................................................................... 2-24
timer realtime-accounting (RADIUS scheme view) .................................................... 2-24
timer response-timeout (RADIUS scheme view) ......................................................... 2-25
user-name-format (RADIUS scheme view) ................................................................. 2-26

3 HW TACACS Configuration Commands ...................................................................... 3-1
HW TACACS Configuration Commands ..................................................................... 3-1
data-flow-format (HW TACACS scheme view) ............................................................... 3-1
display hwtacacs .......................................................................................................... 3-1
display stop-accounting-buffer .................................................................................. 3-4
hwtacacs nas-ip ............................................................................................................ 3-4
hwtacacs scheme ........................................................................................................ 3-5
key (HW TACACS scheme view) .................................................................................. 3-6
nas-ip (HW TACACS scheme view) ............................................................................... 3-6
primary accounting (HW TACACS scheme view) ......................................................... 3-7
primary authentication (HW TACACS scheme view) .................................................. 3-8
primary authorization ................................................................................................. 3-9
reset hwtacacs statistics ............................................................................................ 3-10
reset stop-accounting-buffer ..................................................................................... 3-10
retry stop-accounting (HW TACACS scheme view) ....................................................... 3-11
secondary accounting (HW TACACS scheme view) .................................................... 3-12
secondary authentication (HW TACACS scheme view) ............................................. 3-12
secondary authorization ............................................................................................. 3-13
stop-accounting-buffer enable (HW TACACS scheme view) ..................................... 3-14
timer quiet (HW TACACS scheme view) ..................................................................... 3-15
timer realtime-accounting (HW TACACS scheme view) ............................................. 3-15
timer response-timeout (HW TACACS scheme view) .................................................. 3-16
user-name-format (HW TACACS scheme view) .......................................................... 3-17

4 802.1X Configuration Commands .............................................................................. 4-1
802.1X Configuration Commands ................................................................................ 4-1
display dot1x ................................................................................................................ 4-1
dot1x authentication-method ................................................................. 4-5
dot1x guest-vlan ................................................................................. 4-6
dot1x handshake .................................................................................. 4-8
dot1x mandatory-domain ................................................................. 4-8
dot1x max-user .................................................................................... 4-9
reset dot1x statistics ................................................................. 4-15

5 EAD Fast Deployment Configuration Commands ........................................... 5-1
EAD Fast Deployment Configuration Commands ........................................... 5-1
dot1x free-ip ....................................................................................... 5-1
dot1x timer ead-timeout ................................................................. 5-2
dot1x url .............................................................................................. 5-2

HABP Configuration Commands ............................................................ 6-1
HABP Configuration Commands ............................................................ 6-1
display habp ...................................................................................... 6-1
display habp table ............................................................................ 6-1
display habp traffic .......................................................................... 6-2
habp enable ....................................................................................... 6-3
habp server vlan .............................................................................. 6-4
habp timer ......................................................................................... 6-4

7 MAC Authentication Configuration Commands ........................................... 7-1
MAC Authentication Configuration Commands ........................................... 7-1
display mac-authentication ......................................................... 7-1
mac-authentication .......................................................................... 7-3
mac-authentication domain ........................................................... 7-4
mac-authentication timer ............................................................... 7-4
mac-authentication user-name-format .............................................. 7-5
reset mac-authentication statistics ................................................. 7-7

8 Port Security Configuration Commands ................................................ 8-1
Port Security Configuration Commands ................................................ 8-1
display port-security ....................................................................... 8-1
display port-security mac-address block ........................................ 8-3
display port-security mac-address security .................................... 8-4
port-security authorization ignore ............................................... 8-6
port-security enable ......................................................................... 8-6
port-security intrusion-mode .......................................................... 8-7
port-security mac-address security ............................................... 8-8
port-security max-mac-count ......................................................... 8-9
port-security ntk-mode ................................................................... 8-10
port-security oui .............................................................................. 8-11
9 IP Source Guard Configuration Commands

**IP Source Guard Configuration Commands**
- display ip check source
- display user-bind
- ip check source
- user-bind

10 SSH2.0 Configuration Commands

**SSH2.0 Server Configuration Commands**
- display ssh server
- display ssh user-information
- ssh server authentication-retries
- ssh server authentication-timeout
- ssh server compatible-ssh1x enable
- ssh server enable
- ssh server rekey-interval
- ssh user

**SSH2.0 Client Configuration Commands**
- display ssh client source
- display ssh server-info
- ssh client authentication-server
- ssh client first-time enable
- ssh client ipv6 source
- ssh client source
- ssh2
- ssh2 ipv6

**SFTP Server Configuration Commands**
- sftp server enable
- sftp server idle-timeout

**SFTP Client Configuration Commands**
- bye
- cd
- cdup
- delete
- dir
- display sftp client source
- exit
- get
- help
- ls
- mkdir
- put
- pwd
- quit
- remove
11 PKI Configuration Commands ........................................ 11-1
   PKI Configuration Commands ........................................ 11-1
      attribute ....................................................... 11-1
      ca identifier ................................................. 11-2
      certificate request entity .................................... 11-3
      certificate request from ..................................... 11-3
      certificate request mode ..................................... 11-4
      certificate request polling .................................... 11-5
      certificate request url ....................................... 11-5
      common-name .................................................. 11-6
      country ......................................................... 11-7
      crl check ....................................................... 11-7
      crl update-period ............................................. 11-8
      crl url ......................................................... 11-8
      display pki certificate ....................................... 11-9
      display pki certificate access-control-policy ............... 11-11
      display pki certificate attribute-group ...................... 11-12
      display pki crl domain ....................................... 11-12
      fqdn ............................................................ 11-14
      ip (PKI entity view) ......................................... 11-14
      ldap-server .................................................... 11-15
      locality ......................................................... 11-16
      organization .................................................... 11-16
      organization-unit .............................................. 11-17
      pki certificate access-control-policy ....................... 11-17
      pki certificate attribute-group ................................ 11-18
      pki delete-certificate ....................................... 11-19
      pki domain ..................................................... 11-19
      pki entity ...................................................... 11-20
      pki import-certificate ....................................... 11-21
      pki request-certificate domain ................................ 11-21
      pki retrieval-certificate .................................... 11-22
      pki retrieval-crl domain ..................................... 11-23
      pki validate-certificate .................................... 11-23
      root-certificate fingerprint .................................. 11-24
      rule (access control policy view) ........................... 11-25
      state ............................................................ 11-25

12 SSL Configuration Commands .......................................... 12-1
   SSL Configuration Commands ....................................... 12-1
      ciphersuite .................................................. 12-1
      client-verify enable ........................................ 12-2
close-mode wait........................................................................................................... 12-2
display ssl client-policy............................................................................................ 12-3
display ssl server-policy.......................................................................................... 12-4
handshake timeout..................................................................................................... 12-5
pki-domain................................................................................................................ 12-6
prefer-cipher.............................................................................................................. 12-6
session......................................................................................................................... 12-7
ssl client-policy......................................................................................................... 12-8
ssl server-policy........................................................................................................ 12-9
version........................................................................................................................... 12-9

13 Public Key Configuration Commands.................................................................. 13-1

Public Key Configuration Commands...................................................................... 13-1
display public-key local public................................................................................. 13-1
display public-key peer............................................................................................. 13-2
peer-public-key end..................................................................................................... 13-3
public-key-code begin.............................................................................................. 13-4
public-key-code end................................................................................................. 13-4
public-key local create............................................................................................. 13-5
public-key local destroy........................................................................................... 13-6
public-key local export dsa..................................................................................... 13-7
public-key local export rsa..................................................................................... 13-8
public-key peer......................................................................................................... 13-9
public-key peer import sshkey................................................................................. 13-10

14 ACL Configuration Commands.......................................................................... 14-1

Common Configuration Commands......................................................................... 14-1
display acl resource................................................................................................. 14-1
display time-range.................................................................................................... 14-2
time-range................................................................................................................. 14-3
IPv4 ACL Configuration Commands........................................................................ 14-5
acl............................................................................................................................... 14-5
acl copy..................................................................................................................... 14-6
acl name................................................................................................................... 14-7
description (for IPv4)............................................................................................... 14-8
display acl................................................................................................................. 14-9
reset acl counter....................................................................................................... 14-10
rule (basic IPv4 ACL view)..................................................................................... 14-10
rule (advanced IPv4 ACL view)............................................................................... 14-12
rule (Ethernet frame header ACL view)................................................................... 14-16
rule comment (for IPv4).......................................................................................... 14-18
step (for IPv4)......................................................................................................... 14-19
IPv6 ACL Configuration Commands....................................................................... 14-20
acl ipv6.................................................................................................................... 14-20
acl ipv6 copy.......................................................................................................... 14-21
acl ipv6 name........................................................................................................ 14-22
description (for IPv6)............................................................................................. 14-22
display acl ipv6...................................................................................................... 14-23
reset acl ipv6 counter.............................................................................................. 14-24
AAA Configuration Commands

access-limit enable

Syntax

    access-limit enable max-user-number
    undo access-limit enable

View

    ISP domain view

Default Level

    2: System level

Parameters

    max-user-number: Maximum number of user connections for the current ISP domain. The valid range from 1 to 2147483646.

Description

    Use the access-limit enable command to enable the limit on the number of user connections in an ISP domain and set the allowed maximum number. After the number of user connections reaches the maximum number allowed, no more users will be accepted.

    Use the undo access-limit enable command to restore the default.

    By default, there is no limit to the number of user connections in an ISP domain.

    As user connections may compete for network resources, setting a proper limit to the number of user connections helps provide a reliable system performance.

Examples

    # Set a limit of 500 user connections for ISP domain aabbcc.net.
    <Sysname> system-view
    [Sysname] domain aabbcc.net
    [Sysname-isp-aabbcc.net] access-limit enable 500

access-limit
View
Local user view

Default Level
3: Manage level

Parameters

max-user-number: Maximum number of user connections using the current username, in the range 1 to 1024.

Description

Use the **access-limit** command to enable the limit on the number of user connections using the current username and set the allowed maximum number.

Use the **undo access-limit** command to remove the limitation.

By default, there is no limit to the number of user connections using the same username.

Note that the **access-limit** command takes effect only when local accounting is configured.

Related commands: **display local-user**.

Examples

# Enable the limit on the number of user connections using the username abc and set the allowed maximum number to 5.

<Sysname> system-view
<Sysname> local-user abc
<Sysname-luser-abc> access-limit 5

accounting command

Syntax

accounting command hwtacacs-scheme **hwtacacs-scheme-name**
undo accounting command

View

ISP domain view

Default Level
2: System level

Parameters

hwtacacs-scheme **hwtacacs-scheme-name**: Specifies an HWTACACS scheme by its name, which is a string of 1 to 32 characters.

Description

Use the **accounting command** command to specify the HWTACACS scheme for command line users.

Use the **undo accounting command** command to restore the default.
By default, the default accounting method that the `accounting default` command prescribes is used for command line users.

Note that:

- The HWTACACS scheme specified for the current ISP domain must have been configured.
- Currently, only HWTACACS schemes support command line accounting.

Related commands: `accounting default`, `hwtacacs scheme`.

**Examples**

```
Configure the ISP domain test to use HWTACACS scheme hw for accounting of command line users.
<Sysname> system-view
<Sysname> domain test
<Sysname-isp-test> accounting command hwtacacs-scheme hw
```

**accounting default**

**Syntax**

```
accounting default { hwtacacs-scheme hwtacacs-scheme-name [local] | local | none | radius-scheme radius-scheme-name [local] }
undo accounting default
```

**View**

ISP domain view

**Default Level**

2: System level

**Parameters**

- `hwtacacs-scheme hwtacacs-scheme-name`: Specifies an HWTACACS scheme by its name, which is a string of 1 to 32 characters.
- `local`: Performs local accounting.
- `none`: Does not perform any accounting.
- `radius-scheme radius-scheme-name`: Specifies a RADIUS scheme by its name, which is a string of 1 to 32 characters.

**Description**

Use the `accounting default` command to configure the default accounting method for all types of users.

Use the `undo accounting default` command to restore the default.

By default, the accounting method is `local`.

Note that:

- The RADIUS or HWTACACS scheme specified for the current ISP domain must have been configured.
- The accounting method configured with the `accounting default` command is for all types of users and has a priority lower than that for a specific access mode.
Local accounting is only for managing the local user connection number; it does not provide the statistics function. The local user connection number management is only for local accounting; it does not affect local authentication and authorization.

Related commands: authentication default, authorization default, hwtacacs scheme, radius scheme.

Examples

# Configure the default ISP domain system to use the local accounting method for all types of users.
<Sysname> system-view
<Sysname> domain system
<Sysname-isp-system> accounting default local

# Configure the default ISP domain system to use RADIUS accounting scheme rd for all types of users and use local accounting as the backup.
<Sysname> system-view
<Sysname> domain system
<Sysname-isp-system> accounting default radius-scheme rd local

accounting lan-access

Syntax

accounting lan-access { local | none | radius-scheme radius-scheme-name [ local ] }
undo accounting lan-access

View

ISP domain view

Default Level

2: System level

Parameters

local: Performs local accounting.
none: Does not perform any accounting.
radius-scheme radius-scheme-name: Specifies a RADIUS scheme by its name, which is a string of 1 to 32 characters.

Description

Use the accounting lan-access command to configure the accounting method for LAN access users.
Use the undo accounting lan-access command to restore the default.
By default, the default accounting method that the accounting default command prescribes is used for LAN access users.
Note that the RADIUS scheme specified for the current ISP domain must have been configured.
Related commands: accounting default, radius scheme.

Examples

# Configure the default ISP domain system to use the local accounting method for LAN access users.
accounting login

Syntax

```
accounting login { hwtacacs-scheme hwtacacs-scheme-name [local] | local | none | radius-scheme radius-scheme-name [local] }
```

```
undo accounting login
```

View

ISP domain view

Default Level

2: System level

Parameters

```
hwtacacs-scheme hwtacacs-scheme-name: Specifies an HWTACACS scheme by its name, which is a string of 1 to 32 characters.
```

```
local: Performs local accounting. It is not used for charging purposes, but for collecting statistics on and limiting the number of local user connections.
```

```
one: Does not perform any accounting.
```

```
radius-scheme radius-scheme-name: Specifies a RADIUS scheme by its name, which is a string of 1 to 32 characters.
```

Description

Use the `accounting login` command to configure the accounting method for login users.

Use the `undo accounting login` command to restore the default.

By default, the default accounting method is used for login users.

Note that:

- The RADIUS or HWTACACS scheme specified for the current ISP domain must have been configured.
- Accounting is not supported for login users’ FTP services.

Related commands: `accounting default`, `hwtacacs scheme`, `radius scheme`.

Examples

```
Configure the default ISP domain system to use the local accounting method for login users.

<Sysname> system-view
[Sysname] domain system
[Sysname-isp-system] accounting lan-access radius-scheme rd local
```

```
<Sysname> system-view
[Sysname] domain system
[Sysname-isp-system] accounting lan-access local
```
accounting optional

Syntax

    accounting optional
    undo accounting optional

View

ISP domain view

Default Level

2: System level

Parameters

None

Description

Use the accounting optional command to enable the accounting optional feature.

Use the undo accounting optional command to disable the feature.

By default, the feature is disabled.

Note that with the accounting optional command configured for a domain:

- A user that will be disconnected otherwise can use the network resources even when there is no accounting server available or communication with the current accounting server fails. This command applies to scenarios where authentication is required but accounting is not.
- If accounting for a user in the domain fails, the device will not send real-time accounting updates for the user any more.
- The limit on the number of local user connections configured by using the access-limit command in local user view is not effective.

Examples

# Enable the accounting optional feature for users in domain aabbcc.net.

    <Sysname> system-view
    [Sysname] domain aabbcc.net
    [Sysname-isp-aabbcc.net] accounting optional

authentication default

Syntax

    authentication default { hwtacacs-scheme hwtacacs-scheme-name [ local ] | local | none | radius-scheme radius-scheme-name [ local ] }
undo authentication default

View
ISP domain view

Default Level
2: System level

Parameters

hwtacacs-scheme hwtacacs-scheme-name: Specifies an HWTACACS scheme by its name, which is a string of 1 to 32 characters.
local: Performs local authentication.
none: Does not perform any authentication.
radius-scheme radius-scheme-name: Specifies a RADIUS scheme by its name, which is a string of 1 to 32 characters.

Description

Use the authentication default command to configure the default authentication method for all types of users.

Use the undo authentication default command to restore the default.

By default, the authentication method is local.

Note that:

- The RADIUS or HWTACACS scheme specified for the current ISP domain must have been configured.
- The authentication method specified with the authentication default command is for all types of users and has a priority lower than that for a specific access mode.

Related commands: authorization default, accounting default, hwtacacs scheme, radius scheme.

Examples

# Configure the default ISP domain system to use local authentication for all types of users.
<Sysname> system-view
[Sysname] domain system
[Sysname-isp-system] authentication default local

# Configure the default ISP domain system to use RADIUS authentication scheme rd for all types of users and use local authentication as the backup.
<Sysname> system-view
[Sysname] domain system
[Sysname-isp-system] authentication default radius-scheme rd local

authentication lan-access

Syntax

authentication lan-access { local | none | radius-scheme radius-scheme-name [ local ] }
undo authentication lan-access
View

ISP domain view

Default Level

2: System level

Parameters

- **local**: Performs local authentication.
- **none**: Does not perform any authentication.
- **radius-scheme radius-scheme-name**: Specifies a RADIUS scheme by its name, which is a string of 1 to 32 characters.

Description

Use the **authentication lan-access** command to configure the authentication method for LAN access users.

Use the **undo authentication login** command to restore the default.

By default, the default authentication method is used for LAN access users.

Note that the RADIUS scheme specified for the current ISP domain must have been configured.

Related commands: **authentication default, radius scheme**.

Examples

# Configure the default ISP domain system to use local authentication for LAN access users.

```
<Sysname> system-view
[Sysname] domain system
[Sysname-isp-system] authentication lan-access local
```

# Configure the default ISP domain system to use RADIUS authentication scheme rd for LAN access users and use local authentication as the backup.

```
<Sysname> system-view
[Sysname] domain system
[Sysname-isp-system] authentication lan-access radius-scheme rd local
```

**authentication login**

Syntax

```
authentication login { hwtacacs-scheme hwtacacs-scheme-name [local] | local | none | radius-scheme radius-scheme-name [local] }
undo authentication login
```

View

ISP domain view

Default Level

2: System level
Parameters

**hwtacacs-scheme hwtacacs-scheme-name**: Specifies an HWTACACS scheme by its name, which is a string of 1 to 32 characters.

**local**: Performs local authentication.

**none**: Does not perform any authentication.

**radius-scheme radius-scheme-name**: Specifies a RADIUS scheme by its name, which is a string of 1 to 32 characters.

Description

Use the **authentication login** command to configure the authentication method for login users.

Use the **undo authentication login** command to restore the default.

By default, the default authentication method is used for login users.

Note that the RADIUS or HWTACACS scheme specified for the current ISP domain must have been configured.

Related commands: **authentication default, hwtacacs scheme, radius scheme**.

Examples

```
Configure the default ISP domain system to use local authentication for login users.
<Sysname> system-view
[Sysname] domain system
[Sysname-isp-system] authentication login local

Configure the default ISP domain system to use RADIUS authentication scheme rd for login users and use local authentication as the backup.
<Sysname> system-view
[Sysname] domain system
[Sysname-isp-system] authentication login radius-scheme rd local
```

authorization command

**Syntax**

```
authorization command { hwtacacs-scheme hwtacacs-scheme-name [local | none] | local | none }
```

**View**

ISP domain view

**Default Level**

2: System level

**Parameters**

**hwtacacs-scheme hwtacacs-scheme-name**: Specifies an HWTACACS scheme by its name, which is a string of 1 to 32 characters.

**local**: Performs local authorization.
none: Does not perform any authorization. In this case, an authenticated user is automatically authorized with the corresponding default rights.

**Description**

Use the **authorization command** command to configure the authorization method for command line users.

Use the **undo authorization command** command to restore the default.

By default, the default authorization method is used for command line users.

Note that:

- The HWTACACS scheme specified for the current ISP domain must have been configured.
- For local authorization, the local users must have been configured for the command line users on the device, and the level of the commands authorized to a local user must be lower than or equal to that of the local user. Otherwise, local authorization will fail.

Related commands: **authorization default**, **hwtacacs scheme**.

**Examples**

```
Configure the default ISP domain system to use HWTACACS authorization scheme hw for command line users.
<Sysname> system-view
[Sysname] domain system
[Sysname-isp-system] authorization command hwtacacs-scheme hw
```

```
Configure the default ISP domain system to use HWTACACS authorization scheme hw for command line users and use local authorization as the backup.
<Sysname> system-view
[Sysname] domain system
[Sysname-isp-system] authorization command hwtacacs-scheme hw local
```

**authorization default**

**Syntax**

```
authorization default { hwtacacs-scheme hwtacacs-scheme-name [local] | local | none | radius-scheme radius-scheme-name [local] }
undo authorization default
```

**View**

ISP domain view

**Default Level**

2: System level

**Parameters**

- **hwtacacs-scheme hwtacacs-scheme-name**: Specifies an HWTACACS scheme by its name, which is a string of 1 to 32 characters.
- **local**: Performs local authorization.
none: Does not perform any authorization. In this case, an authenticated user is automatically authorized with the corresponding default rights.

radius-scheme radius-scheme-name: Specifies a RADIUS scheme by its name, which is a string of 1 to 32 characters.

Description

Use the authorization default command to configure the authorization method for all types of users. Use the undo authorization default command to restore the default.

By default, the authorization method for all types of users is local.

Note that:

- The RADIUS or HWTACACS scheme specified for the current ISP domain must have been configured.
- The authorization method specified with the authorization default command is for all types of users and has a priority lower than that for a specific access mode.
- RADIUS authorization is special in that it takes effect only when the RADIUS authorization scheme is the same as the RADIUS authentication scheme. If the RADIUS authorization scheme is different from the RADIUS authentication scheme, RADIUS authorization will fail. In addition, if a RADIUS authorization fails, the error message returned to the NAS says that the server is not responding.

Related commands: authentication default, accounting default, hwtacacs scheme, radius scheme.

Examples

# Configure the default ISP domain system to use local authorization for all types of users.
<Sysname> system-view
[Sysname] domain system
[Sysname-isp-system] authorization default local

# Configure the default ISP domain system to use RADIUS authorization scheme rd for all types of users and use local authorization as the backup.
<Sysname> system-view
[Sysname] domain system
[Sysname-isp-system] authorization default radius-scheme rd local

authorization lan-access

Syntax

authorization lan-access { local | none | radius-scheme radius-scheme-name { local | none } }

undo authorization lan-access

View

ISP domain view

Default Level

2: System level
Parameters

local: Performs local authorization.

none: Does not perform any authorization. In this case, an authenticated user is automatically authorized with the default rights.

radius-scheme radius-scheme-name: Specifies a RADIUS scheme by its name, which is a string of 1 to 32 characters.

Description

Use the authorization lan-access command to configure the authorization method for LAN access users.

Use the undo authorization lan-access command to restore the default.

By default, the default authorization method is used for LAN access users.

Note that:

- The RADIUS scheme specified for the current ISP domain must have been configured.
- RADIUS authorization is special in that it takes effect only when the RADIUS authorization scheme is the same as the RADIUS authentication scheme. If the RADIUS authorization scheme is different from the RADIUS authentication scheme, RADIUS authorization will fail.

Related commands: authorization default, radius scheme.

Examples

# Configure the default ISP domain system to use local authorization for LAN access users.
<Sysname> system-view
[Sysname] domain system
[Sysname-isp-system] authorization lan-access local

# Configure the default ISP domain system to use RADIUS authorization scheme rd for LAN access users and use local authorization as the backup.
<Sysname> system-view
[Sysname] domain system
[Sysname-isp-system] authorization lan-access radius-scheme rd local

authorization login

Syntax

authorization login { hwtacacs-scheme hwtacacs-scheme-name [ local ] | local | none | radius-scheme radius-scheme-name [ local ] }

undo authorization login

View

ISP domain view

Default Level

2: System level
Parameters

**hwtacacs-scheme hwtacacs-scheme-name**: Specifies an HWTACACS scheme by its name, which is a string of 1 to 32 characters.

**local**: Performs local authorization.

**none**: Does not perform any authorization. In this case, an authenticated user is automatically authorized with the default rights.

**radius-scheme radius-scheme-name**: Specifies a RADIUS scheme by its name, which is a string of 1 to 32 characters.

Description

Use the **authorization login** command to configure the authorization method for login users.

Use the **undo authorization login** command to restore the default.

By default, the default authorization method is used for login users.

Note that:
- The RADIUS, HWTACACS, or LDAP scheme specified for the current ISP domain must have been configured.
- RADIUS authorization is special in that it takes effect only when the RADIUS authorization scheme is the same as the RADIUS authentication scheme. If the RADIUS authorization scheme is different from the RADIUS authentication scheme, RADIUS authorization will fail.

Related commands: **authorization default**, **hwtacacs scheme**, **radius scheme**.

Examples

# Configure the default ISP domain system to use local authorization for login users.

```plaintext
<Sysname> system-view
[Sysname] domain system
[Sysname-isp-system] authorization login local
```

# Configure the default ISP domain system to use RADIUS authorization scheme rd for login users and use local authorization as the backup.

```plaintext
<Sysname> system-view
[Sysname] domain system
[Sysname-isp-system] authorization login radius-scheme rd local
```

authorization-attribute

**Syntax**

```plaintext
authorization-attribute { acl acl-number | callback-number callback-number | idle-cut minute | level level | user-profile profile-name | vlan vlan-id | work-directory directory-name } *
undo authorization-attribute { acl | callback-number | idle-cut | level | user-profile | vlan | work-directory } *
```

**View**

Local user view, user group view
Default Level

3: Manage level

Parameters

acl: Specifies the authorized ACL of the local user(s).

acl-number: Authorized ACL for the local user(s), in the range 2000 to 5999.

callback-number: Specifies the authorization PPP callback number of the local user(s).

callback-number: Authorization PPP callback number for the local user(s), a case-sensitive string of 1 to 64 characters.

idle-cut: Specifies the idle cut function for the local user(s). With the idle cut function enabled, an online user whose idle period exceeds the specified idle time will be logged out.

minute: Idle time allowed, in the range 1 to 120 minutes.

level: Specifies the level of the local user(s).

level: Level of the local user(s), which can be 0 for visit level, 1 for monitor level, 2 for system level, and 3 for manage level. A smaller number means a lower level. The default is 0.

user-profile: Specifies the authorization user profile of the local user(s).

profile-name: Name of the authorization user profile for the local user(s), a case-sensitive string of 1 to 32 characters. It can consist of English letters, digits, and underlines and must start with an English letter.

vlan: Specifies the authorized VLAN of the local user(s).

vlan-id: Authorized VLAN for the local user(s), in the range 1 to 4094.

work-directory: Specifies the authorized work directory of the local user(s), if the user or users are authorized the FTP or SFTP service type.

directory-name: Authorized work directory, a case-insensitive string of 1 to 135 characters. This directory must already exist.

Description

Use the authorization-attribute command to configure authorization attributes for the local user or user group. After the local user or a local user of the user group passes authentication, the device will assign these attributes to the user.

Use the undo authorization-attribute command to remove authorization attributes.

By default, no authorization attribute is configured for a local user or user group.

Note that:

- Every configurable authorization attribute has its definite application environments and purposes. However, the assignment of local user authorization attributes does not take the service type into account. Therefore, when configuring authorization attributes for a local user, consider what attributes are needed.
- Authorization attributes configured for a user group are effective on all local users of the group.
- An authorization attribute configured in local user view takes precedence over the same attribute configured in user group view.
- If you specify to perform no authentication or perform password authentication, the levels of commands that a user can access after login depends on the level of the user interface. For information about user interface login authentication method, refer to the authentication-mode.
command in *Login Commands* of the *System Volume*. If the authentication method requires users to provide usernames and passwords, the levels of commands that a user can access after login depends on the level of the user. For an SSH user authenticated with an RSA public key, available commands depend on the level specified on the user interface.

- If you remove the specified work directory from the file system, the FTP/SFTP user(s) will not be able to access the directory.
- If the specified work directory carries slot information, the FTP/SFTP user(s) will not be able to access the directory after a switchover occurs. Therefore, specifying slot information for the work directory is not recommended.

**Examples**

```
Configure the authorized VLAN of user group abc as VLAN 3.
<Sysname> system-view
<Sysname> user-group abc
<Sysname-ugroup-abc> authorization-attribute vlan 3
```

**bind-attribute**

**Syntax**

```
bind-attribute { call-number call-number [: subcall-number] | ip ip-address | location port
slot-number subslot-number port-number | mac mac-address | vlan vlan-id } *
undo bind-attribute { call-number | ip | location | mac | vlan } *
```

**View**

Local user view

**Default Level**

3: Manage level

**Parameters**

- **call-number call-number**: Specifies a calling number for ISDN user authentication. The call-number argument is a string of 1 to 64 characters.
- **subcall-number**: Specifies the sub-calling number. The total length of the calling number and the sub-calling number cannot be more than 62 characters.
- **ip ip-address**: Specifies the IP address of the user.
- **location**: Specifies the port binding attribute of the user.
- **port slot-number subslot-number port-number**: Specifies the port to which the user is bound. The slot-number argument is in the range 0 to 15, the subslot-number argument is in the range 0 to 15, and the port-number argument is in the range 0 to 255. Only the numbers make sense here; port types are not taken into account.
- **mac mac-address**: Specifies the MAC address of the user in the format of H-H-H.
- **vlan vlan-id**: Specifies the VLAN to which the user belongs. The vlan-id argument is in the range 1 to 4094.

**Description**

Use the **bind-attribute** command to configure binding attributes for a local user.
Use the **undo bind-attribute** command to remove binding attributes of a local user.

By default, no binding attribute is configured for a local user.

Note that:

- Binding attributes are checked upon authentication of a local user. If the binding attributes of a local user do not match the configured ones, the checking will fail and the user will fail the authentication as a result. In addition, such binding attribute checking does not take the service types of the users into account. That is, a configured binding attribute is effective on all types of users. Therefore, be cautious when deciding which binding attributes should be configured for which type of local users.

- The **bind-attribute ip** command applies only when the authentication method (802.1X, for example) supports IP address upload. If you configure the command when the authentication method (MAC address authentication, for example) does not support IP address upload, local authentication will fail.

- The **bind-attribute mac** command applies to only LAN users, for example, 802.1X users. If you configure it for other types of users, such as FTP or Telnet users, local authentication of the users will fail.

### Examples

```
Configure the bound IP of local user abc as 3.3.3.3.
<Sysname> system-view
[Sysname] local-user abc
[Sysname-luser-abc] bind-attribute ip 3.3.3.3
```

**cut connection**

**Syntax**

```
cut connection { access-type { dot1x | mac-authentication } | all | domain isp-name | interface interface-type interface-number | ip ip-address | mac mac-address | ucibindex ucib-index | user-name user-name | vlan vlan-id } [slot slot-number]
```

**View**

System view

**Default Level**

2: System level

**Parameters**

- **access-type**: Specifies user connections of an access mode.
  - **dot1x**: Specifies 802.1x authentication user connections.
  - **mac-authentication**: Specifies MAC authentication user connections.

- **all**: Specifies all user connections.

- **domain isp-name**: Specifies all user connections of an ISP domain. The *isp-name* argument refers to the name of an existing ISP domain and is a string of 1 to 24 characters.

- **interface interface-type interface-number**: Specifies all user connections of an interface.

- **ip ip-address**: Specifies a user connection by IP address.
**mac** *mac-address*: Specifies a user connection by MAC address. The MAC address must be in the format of H-H-H.

**ucib-index** *ucib-index*: Specifies a user connection by connection index. The value ranges from 0 to 4294967295.

**user-name** *user-name*: Specifies a user connection by username. The *user-name* argument is a case-sensitive string of 1 to 80 characters and must contain the domain name. If you enter a username without any domain name, the system assumes that the default domain name is used for the username.

**slot** *slot-number*: Specifies the connections on a specified member device in an IRF. The *slot-number* argument indicates the member device ID.

**Description**

Use the **cut connection** command to tear down the specified connections forcibly.

At present, this command applies to only LAN access user connections.

Related commands: **display connection**, **service-type**.

**Examples**

```bash
Tear down all connections in ISP domain aabbcc.net.
<Sysname> system-view
[Sysname] cut connection domain aabbcc.net
```

**display connection**

**Syntax**

```
display connection [access-type { dot1x | mac-authentication } | domain isp-name | interface interface-type interface-number | ip ip-address | mac mac-address | ucibindex ucib-index | user-name user-name | vlan vlan-id] [slot slot-number]
```

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

- **access-type**: Specifies user connections of an access mode.
  - **dot1x**: Specifies 802.1x authentication user connections.
  - **mac-authentication**: Specifies MAC authentication user connections.
- **domain isp-name**: Specifies all user connections of an ISP domain. The *isp-name* argument refers to the name of an existing ISP domain and is a case-insensitive string of 1 to 24 characters.
- **interface interface-type interface-number**: Specifies all user connections of an interface.
- **ip ip-address**: Specifies a user connection by IP address.
- **mac mac-address**: Specifies a user connection by MAC address. The MAC address must be in the format of H-H-H.
ucibindex ucib-index: Specifies all user connections using the specified connection index. The value ranges from 0 to 4294967295.

user-name user-name: Specifies all user connections using the specified username. The user-name argument is a case-sensitive string of 1 to 80 characters and must contain the domain name. If you enter a username without any domain name, the system assumes that the default domain name is used for the username.

slot slot-number: Specifies the connections on a specified member device in an IRF. The slot-number argument indicates the member device ID.

Description

Use the display connection command to display information about specified or all AAA user connections.

Note that:
- With no parameter specified, the command displays brief information about all AAA user connections.
- If you specify the ucibindex ucib-index combination, the command displays detailed information; otherwise, the command displays brief information.
- This command does not apply to FTP user connections.

Related commands: cut connection.

Examples

# Display information about all AAA user connections.
<Sysname> display connection

Index=1 ,Username=telnet@system
IP=10.0.0.1
Total 1 connection(s) matched.

Table 1-1 display connection command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>Index number</td>
</tr>
<tr>
<td>Username</td>
<td>Username of the connection, in the format username@domain</td>
</tr>
<tr>
<td>IP</td>
<td>IP address of the user</td>
</tr>
<tr>
<td>Total 1 connection(s) matched.</td>
<td>Total number of user connections</td>
</tr>
</tbody>
</table>

display domain

Syntax

display domain [ isp-name ]

View

Any view
Default Level

1: Monitor level

Parameters

isp-name: Name of an existing ISP domain, a string of 1 to 24 characters.

Description

Use the display domain command to display the configuration information of a specified ISP domain or all ISP domains.

Related commands: access-limit enable, domain, state.

Examples

# Display the configuration information of all ISP domains.
<Sysname> display domain

0 Domain = system
    State = Active
    Access-limit = Disable
    Accounting method = Required
    Default authentication scheme = local
    Default authorization scheme = local
    Default accounting scheme = local
    Domain User Template:
    Idle-cut = Disabled
    Self-service = Disabled

1 Domain = aabbcc
    State = Active
    Access-limit = Disable
    Accounting method = Required
    Default authentication scheme = local
    Default authorization scheme = local
    Default accounting scheme = local
    Lan-access authentication scheme = radius-test, local
    Lan-access authorization scheme = hwtacacs-hw, local
    Lan-access accounting scheme = local
    Domain User Template:
    Idle-cut = Disabled
    Self-service = Disabled

Default Domain Name: system
Total 2 domain(s)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain</td>
<td>Domain name</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------------------</td>
<td>------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>State</td>
<td>Status of the domain (active or block)</td>
</tr>
<tr>
<td>Access-limit</td>
<td>Limit on the number of user connections</td>
</tr>
<tr>
<td>Accounting method</td>
<td>Accounting method (either required or optional)</td>
</tr>
<tr>
<td>Default authentication scheme</td>
<td>Default authentication method</td>
</tr>
<tr>
<td>Default authorization scheme</td>
<td>Default authorization method</td>
</tr>
<tr>
<td>Default accounting scheme</td>
<td>Default accounting method</td>
</tr>
<tr>
<td>Lan-access authentication scheme</td>
<td>Authentication method for LAN users</td>
</tr>
<tr>
<td>Lan-access authorization scheme</td>
<td>Authentication method for LAN users</td>
</tr>
<tr>
<td>Lan-access accounting scheme</td>
<td>Accounting method for LAN users</td>
</tr>
<tr>
<td>Domain User Template</td>
<td>Template for users in the domain</td>
</tr>
<tr>
<td>Idle-cut</td>
<td>Whether idle cut is enabled</td>
</tr>
<tr>
<td>Self-service</td>
<td>Whether self service is enabled</td>
</tr>
<tr>
<td>Default Domain Name</td>
<td>Default ISP domain name</td>
</tr>
<tr>
<td>Total 2 domain(s).</td>
<td>2 ISP domains in total</td>
</tr>
</tbody>
</table>

display local-user

Syntax

display local-user [ idle-cut { disable | enable } ] [ service-type { ftp | lan-access | ssh | telnet | terminal } ] [ state { active | block } ] [ user-name user-name [ vlan vlan-id ] [ slot slot-number ] ]

View

Any view

Default Level

1: Monitor level

Parameters

idle-cut { disable | enable }: Specifies local users with the idle cut function disabled or enabled.

service-type: Specifies the local users of a type.

- ftp refers to users using FTP.
- lan-access refers to users accessing the network through an Ethernet, such as 802.1X users.
- ssh refers to users using SSH.
- telnet refers to users using Telnet.
- terminal refers to users logging in through the console port or AUX port.
- state { active | block }: Specifies all local users in the state of active or block. A local user in the state of active can access network services, while a local user in the state of blocked cannot.

user-name user-name: Specifies all local users using the specified username. The username is a case-sensitive string of 1 to 55 characters and does not contain the domain name.

vlan vlan-id: Specifies all local users in a VLAN. The VLAN ID ranges from 1 to 4094.
**slot slot-number**: Specifies all local users on a specified member device in an IRF. The *slot-number* argument indicates the member device ID.

**Description**

Use the `display local-user` command to display information about specified or all local users.

**Related commands:** `local-user`.

**Examples**

```
Display the information of local user bbb on the specified Unit ID.
<Sysname> display local-user user-name bbb slot 1
```

Slot: 1

The contents of local user bbb:

- **State**: Active
- **ServiceType**: ftp
- **Access-limit**: Enable  Current AccessNum: 0
- **Max AccessNum**: 300
- **User-group**: system

**Bind attributes:**
- **IP address**: 1.2.3.4
- **Bind location**: 0/4/1 (SLOT/SUBSLOT/PORT)
- **MAC address**: 0001-0002-0003
- **Vlan ID**: 100

**Authorization attributes:**
- **Idle TimeOut**: 10(min)
- **Work Directory**: flash:/
- **User Privilege**: 3
- **Acl ID**: 2000
- **Vlan ID**: 100
- **User Profile**: prof1
- **Expiration date**: 12:12:12-2018/09/16

Total 1 local user(s) matched.

**Table 1-3 display local-user command output description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot</td>
<td>Slot number of the card</td>
</tr>
<tr>
<td>State</td>
<td>Status of the local user, Active or Block</td>
</tr>
<tr>
<td>ServiceType</td>
<td>Service types that the local user can use, including FTP, LAN, SSH, Telnet, and terminal.</td>
</tr>
<tr>
<td>Access-limit</td>
<td>Limit on the number of user connections using the current username</td>
</tr>
<tr>
<td>Current AccessNum</td>
<td>Current number of user connections using the current username, either for all cards or for a specified card.</td>
</tr>
<tr>
<td>Max AccessNum</td>
<td>Maximum number of user connections using the current username</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>VLAN to which the user is bound</td>
</tr>
<tr>
<td>Calling Number</td>
<td>Calling number of the ISDN user</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------------------------------------------------------</td>
</tr>
<tr>
<td>Authorization attributes</td>
<td>Authorization attributes of the local user</td>
</tr>
<tr>
<td>Idle TimeOut</td>
<td>Idle threshold of the user, in minutes.</td>
</tr>
<tr>
<td>Callback-number</td>
<td>Authorized PPP callback number of the local user</td>
</tr>
<tr>
<td>Work Directory</td>
<td>Directory accessible to the FTP user</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>Authorized VLAN of the local user</td>
</tr>
<tr>
<td>Expiration date</td>
<td>Expiration time of the local user</td>
</tr>
</tbody>
</table>

**display user-group**

**Syntax**

```
display user-group [group-name]
```

**View**

Any view

**Default Level**

2: System level

**Parameters**

- `group-name`: User group name, a case-insensitive string of 1 to 32 characters.

**Description**

Use the `display user-group` command to display configuration information about one or all user groups.

**Related commands:** `user-group`.

**Examples**

```
Display configuration information about user group abc.
<Sysname> display user-group abc
The contents of user group abc:
Authorization attributes:
 Idle-cut: 120(min)
 Work Directory: FLASH:
 Level: 1
 Acl Number: 2000
 Vlan ID: 1
 User-Profile: 1
 Callback-number: 1
Total 1 user group(s) matched.
```
domain

Syntax

   domain isp-name
   undo domain isp-name

View

   System view

Default Level

   3: Manage level

Parameters

   isp-name: ISP domain name, a case-insensitive string of 1 to 24 characters that cannot contain any forward slash (/), colon (:), asterisk (*), question mark (?), less-than sign (<), greater-than sign (>), or @.

Description

   Use the domain isp-name command to create an ISP domain and/or enter ISP domain view.
   Use the undo domain command to remove an ISP domain.
   Note that:
   ● If the specified ISP domain does not exist, the system will create a new ISP domain. All the ISP domains are in the active state when they are created.
   ● There is a default domain in the system, which cannot be deleted and can only be changed. A user providing no ISP domain name is considered in the default domain. For details about the default domain, refer to command domain default enable.

   Related commands: state, display domain.

Examples

   # Create ISP domain aabbcc.net, and enter ISP domain view.
   <Sysname> system-view
   [Sysname] domain aabbcc.net
   [Sysname-isp-aabbcc.net]

domain default enable

Syntax

   domain default enable isp-name
   undo domain default enable

View

   System view

Default Level

   3: Manage level
Parameters

isp-name: Name of the default ISP domain, a string of 1 to 24 characters.

Description

Use the domain default enable command to configure the system default ISP domain.
Use the undo domain default enable command to restore the default.
By default, there is a default ISP domain named system.

Note that:
- There must be only one default ISP domain.
- The specified domain must have existed; otherwise, users without any domain name carried in the user name will fail to be authenticated.
- The default ISP domain configured cannot be deleted unless you configure it as a non-default domain again.

Related commands: state, display domain.

Examples

# Create a new ISP domain named aabbcc.net, and configure it as the default ISP domain.
<Sysname> system-view
[Sysname] domain aabbcc.net
[Sysname-isp-aabbcc.net] quit
[Sysname] domain default enable aabbcc.net

expiration-date

Syntax

expiration-date time
undo expiration-date

View

Local user view

Default Level

3: Manage level

Parameters

time: Expiration time of the local user, in the format HH:MM:SS-MM/DD/YYYY or HH:MM:SS-YYYY/MM/DD. HH:MM:SS indicates the time, where HH ranges from 0 to 23, MM and SS range from 0 to 59. YYYY/MM/DD indicates the date, where YYYY ranges from 2000 to 2035, MM ranges from 1 to 12, and DD depends on the month. Except for the zeros in 00:00:00, leading zeros can be omitted. For example, 2:2:0-2008/2/2 equals to 02:02:00-2008/02/02.

Description

Use the expiration-date command to configure the expiration time of a local user.
Use the undo expiration-date command to remove the configuration.
By default, a local user has no expiration time and no time validity checking is performed.
When some users need to access the network temporarily, you can create a guest account and specify an expiration time for the account. When a user uses the guest account for local authentication and passes the authentication, the access device checks whether the current system time is within the expiration time. If so, it permits the user to access the network. Otherwise, it denies the access request of the user.

Note that if you change the system time manually or the system time is changed in any other way, the access device uses the new system time for time validity checking.

**Examples**

# Configure the expiration time of user abc to be 12:10:20 on May 31, 2008.

```bash
<Sysname> system-view
[Sysname] local-user abc
[Sysname-luser-abc] expiration-date 12:10:20-2008/05/31
```

**group**

**Syntax**

```
group group-name
undo group
```

**View**

Local user view

**Default Level**

3: Manage level

**Parameters**

- `group-name`: User group name, a case-insensitive string of 1 to 32 characters.

**Description**

Use the `group` command to specify the user group for the local user to belong to.

Use the `undo group` command to restore the default.

By default, a local user belongs to user group `system`, which is automatically created by the device.

**Examples**

# Specify that local user 111 belongs to user group abc.

```bash
<Sysname> system-view
[Sysname] local-user 111
[Sysname-luser-111] group abc
```

**idle-cut enable**

**Syntax**

```
idle-cut enable minute
undo idle-cut enable
```
**View**

ISP domain view

**Default Level**

2: System level

**Parameters**

*minute*: Maximum idle duration allowed, in the range 1 to 120 minutes.

**Description**

Use the `idle-cut enable` command to enable the idle cut function and set the maximum idle duration allowed. With the idle cut function enabled for a domain, the system will log out any user in the domain who has been idle for a period greater than the maximum idle duration.

Use the `undo idle-cut` command to restore the default.

By default, the function is disabled.

Related commands: `domain`.

**Examples**

```
Enable the idle cut function and set the idle threshold to 50 minutes for ISP domain aabbcc.net.
<Sysname> system-view
[Sysname] domain aabbcc.net
[Sysname-isp-aabbcc.net] idle-cut enable 50
```

**local-user**

**Syntax**

```
local-user user-name
undo local-user { user-name | all service-type { ftp | lan-access | ssh | telnet | terminal } }
```

**View**

System view

**Default Level**

3: Manage level

**Parameters**

*user-name*: Name for the local user, a case-sensitive string of 1 to 55 characters that does not contain the domain name. It cannot contain any backward slash (\), forward slash (/), vertical line (|), colon (:), asterisk (*), question mark (?), less-than sign (<), greater-than sign (>), and the @ sign and cannot be a, al, or all.

*all*: Specifies all users.

*service-type*: Specifies the users of a type.
- *ftp* refers to users using FTP.
- *lan-access* refers to users accessing the network through an Ethernet, such as 802.1X users.
- *ssh* refers to users using SSH.
• telnet refers to users using Telnet.
• terminal refers to users logging in through the console port or AUX port.

Description

Use the local-user command to add a local user and enter local user view.
Use the undo local-user command to remove the specified local users.
By default, no local user is configured.
Related commands: display local-user, service-type.

Examples

# Add a local user named user1.
<Sysname> system-view
[Sysname] local-user user1
[Sysname-luser-user1]

local-user password-display-mode

Syntax

local-user password-display-mode { auto | cipher-force }
undo local-user password-display-mode

View

System view

Default Level

2: System level

Parameters

auto: Displays the password of a user based on the configuration of the user by using the password command.
cipher-force: Displays the passwords of all users in cipher text.

Description

Use the local-user password-display-mode command to set the password display mode for all local users.
Use the undo local-user password-display-mode command to restore the default.
The default mode is auto.
With the cipher-force mode configured:
• A local user password is always displayed in cipher text, regardless of the configuration of the password command.
• If you use the save command to save the configuration, all existing local user passwords will still be displayed in cipher text after the device restarts, even if you restore the display mode to auto.
Related commands: display local-user, password.
Examples

# Specify to display the passwords of all users in cipher text.

```sh
<Sysname> system-view
[Sysname] local-user password-display-mode cipher-force
```

**password**

**Syntax**

```
password { cipher | simple } password
undo password
```

**View**

Local user view

**Default Level**

2: System level

**Parameters**

- **cipher**: Specifies to display the password in cipher text.
- **simple**: Specifies to display the password in simple text.
- **password**: Password for the local user.

- In simple text, it must be a string of 1 to 63 characters that contains no blank space, for example, aabbcc.
- In cipher text, it must be a string of 24 or 88 characters, for example, _{(TT8F)]Y5SQ=^Q`MAF4<1!!.
- With the `simple` keyword, you must specify the password in simple text. With the `cipher` keyword, you can specify the password in either simple or cipher text.

**Description**

Use the `password` command to configure a password for a local user.

Use the `undo password` command to delete the password of a local user.

**Note that:**

- With the `local-user password-display-mode cipher-force` command configured, the password is always displayed in cipher text, regardless of the configuration of the `password` command.
- With the `cipher` keyword specified, a password of up to 16 characters in plain text will be encrypted into a password of 24 characters in cipher text, and a password of 16 to 63 characters in plain text will be encrypted into a password of 88 characters in cipher text. For a password of 24 characters, if the system can decrypt the password, the system treats it as a password in cipher text. Otherwise, the system treats it as a password in plain text.

**Related commands:** `display local-user`.

**Examples**

# Set the password of `user1` to 123456 and specify to display the password in plain text.

```sh
<Sysname> system-view
[Sysname] local-user user1
```
self-service-url enable

Syntax

    self-service-url enable url-string
    undo self-service-url enable

View

ISP domain view

Default Level

2: System level

Parameters

    url-string: URL of the self-service server for changing user password, a string of 1 to 64 characters. It
    must start with http:// and contain no question mark.

Description

Use the self-service-url enable command to enable the self-service server localization function and
specify the URL of the self-service server for changing user password.

Use the undo self-service-url enable command to restore the default.

By default, the function is disabled.

Note that:

- A self-service RADIUS server, for example, iMC, is required for the self-service server localization
  function. With the self-service function, a user can manage and control his or her accounting
  information or card number. A server with self-service software is a self-service server.
- After you configure the self-service-url enable command, a user can locate the self-service
  server by selecting [Service/Change Password] from the 802.1X client. The client software
  automatically launches the default browser, IE or Netscape, and opens the URL page of the
  self-service server for changing the user password. A user can change his or her password
  through the page.
- Only authenticated users can select [Service/Change Password] from the 802.1X client. The
  option is gray and unavailable for unauthenticated users.

Examples

# Enable the self-service server localization function and specify the URL of the self-service server for
changing user password to http://10.153.89.94/selfservice/modPasswd1x.jsp|userName for the default
ISP domain system.

<Sysname> system-view
<Sysname> domain system
[Sysname-isp-system] self-service-url enable
http://10.153.89.94/selfservice/modPasswd1x.jsp|userName
**service-type**

**Syntax**

```
service-type { ftp | lan-access | { ssh | telnet | terminal } * }
undo service-type { ftp | lan-access | { ssh | telnet | terminal } * }
```

**View**

Local user view

**Default Level**

3: Manage level

**Parameters**

- **ftp**: Authorizes the user to use the FTP service. The user can use the root directory of the FTP server by default.
- **lan-access**: Authorizes the user to use the LAN access service. Such users are mainly Ethernet users, for example, 802.1X users.
- **ssh**: Authorizes the user to use the SSH service.
- **telnet**: Authorizes the user to use the Telnet service.
- **terminal**: Authorizes the user to use the terminal service, allowing the user to login from the console port or AUX port.

**Description**

Use the `service-type` command to specify the service types that a user can use.

Use the `undo service-type` command to delete one or all service types configured for a user.

By default, a user is authorized with no service.

**Examples**

```
Authorize user user1 to use the Telnet service.
<Sysname> system-view
[Sysname] local-user user1
[Sysname-luser-user1] service-type telnet
```

**state**

**Syntax**

```
state { active | block }
undo state
```

**View**

ISP domain view, local user view

**Default Level**

2: System level
Parameters

- **active**: Places the current ISP domain or local user in the active state, allowing the users in the current ISP domain or the current local user to request network services.
- **block**: Places the current ISP domain or local user in the blocked state, preventing users in the current ISP domain or the current local user from requesting network services.

Description

Use the `state` command to configure the status of the current ISP domain or local user.

Use the `undo state` command to restore the default.

By default, an ISP domain is active when created. So is a local user.

By blocking an ISP domain, you disable users of the domain that are offline from requesting network services. Note that the online users are not affected.

By blocking a user, you disable the user from requesting network services. No other users are affected.

Related commands: `domain`.

Examples

```plaintext
Place the current ISP domain aabbcc.net to the state of blocked.
<Sysname> system-view
[Sysname] domain aabbcc.net
[Sysname-isp-aabbcc.net] state block

Place the current user user1 to the state of blocked.
<Sysname> system-view
[Sysname] local-user user1
[Sysname-user-user1] state block
```

**user-group**

Syntax

```
user-group group-name
undo user-group group-name
```

View

System view

Default Level

3: Manage level

Parameters

`group-name`: User group name, a case-insensitive string of 1 to 32 characters.

Description

Use the `user-group` command to create a user group and enter its view.

Use the `undo user-group` command to remove a user group.
A user group consists of a group of local users and has a set of local user attributes. You can configure local user attributes for a user group to implement centralized management of user attributes for the local users in the group. Currently, you can configure authorization attributes for a user group.

Note that:

- A user group with one or more local users cannot be removed.
- The default system user group `system` cannot be removed but you can change its configurations.

Related commands: `display user-group`.

**Examples**

# Create a user group named `abc` and enter its view.

```plaintext
<Sysname> system-view
[Sysname] user-group abc
[Sysname-ugroup-abc]
```
RADIUS Configuration Commands

data-flow-format (RADIUS scheme view)

Syntax

```
data-flow-format { data { byte | giga-byte | kilo-byte | mega-byte } | packet { giga-packet |
 kilo-packet | mega-packet | one-packet } } *
undo data-flow-format { data | packet }
```

View

RADIUS scheme view

Default Level

2: System level

Parameters

- **data**: Specifies the unit for data flows, which can be byte, kilobyte, megabyte, or gigabyte.
- **packet**: Specifies the unit for data packets, which can be one-packet, kilo-packet, mega-packet, or giga-packet.

Description

Use the `data-flow-format` command to specify the unit for data flows or packets to be sent to a RADIUS server.

Use the `undo data-flow-format` command to restore the default.

By default, the unit for data flows is **byte** and that for data packets is **one-packet**.

Note that:

- The specified unit of data flows sent to the RADIUS server must be consistent with the traffic statistics unit of the RADIUS server. Otherwise, accounting cannot be performed correctly.
- You can use the commands to change the settings only when no user is using the RADIUS scheme.

Related commands: `display radius scheme`.

Examples

```
Define RADIUS scheme radius1 to send data flows and packets destined for the RADIUS server in kilobytes and kilo-packets.
<Sysname> system-view
[Sysname] radius scheme radius1
[Sysname-radius-radius1] data-flow-format data kilo-byte packet kilo-packet
```
display radius scheme

Syntax

    display radius scheme [ radius-scheme-name ] [ slot slot-number ]

View

    Any view

Default Level

    2: System level

Parameters

    radius-scheme-name: RADIUS scheme name.
    slot slot-number: Specifies the specified member device in an IRF. The slot-number argument indicates the member device ID.

Description

Use the display radius scheme command to display the configuration information of a specified RADIUS scheme or all RADIUS schemes.

Note that:

- If no RADIUS scheme is specified, the command will display the configurations of all RADIUS schemes.
- If no slot number is specified, the command will display the configurations of the RADIUS schemes on only the specified member device.

Related commands: radius scheme.

Examples

# Display the configurations of all RADIUS schemes.

    <Sysname> display radius scheme

    SchemeName : radius1
    Index : 0     Type : extended
    Primary Auth IP : 1.1.1.1    Port : 1812    State : active
    Primary Acct IP : 1.1.1.1    Port : 1813    State : active
    Second Auth IP : 0.0.0.0     Port : 1812    State : block
    Second Acct IP : 0.0.0.0     Port : 1813    State : block
    Auth Server Encryption Key : 123
    Acct Server Encryption Key : Not configured
    Interval for timeout(second) : 3
    Retransmission times for timeout : 3
    Interval for realtime accounting(minute) : 12
    Retransmission times of realtime-accounting packet : 5
    Retransmission times of stop-accounting packet : 500
    Quiet-interval(min) : 5
    Username format : without-domain
    Data flow unit : Byte
Total 1 RADIUS scheme(s)

Table 2-1 display radius scheme command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SchemeName</td>
<td>Name of the RADIUS scheme</td>
</tr>
<tr>
<td>Index</td>
<td>Index number of the RADIUS scheme</td>
</tr>
<tr>
<td>Type</td>
<td>Type of the RADIUS server</td>
</tr>
<tr>
<td>Primary Auth IP/ Port/ State</td>
<td>IP address/access port number/current status of the primary authentication server: (active or block) If there is no primary authentication server specified, the IP address is 0.0.0.0 and the port number is the default. This rule is also applicable to the following three fields.</td>
</tr>
<tr>
<td>Primary Acct IP/ Port/ State</td>
<td>IP address/access port number/current status of the primary accounting server: (active or block)</td>
</tr>
<tr>
<td>Second Auth IP/ Port/ State</td>
<td>IP address/access port number/current status of the secondary authentication server: (active or block)</td>
</tr>
<tr>
<td>Second Acct IP/ Port/ State</td>
<td>IP address/access port number/current status of the secondary accounting server: (active or block)</td>
</tr>
<tr>
<td>Auth Server Encryption Key</td>
<td>Shared key of the authentication server</td>
</tr>
<tr>
<td>Acct Server Encryption Key</td>
<td>Shared key of the accounting server</td>
</tr>
<tr>
<td>Accounting-On packet disable</td>
<td>The accounting-on function is disabled</td>
</tr>
<tr>
<td>send times</td>
<td>Retransmission times of accounting-on packets</td>
</tr>
<tr>
<td>interval</td>
<td>Interval to retransmit accounting-on packets</td>
</tr>
<tr>
<td>Interval for timeout(second)</td>
<td>Timeout time in seconds</td>
</tr>
<tr>
<td>Retransmission times for timeout</td>
<td>Times of retransmission in case of timeout</td>
</tr>
<tr>
<td>Interval for realtime accounting(minute)</td>
<td>Interval for realtime accounting in minutes</td>
</tr>
<tr>
<td>Retransmission times of realtime-accounting packet</td>
<td>Retransmission times of realtime-accounting packet</td>
</tr>
<tr>
<td>Retransmission times of stop-accounting packet</td>
<td>Retransmission times of stop-accounting packet</td>
</tr>
<tr>
<td>Quiet-interval(min)</td>
<td>Quiet interval for the primary server</td>
</tr>
<tr>
<td>Username format</td>
<td>Format of the username</td>
</tr>
<tr>
<td>Data flow unit</td>
<td>Unit of data flows</td>
</tr>
<tr>
<td>Packet unit</td>
<td>Unit of packets</td>
</tr>
<tr>
<td>Total 1 RADIUS scheme(s)</td>
<td>1 RADIUS scheme in total</td>
</tr>
</tbody>
</table>
display radius statistics

Syntax

display radius statistics [ slot slot-number ]

View

Any view

Default Level

2: System level

Parameters

slot slot-number: Specifies the specified member device in an IRF. The slot-number argument indicates the member device ID.

Description

Use the display radius statistics command to display statistics about RADIUS packets.

Related commands: radius scheme.

Examples

# Display statistics about RADIUS packets on the interface board in slot 1.

<Sysname> display radius statistics slot 1
Slot 1:state statistic(total=4096):
   DEAD = 4096     AuthProc = 0        AuthSucc = 0
   AcctStart = 0    RLTSend = 0         RLTWait = 0
   AcctStop = 0     OnLine = 0          Stop = 0
   StateErr = 0

Received and Sent packets statistic:
Sent PKT total = 1547     Received PKT total = 23
Resend Times    Resend total
1        508
2        508
Total     1016

RADIUS received packets statistic:
   Code =  2   Num = 15       Err = 0
   Code =  3   Num = 4        Err = 0
   Code =  5   Num = 4        Err = 0
   Code = 11   Num = 0        Err = 0

Running statistic:
RADIUS received messages statistic:
   Normal auth request     Num = 24       Err = 0        Succ = 24
   EAP auth request        Num = 0        Err = 0        Succ = 0
   Account request         Num = 4        Err = 0        Succ = 4
   Account off request     Num = 503      Err = 0        Succ = 503
   PKT auth timeout        Num = 15       Err = 5         Succ = 10
PKT acct_timeout         Num = 1509     Err = 503      Succ = 1006
Realtime Account timer   Num = 0        Err = 0        Succ = 0
PKT response             Num = 23       Err = 0        Succ = 23
Session ctrl pkt         Num = 0        Err = 0        Succ = 0
Normal author request    Num = 0        Err = 0        Succ = 0
Set policy result        Num = 0        Err = 0        Succ = 0

RADIUS sent messages statistic:
Auth accept              Num = 10
Auth reject              Num = 14
EAP auth replying        Num = 0
Account success          Num = 4
Account failure          Num = 3
Server ctrl req          Num = 0
RecError_MSG_sum = 0
SndMSG_Fail_sum = 0
Timer_Err = 0
Alloc_Mem_Err = 0
State Mismatch = 0
Other_Error = 0

No-response-acct-stop packet = 1
Discarded No-response-acct-stop packet for buffer overflow = 0

Table 2-2 display radius statistics command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>slot</td>
<td>The specified member device in an IRF. The slot indicates the member device ID.</td>
</tr>
<tr>
<td>state statistic</td>
<td>state statistics</td>
</tr>
<tr>
<td>DEAD</td>
<td>Number of idle users</td>
</tr>
<tr>
<td>AuthProc</td>
<td>Number of users waiting for authentication</td>
</tr>
<tr>
<td>AuthSucc</td>
<td>Number of users who have passed authentication</td>
</tr>
<tr>
<td>AcctStart</td>
<td>Number of users for whom accounting has been started</td>
</tr>
<tr>
<td>RLTSend</td>
<td>Number of users for whom the system sends real-time accounting packets</td>
</tr>
<tr>
<td>RLTWait</td>
<td>Number of users waiting for real-time accounting</td>
</tr>
<tr>
<td>AcctStop</td>
<td>Number of users in the state of accounting waiting stopped</td>
</tr>
<tr>
<td>OnLine</td>
<td>Number of online users</td>
</tr>
<tr>
<td>Stop</td>
<td>Number of users in the state of stop</td>
</tr>
<tr>
<td>StateErr</td>
<td>Number of users with unknown errors</td>
</tr>
<tr>
<td>Received and Sent packets statistic</td>
<td>Statistics of packets received and sent</td>
</tr>
<tr>
<td>Sent PKT total</td>
<td>Number of packets sent</td>
</tr>
<tr>
<td>Received PKT total</td>
<td>Number of packets received</td>
</tr>
<tr>
<td>Resend Times</td>
<td>Number of retransmission attempts</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Resend total</td>
<td>Number of packets retransmitted</td>
</tr>
<tr>
<td>Total</td>
<td>Total number of packets retransmitted</td>
</tr>
<tr>
<td>RADIUS received packets statistic</td>
<td>Statistics of packets received by RADIUS</td>
</tr>
<tr>
<td>Code</td>
<td>Packet type</td>
</tr>
<tr>
<td>Num</td>
<td>Total number of packets</td>
</tr>
<tr>
<td>Err</td>
<td>Number of error packets</td>
</tr>
<tr>
<td>Running statistic</td>
<td>RADIUS operation message statistics</td>
</tr>
<tr>
<td>RADIUS received messages statistic</td>
<td>Number of messages received by RADIUS</td>
</tr>
<tr>
<td>Normal auth request</td>
<td>Number of normal authentication requests</td>
</tr>
<tr>
<td>EAP auth request</td>
<td>Number of EAP authentication requests</td>
</tr>
<tr>
<td>Account request</td>
<td>Number of accounting requests</td>
</tr>
<tr>
<td>Account off request</td>
<td>Number of stop-accounting requests</td>
</tr>
<tr>
<td>PKT auth timeout</td>
<td>Number of authentication timeout messages</td>
</tr>
<tr>
<td>PKT acct_timeout</td>
<td>Number of accounting timeout messages</td>
</tr>
<tr>
<td>Realtime Account timer</td>
<td>Number of realtime accounting requests</td>
</tr>
<tr>
<td>PKT response</td>
<td>Number of responses</td>
</tr>
<tr>
<td>Session ctrl pkt</td>
<td>Number of session control messages</td>
</tr>
<tr>
<td>Normal author request</td>
<td>Number of normal authorization requests</td>
</tr>
<tr>
<td>Succ</td>
<td>Number of acknowledgement messages</td>
</tr>
<tr>
<td>Set policy result</td>
<td>Number of responses to the Set policy packets</td>
</tr>
<tr>
<td>RADIUS sent messages statistic</td>
<td>Number of messages that have been sent by RADIUS</td>
</tr>
<tr>
<td>Auth accept</td>
<td>Number of accepted authentication packets</td>
</tr>
<tr>
<td>Auth reject</td>
<td>Number of rejected authentication packets</td>
</tr>
<tr>
<td>EAP auth replying</td>
<td>Number of replying packets of EAP authentication</td>
</tr>
<tr>
<td>Account success</td>
<td>Number of accounting succeeded packets</td>
</tr>
<tr>
<td>Account failure</td>
<td>Number of accounting failed packets</td>
</tr>
<tr>
<td>Server ctrl req</td>
<td>Number of server control requests</td>
</tr>
<tr>
<td>RecError_MSG_sum</td>
<td>Number of received packets in error</td>
</tr>
<tr>
<td>SndMSG_Fail_sum</td>
<td>Number of packets that failed to be sent out</td>
</tr>
<tr>
<td>Timer_Err</td>
<td>Number of timer errors</td>
</tr>
<tr>
<td>Alloc_Mem_Err</td>
<td>Number of memory errors</td>
</tr>
<tr>
<td>State Mismatch</td>
<td>Number of errors for mismatching status</td>
</tr>
<tr>
<td>Other_Error</td>
<td>Number of errors of other types</td>
</tr>
<tr>
<td>No-response-acct-stop packet</td>
<td>Number of times that no response was received for stop-accounting packets</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>Discarded No-response-acct-stop packet for buffer overflow</td>
<td>Number of stop-accounting packets that were buffered but then discarded due to full memory</td>
</tr>
</tbody>
</table>

**display stop-accounting-buffer**

**Syntax**

```plaintext
display stop-accounting-buffer { radius-scheme radius-scheme-name | session-id session-id | time-range start-time stop-time | user-name user-name } [slot slot-number]
```

**View**

Any view

**Default Level**

2: System level

**Parameters**

- `radius-scheme radius-scheme-name`: Specifies a RADIUS scheme by its name, which is a string of 1 to 32 characters.
- `session-id session-id`: Specifies a session by its ID. The ID is a string of 1 to 50 characters.
- `time-range start-time stop-time`: Specifies a time range by its start time and end time in the format of `hh:mm:ss-mm/dd/yyyy` or `hh:mm:ss-yyyy/mm/dd`.
- `user-name user-name`: Specifies a user by the user name, which is a case-sensitive string of 1 to 80 characters. Whether the `user-name` argument should include the domain name depends on the setting by the `user-name-format` command for the RADIUS scheme.
- `slot slot-number`: Specifies the specified member device in an IRF. The `slot-number` argument indicates the member device ID.

**Description**

Use the `display stop-accounting-buffer` command to display information about the stop-accounting requests buffered in the device by scheme, session ID, time range, user name, or slot.

Note that if receiving no response after sending a stop-accounting request to a RADIUS server, the device buffers the request and retransmits it. You can use the `retry stop-accounting` command to set the number of allowed transmission attempts.


**Examples**

```plaintext
Display information about the buffered stop-accounting requests from 0:0:0 to 23:59:59 on August 31, 2006.
Total 0 record(s) Matched
```
key (RADIUS scheme view)

Syntax

key { accounting | authentication } string
undo key { accounting | authentication }

View

RADIUS scheme view

Default Level

2: System level

Parameters

accounting: Sets the shared key for RADIUS accounting packets.

authentication: Sets the shared key for RADIUS authentication/authorization packets.

string: Shared key, a case-sensitive string of 1 to 64 characters.

Description

Use the key command to set the shared key for RADIUS authentication/authorization or accounting packets.

Use the undo key command to restore the default.

By default, no shared key is configured.

Note that:

- You must ensure that the same shared key is set on the device and the RADIUS server.
- If authentication/authorization and accounting are performed on two servers with different shared keys, you must set separate shared key for each on the device.
- You can use the commands to change the settings only when no user is using the RADIUS scheme.

Related commands: display radius scheme.

Examples

# Set the shared key for authentication/authorization packets to hello for RADIUS scheme radius1.
<Sysname> system-view
[Sysname] radius scheme radius1
[Sysname-radius-radius1] key authentication hello

# Set the shared key for accounting packets to ok for RADIUS scheme radius1.
<Sysname> system-view
[Sysname] radius scheme radius1
[Sysname-radius-radius1] key accounting ok

nas-ip (RADIUS scheme view)

Syntax

nas-ip ip-address
undo nas-ip

View

RADIUS scheme view

Default Level

2: System level

Parameters

ip-address: IP address in dotted decimal notation. It must be an address of the device and cannot be all 0s address, all 1s address, a class D address, a class E address or a loopback address.

Description

Use the nas-ip command to set the IP address for the device to use as the source address of the RADIUS packets to be sent to the server.

Use the undo nas-ip command to remove the configuration.

By default, the source IP address of a packet sent to the server is that configured by the radius nas-ip command in system view.

Note that:

- Specifying a source address for the RADIUS packets to be sent to the server can avoid the situation where the packets sent back by the RADIUS server cannot reach the device as the result of a physical interface failure. The address of a loopback interface is recommended.
- The nas-ip command in RADIUS scheme view is only for the current RADIUS scheme, while the radius nas-ip command in system view is for all RADIUS schemes. However, the nas-ip command in RADIUS scheme view overwrites the configuration of the radius nas-ip command.
- You can use the commands to change the settings only when no user is using the RADIUS scheme.

Related commands: radius nas-ip.

Examples

# Set the IP address for the device to use as the source address of the RADIUS packets to 10.1.1.1.

<Sysname> system-view
<Sysname-radius-test1> radius scheme test1
<Sysname-radius-test1> nas-ip 10.1.1.1

primary accounting (RADIUS scheme view)

Syntax

primary accounting ip-address [ port-number ]

undo primary accounting

View

RADIUS scheme view

Default Level

2: System level
Parameters

- **ip-address**: IP address of the primary accounting server.
- **port-number**: UDP port number of the primary accounting server, which ranges from 1 to 65535 and defaults to 1813.

Description

Use the `primary accounting` command to specify the primary RADIUS accounting server.

Use the `undo primary accounting` command to remove the configuration.

By default, no primary RADIUS accounting server is specified.

Note that:
- The IP addresses of the primary and secondary accounting servers cannot be the same. Otherwise, the configuration fails.
- The RADIUS service port configured on the device and that of the RADIUS server must be consistent.
- You can use the commands to change the settings only when no user is using the RADIUS scheme.

Related commands: `key`, `radius scheme`, `state`.

Examples

# Specify the IP address of the primary accounting server for RADIUS scheme `radius1` as 10.110.1.2 and the UDP port of the server as 1813.

```plaintext
<Sysname> system-view
<Sysname-radius-radius1> primary accounting 10.110.1.2 1813
```

primary authentication (RADIUS scheme view)

Syntax

- `primary authentication ip-address [port-number]`
- `undo primary authentication`

View

RADIUS scheme view

Default Level

2: System level

Parameters

- **ip-address**: IP address of the primary authentication/authorization server.
- **port-number**: UDP port number of the primary authentication/authorization server, which ranges from 1 to 65535 and defaults to 1812.

Description

Use the `primary authentication` command to specify the primary RADIUS authentication/authorization server.
Use the `undo primary authentication` command to remove the configuration.

By default, no primary RADIUS authentication/authorization server is specified.

Note that:

- After creating a RADIUS scheme, you are supposed to configure the IP address and UDP port of each RADIUS server (primary/secondary authentication/authorization or accounting server). Ensure that at least one authentication/authorization server and one accounting server are configured, and that the RADIUS service port settings on the device are consistent with the port settings on the RADIUS servers.
- The IP addresses of the primary and secondary authentication/authorization servers cannot be the same. Otherwise, the configuration fails.
- You can use the commands to change the settings only when no user is using the RADIUS scheme.

Related commands: `key`, `radius scheme`, `state`.

**Examples**

```
Specify the primary authentication/authorization server for RADIUS scheme radius1.
<Sysname> system-view
<Sysname> radius scheme radius1
<Sysname-radius-radius1> primary authentication 10.110.1.1 1812
```

### radius client

**Syntax**

```
radius client enable
undo radius client
```

**View**

System view

**Default Level**

2: System level

**Parameters**

None

**Description**

Use the `radius client enable` command to enable the listening port of the RADIUS client.

Use the `undo radius client` command to disable the listening port of the RADIUS client.

By default, the listening port is enabled.

Note that when the listening port of the RADIUS client is disabled:

- The RADIUS client can either accept authentication, authorization or accounting requests or process timer messages. However, it fails to transmit and receive packets to and from the RADIUS server.
The end account packets of online users cannot be sent out and buffered. This may cause a problem that the RADIUS server still has the user record after a user goes offline for a period of time.

The authentication, authorization and accounting turn to the local scheme after the RADIUS request fails if the RADIUS scheme and the local authentication, authorization and accounting scheme are configured.

The buffered accounting packets cannot be sent out and will be deleted from the buffer when the configured maximum number of attempts is reached.

**Examples**

```bash
Enable the listening port of the RADIUS client.
<Sysname> system-view
[Sysname] radius client enable
```

**radius nas-ip**

**Syntax**

```bash
radius nas-ip ip-address
undo radius nas-ip
```

**View**

System view

**Default Level**

2: System level

**Parameters**

*ip-address*: IP address in dotted decimal notation. It must be an address of the device and cannot be all 0s address, all 1s address, a class D address, a class E address or a loopback address.

**Description**

Use the `radius nas-ip` command to set the IP address for the device to use as the source address of the RADIUS packets to be sent to the server.

Use the `undo radius nas-ip` command to remove the configuration.

By default, the source IP address of a packet sent to the server is the IP address of the outbound port.

Note that:

- Specifying a source address for the RADIUS packets to be sent to the server can avoid the situation where the packets sent back by the RADIUS server cannot reach the device as the result of a physical interface failure.
- If you configure the command for more than one time, the last configuration takes effect.
- The `nas-ip` command in RADIUS scheme view is only for the current RADIUS scheme, while the `radius nas-ip` command in system view is for all RADIUS schemes. However, the `nas-ip` command in RADIUS scheme view overwrites the configuration of the `radius nas-ip` command.

Related commands: `nas-ip`. 
Examples

# Set the IP address for the device to use as the source address of the RADIUS packets to 129.10.10.1.
<Sysname> system-view
[Sysname] radius nas-ip 129.10.10.1

radius scheme

Syntax

   radius scheme radius-scheme-name
   undo radius scheme radius-scheme-name

View

System view

Default Level

3: Manage level

Parameters

radius-scheme-name: RADIUS scheme name, a case-insensitive string of 1 to 32 characters.

Description

Use the radius scheme command to create a RADIUS scheme and enter RADIUS scheme view.

Use the undo radius scheme command to delete a RADIUS scheme.

By default, no RADIUS scheme is defined.

Note that:

- The RADIUS protocol is configured scheme by scheme. Every RADIUS scheme must at least specify the IP addresses and UDP ports of the RADIUS authentication/authorization/accounting servers and the parameters necessary for a RADIUS client to interact with the servers.
- A RADIUS scheme can be referenced by more than one ISP domain at the same time.
- You cannot remove the RADIUS scheme being used by online users with the undo radius scheme command.

Related commands: key, retry realtime-accounting, timer realtime-accounting, stop-accounting-buffer enable, retry stop-accounting, server-type, state, user-name-format, retry, display radius scheme, display radius statistics.

Examples

# Create a RADIUS scheme named radius1 and enter RADIUS scheme view.
<Sysname> system-view
[Sysname] radius scheme radius1
[Sysname-radius-radius1]
radius trap

Syntax

radius trap { accounting-server-down | authentication-server-down }
undo radius trap { accounting-server-down | authentication-server-down }

View

System view

Default Level

2: System level

Parameters

accounting-server-down: RADIUS trap for accounting servers.
authentication-server-down: RADIUS trap for authentication servers.

Description

Use the radius trap command to enable the RADIUS trap function.
Use the undo radius trap command to disable the function.
By default, the RADIUS trap function is disabled.
Note that:

- If a NAS sends an accounting or authentication request to the RADIUS server but gets no response, the NAS retransmits the request. With the RADIUS trap function enabled, when the NAS transmits the request for half of the specified maximum number of transmission attempts, it sends a trap message; when the NAS transmits the request for the specified maximum number, it sends another trap message.
- If the specified maximum number of transmission attempts is odd, the half of the number refers to the smallest integer greater than the half of the number.

Examples

# Enable the RADIUS trap function for accounting servers.
<Sysname> system-view
[Sysname] radius trap accounting-server-down

reset radius statistics

Syntax

reset radius statistics [ slot slot-number ]

View

User view

Default Level

2: System level
Parameters

**slot slot-number**: Specifies the specified member device in an IRF. The *slot-number* argument indicates the member device ID.

Description

Use the **reset radius statistics** command to clear RADIUS statistics.

Related commands: **display radius scheme**.

Examples

```
Clear RADIUS statistics.
<Sysname> reset radius statistics
```

**reset stop-accounting-buffer**

Syntax

```
reset stop-accounting-buffer { radius-scheme radius-scheme-name | session-id session-id | time-range start-time stop-time | user-name user-name } [slot slot-number]
```

View

User view

Default Level

2: System level

Parameters

**radius-scheme radius-scheme-name**: Specifies a RADIUS scheme by its name, a string of 1 to 32 characters.

**session-id session-id**: Specifies a session by its ID, a string of 1 to 50 characters.

**time-range start-time stop-time**: Specifies a time range by its start time and end time in the format of hh:mm:ss-mm/dd/yyyy or hh:mm:ss-yyyy/mm/dd.

**user-name user-name**: Specifies a user name based on which to reset the stop-accounting buffer. The username is a case-sensitive string of 1 to 80 characters. The format of the *user-name* argument (for example, whether the domain name should be included) must comply with that specified for usernames to be sent to the RADIUS server in the RADIUS scheme.

**slot slot-number**: Specifies the specified member device in an IRF. The *slot-number* argument indicates the member device ID.

Description

Use the **reset stop-accounting-buffer** command to clear the buffered stop-accounting requests, which get no responses.


Examples

```
Clear the buffered stop-accounting requests for user user0001@aabbcc.net.
```
retry

Syntax

    retry retry-times
    undo retry

View

    RADIUS scheme view

Default Level

    2: System level

Parameters

    retry-times: Maximum number of transmission attempts, in the range 1 to 20.

Description

Use the retry command to set the maximum number of RADIUS transmission attempts.
Use the undo retry command to restore the default.
The default value for the retry-times argument is 3.

Note that:

- As RADIUS uses UDP packets to transmit data, the communication is not reliable. If the device
does not receive a response to its request from the RADIUS server within the response timeout
time, it will retransmit the RADIUS request. If the number of transmission attempts exceeds the
limit but the device still receives no response from the RADIUS server, the device regards that the
authentication fails.
- The maximum number of transmission attempts defined by this command refers to the sum of all
transmission attempts sent by the device to the primary server and the secondary server. For
example, assume that the maximum number of transmission attempts is N and both the primary
server and secondary RADIUS server are specified and exist, the device will send a request to the
other server if the current server does not respond after the sum of transmission attempts reaches
N/2 (if N is an even number) or (N+1)/2 (if N is an odd number).
- The maximum number of transmission attempts multiplied by the RADIUS server response
timeout period cannot be greater than 75.

Related commands: radius scheme, timer response-timeout.

Examples

    # Set the maximum number of RADIUS request transmission attempts to 5 for RADIUS scheme
    radius1.

    <Sysname> system-view
    [Sysname] radius scheme radius1
retry realtime-accounting

Syntax

retry realtime-accounting retry-times
undo retry realtime-accounting

View

RADIUS scheme view

Default Level

2: System level

Parameters

retry-times: Maximum number of accounting request transmission attempts. It ranges from 1 to 255 and defaults to 5.

Description

Use the retry realtime-accounting command to set the maximum number of accounting request transmission attempts.

Use the undo retry realtime-accounting command to restore the default.

Note that:

- A RADIUS server usually checks whether a user is online by a timeout timer. If it receives from the NAS no real-time accounting packet for a user in the timeout period, it considers that there may be line or device failure and stops accounting for the user. This may happen when some unexpected failure occurs. In this case, the NAS is required to disconnect the user in accordance. This is done by the maximum number of accounting request transmission attempts. Once the limit is reached but the NAS still receives no response, the NAS disconnects the user.

- Suppose that the RADIUS server response timeout period is 3 seconds (set with the timer response-timeout command), the timeout retransmission attempts is 3 (set with the retry command), and the real-time accounting interval is 12 minutes (set with the timer realtime-accounting command), and the maximum number of accounting request transmission attempts is 5 (set with the retry realtime-accounting command). In such a case, the device generates an accounting request every 12 minutes, and retransmits the request when receiving no response within 3 seconds. The accounting is deemed unsuccessful if no response is received within 3 requests. Then the device sends a request every 12 minutes, and if for 5 times it still receives no response, the device will cut the user connection.

Related commands: radius scheme, timer realtime-accounting.

Examples

# Set the maximum number of accounting request transmission attempts to 10 for RADIUS scheme radius1.

<Sysname> system-view
<Sysname-radius-radius1> radius scheme radius1
<Sysname-radius-radius1> retry realtime-accounting 10
retry stop-accounting (RADIUS scheme view)

Syntax

```
retry stop-accounting retry-times
undo retry stop-accounting
```

View

RADIUS scheme view

Default Level

2: System level

Parameters

```
retry-times: Maximum number of stop-accounting request transmission attempts. It ranges from 10 to 65,535 and defaults to 500.
```

Description

Use the `retry stop-accounting` command to set the maximum number of stop-accounting request transmission attempts.

Use the `undo retry stop-accounting` command to restore the default.

- Suppose that the RADIUS server response timeout period is 3 seconds (set with the `timer response-timeout` command), the timeout retransmission attempts is 5 (set with the `retry` command), and the maximum number of stop-accounting request transmission attempts is 20 (set with the `retry stop-accounting` command). This means that for each stop-accounting request, if the device receives no response within 3 seconds, it will initiate a new request. If still no responses are received within 5 renewed requests, the stop-accounting request is deemed unsuccessful. Then the device will temporarily store the request in the device and resend a request and repeat the whole process described above. Only when 20 consecutive attempts fail will the device discard the request.


Examples

```
Set the maximum number of stop-accounting request transmission attempts to 1,000 for RADIUS scheme radius1.

<Sysname> system-view
[Sysname] radius scheme radius1
[Sysname-radius-radius1] retry stop-accounting 1000
```

secondary accounting (RADIUS scheme view)

Syntax

```
secondary accounting ip-address [port-number]
undo secondary accounting
```

Examples

```
``
View

 RADIUS scheme view

Default Level

 2: System level

Parameters

 ip-address: IP address of the secondary accounting server, in dotted decimal notation. The default is 0.0.0.0.

 port-number: UDP port number of the secondary accounting server, which ranges from 1 to 65535 and defaults to 1813.

Description

Use the secondary accounting command to specify the secondary RADIUS accounting server.

Use the undo secondary accounting command to remove the configuration.

By default, no secondary RADIUS accounting server is specified.

Note that:

- The IP addresses of the primary and secondary accounting servers cannot be the same. Otherwise, the configuration fails.
- The RADIUS service port configured on the device and that of the RADIUS server must be consistent.
- You can use the commands to change the settings only when no user is using the RADIUS scheme.

Related commands: key, radius scheme, state.

Examples

 # Specify the secondary accounting server for RADIUS scheme radius1.
 <Sysname> system-view
 [Sysname] radius scheme radius1
 [Sysname-radius-radius1] secondary accounting 10.110.1.1 1813

 secondary authentication (RADIUS scheme view)

Syntax

 secondary authentication ip-address [port-number]

 undo secondary authentication

View

 RADIUS scheme view

Default Level

 2: System level
Parameters

- **ip-address**: IP address of the secondary authentication/authorization server, in dotted decimal notation. The default is 0.0.0.0.
- **port-number**: UDP port number of the secondary authentication/authorization server, which ranges from 1 to 65535 and defaults to 1812.

Description

Use the **secondary authentication** command to specify the secondary RADIUS authentication/authorization server.

Use the **undo secondary authentication** command to remove the configuration.

By default, no secondary RADIUS authentication/authorization server is specified.

Note that:

- The IP addresses of the primary and secondary authentication/authorization servers cannot be the same. Otherwise, the configuration fails.
- The RADIUS service port configured on the device and that of the RADIUS server must be consistent.
- You can use the commands to change the settings only when no user is using the RADIUS scheme.

Related commands: **key**, **radius scheme**, **state**.

Examples

Specify the secondary authentication/authorization server for RADIUS scheme radius1.

```
<Sysname> system-view
[Sysname] radius scheme radius1
[Sysname-radius-radius1] secondary authentication 10.110.1.2 1812
```

security-policy-server

Syntax

```
security-policy-server ip-address
undo security-policy-server { ip-address | all }
```

View

RADIUS scheme view

Default Level

2: System level

Parameters

- **ip-address**: IP address of a security policy server.
- **all**: All IP addresses

Description

Use the **security-policy-server** command to specify a security policy server.

Use the **undo security-policy-server** command to remove one or all security policy servers.
By default, no security policy server is specified.

Note that:

- You can specify up to eight security policy servers for a RADIUS scheme.
- You can use the commands to change the settings only when no user is using the RADIUS scheme.

Related commands: `radius nas-ip`.

Examples

For RADIUS scheme `radius1`, set the IP address of a security policy server to 10.110.1.2.

```plaintext
<Sysname> system-view
<Sysname-radius-radius1> radius scheme radius1
<Sysname-radius-radius1> security-policy-server 10.110.1.2
```

server-type

Syntax

```
server-type { extended | standard }
undo server-type
```

View

RADIUS scheme view

Default Level

2: System level

Parameters

- `extended`: Specifies the extended RADIUS server (generally iMC), which requires the RADIUS client and RADIUS server to interact according to the procedures and packet formats provisioned by the private RADIUS protocol.
- `standard`: Specifies the standard RADIUS server, which requires the RADIUS client end and RADIUS server to interact according to the regulation and packet format of the standard RADIUS protocol (RFC 2865/2866 or newer).

Description

Use the `server-type` command to specify the RADIUS server type supported by the device.

Use the `undo server-type` command to restore the default.

By default, the supported RADIUS server type is `standard`.

Note that you can use the commands to change the setting only when no user is using the RADIUS scheme.

Related commands: `radius scheme`.

Examples

Set the RADIUS server type of RADIUS scheme `radius1` to `standard`.

```plaintext
<Sysname> system-view
<Sysname-radius-radius1> radius scheme radius1
```
state

Syntax

state { primary | secondary } { accounting | authentication } { active | block }

View

RADIUS scheme view

Default Level

2: System level

Parameters

primary: Sets the status of the primary RADIUS server.
secondary: Sets the status of the secondary RADIUS server.
accounting: Sets the status of the RADIUS accounting server.
authentication: Sets the status of the RADIUS authentication/authorization server.
active: Sets the status of the RADIUS server to active, namely the normal operation state.
block: Sets the status of the RADIUS server to block.

Description

Use the state command to set the status of a RADIUS server.

By default, every RADIUS server configured with an IP address in the RADIUS scheme is in the state of active.

Note that:

- When a primary server, authentication/authorization server or accounting server, fails, the device automatically turns to the secondary server.
- Once the primary server fails, the primary server turns into the blocked state, and the device turns to the secondary server. In this case, if the secondary server is available, the device triggers the primary server quiet timer. After the quiet timer times out, the status of the primary server is active again and the status of the secondary server remains the same. If the secondary server fails, the device restores the status of the primary server to active immediately. If the primary server has resumed, the device turns to use the primary server and stops communicating with the secondary server. After accounting starts, the communication between the client and the secondary server remains unchanged.
- When both the primary server and the secondary server are in the state of blocked, you need to set the status of the secondary server to active to use the secondary server for authentication. Otherwise, the switchover will not occur.
- If one server is in the active state while the other is blocked, the switchover will not take place even if the active server is not reachable.
- You can use this command to change the settings only when no user is using the RADIUS scheme.

Related commands: radius scheme, primary authentication, secondary authentication, primary accounting, secondary accounting.
Examples

Set the status of the secondary server in RADIUS scheme radius1 to active.
<Sysname> system-view
[Sysname] radius scheme radius1
[Sysname-radius-radius1] state secondary authentication active

stop-accounting-buffer enable (RADIUS scheme view)

Syntax

stop-accounting-buffer enable
undo stop-accounting-buffer enable

View

RADIUS scheme view

Default Level

2: System level

Parameters

None

Description

Use the `stop-accounting-buffer enable` command to enable the device to buffer stop-accounting requests getting no responses.

Use the `undo stop-accounting-buffer enable` command to disable the device from buffering stop-accounting requests getting no responses.

By default, the device is enabled to buffer stop-accounting requests getting no responses.

Since stop-accounting requests affect the charge to users, a NAS must make its best effort to send every stop-accounting request to the RADIUS accounting servers. For each stop-accounting request getting no response in the specified period of time, the NAS buffers and resends the packet until it receives a response or the number of transmission retries reaches the configured limit. In the latter case, the NAS discards the packet.

Note that you can use the commands to change the setting only when no user is using the RADIUS scheme.

Examples

In RADIUS scheme radius1, enable the device to buffer the stop-accounting requests getting no responses.
<Sysname> system-view
[Sysname] radius scheme radius1
[Sysname-radius-radius1] stop-accounting-buffer enable
timer quiet (RADIUS scheme view)

Syntax

```
timer quiet minutes
undo timer quiet
```

View

RADIUS scheme view

Default Level

2: System level

Parameters

```
minutes: Primary server quiet period, in minutes. It ranges from 1 to 255 and defaults to 5.
```

Description

Use the `timer quiet` command to set the quiet timer for the primary server, that is, the duration that the status of the primary server stays blocked before resuming the active state.

Use the `undo timer quiet` command to restore the default.

Related commands: `display radius scheme`.

Examples

```
# Set the quiet timer for the primary server to 10 minutes.
<Sysname> system-view
[Sysname] radius scheme test1
[Sysname-radius-test1] timer quiet 10
```

timer realtime-accounting (RADIUS scheme view)

Syntax

```
timer realtime-accounting minutes
undo timer realtime-accounting
```

View

RADIUS scheme view

Default Level

2: System level

Parameters

```
minutes: Real-time accounting interval in minutes, must be a multiple of 3 and in the range 3 to 60, with the default value being 12.
```

Description

Use the `timer realtime-accounting` command to set the real-time accounting interval.

Use the `undo timer realtime-accounting` command to restore the default.
Note that:

- For real-time accounting, a NAS must transmit the accounting information of online users to the RADIUS accounting server periodically. This command is for setting the interval.
- The setting of the real-time accounting interval somewhat depends on the performance of the NAS and the RADIUS server: a shorter interval requires higher performance. You are therefore recommended to adopt a longer interval when there are a large number of users (more than 1000, inclusive). The following table lists the recommended ratios of the interval to the number of users.

Table 2-3 Recommended ratios of the accounting interval to the number of users

<table>
<thead>
<tr>
<th>Number of users</th>
<th>Real-time accounting interval (minute)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 99</td>
<td>3</td>
</tr>
<tr>
<td>100 to 499</td>
<td>6</td>
</tr>
<tr>
<td>500 to 999</td>
<td>12</td>
</tr>
<tr>
<td>1000 or more</td>
<td>15 or more</td>
</tr>
</tbody>
</table>

Related commands: `retry realtime-accounting`, `radius scheme`.

Examples

```
# Set the real-time accounting interval to 51 minutes for RADIUS scheme radius1.
<Sysname> system-view
<Sysname-radius-radius1> timer realtime-accounting 51
```

timer response-timeout (RADIUS scheme view)

Syntax

```
timer response-timeout seconds
undo timer response-timeout
```

View

RADIUS scheme view

Default Level

2: System level

Parameters

`seconds`: RADIUS server response timeout period in seconds. It ranges from 1 to 10 and defaults to 3.

Description

Use the `timer response-timeout` command to set the RADIUS server response timeout timer.

Use the `undo timer` command to restore the default.

Note that:

- If a NAS receives no response from the RADIUS server in a period of time after sending a RADIUS request (authentication/authorization or accounting request), it has to resend the request...
so that the user has more opportunity to obtain the RADIUS service. The NAS uses the RADIUS server response timeout timer to control the transmission interval.

- A proper value for the RADIUS server response timeout timer can help improve the system performance. Set the timer based on the network conditions.
- The maximum total number of all types of retransmission attempts multiplied by the RADIUS server response timeout period cannot be greater than 75.

Related commands: **radius scheme**, **retry**.

Examples

```bash
# Set the RADIUS server response timeout timer to 5 seconds for RADIUS scheme radius1.
<Sysname> system-view
[Sysname] radius scheme radius1
[Sysname-radius-radius1] timer response-timeout 5
```

user-name-format (RADIUS scheme view)

Syntax

```bash
user-name-format { keep-original | with-domain | without-domain }
```

View

RADIUS scheme view

Default Level

2: System level

Parameters

- **keep-original**: Sends the username to the RADIUS server as it is input.
- **with-domain**: Includes the ISP domain name in the username sent to the RADIUS server.
- **without-domain**: Excludes the ISP domain name from the username sent to the RADIUS server.

Description

Use the **user-name-format** command to specify the format of the username to be sent to a RADIUS server.

By default, the ISP domain name is included in the username.

Note that:

- A username is generally in the format of userid@isp-name, of which isp-name is used by the device to determine the ISP domain to which a user belongs. Some earlier RADIUS servers, however, cannot recognize a username including an ISP domain name. Before sending a username including a domain name to such a RADIUS server, the device must remove the domain name. This command is thus provided for you to decide whether to include a domain name in a username to be sent to a RADIUS server.
- If a RADIUS scheme defines that the username is sent without the ISP domain name, do not apply the RADIUS scheme to more than one ISP domain, thus avoiding the confused situation where the RADIUS server regards two users in different ISP domains but with the same user ID as one.
● When 802.1X users use EAP authentication, the user-name-format command configured for a RADIUS scheme does not take effect and the device does not change the usernames from clients when forwarding them to the RADIUS server.
● If the RADIUS scheme is for wireless users, specify the keep-original keyword. Otherwise, authentication of the wireless users may fail.

Related commands: radius scheme.

Examples

Specify the device to remove the domain name in the username sent to the RADIUS servers for the RADIUS scheme radius1.
<Sysname> system-view
[Sysname] radius scheme radius1
[Sysname-radius-radius1] user-name-format without-domain
HWTACACS Configuration Commands

data-flow-format (HWTACACS scheme view)

Syntax

```
data-flow-format { data { byte | giga-byte | kilo-byte | mega-byte } | packet { giga-packet | kilo-packet | mega-packet | one-packet }} *
undo data-flow-format { data | packet }
```

View

HWTACACS scheme view

Default Level

2: System level

Parameters

- **data**: Specifies the unit for data flows, which can be byte, kilobyte, megabyte, or gigabyte.
- **packet**: Specifies the unit for data packets, which can be one-packet, kilo-packet, mega-packet, or giga-packet.

Description

Use the **data-flow-format** command to specify the unit for data flows or packets to be sent to a HWTACACS server.

Use the **undo data-flow-format** command to restore the default.

By default, the unit for data flows is **byte** and that for data packets is **one-packet**.

Related commands: **display hwtacacs**.

Examples

```
# Define HWTACACS scheme hwt1 to send data flows and packets destined for the TACACS server in kilobytes and kilo-packets.
<Sysname> system-view
[Sysname] hwtacacs scheme hwt1
[Sysname-hwtacacs-hwt1] data-flow-format data kilo-byte packet kilo-packet
display hwtacacs
```

display hwtacacs

Syntax

```
display hwtacacs [ hwtacacs-scheme-name [ statistics ]] [ slot slot-number ]
```

display hwtacacs
View

Any view

Default Level

2: System level

Parameters

hwtacacs-scheme-name: HWTACACS scheme name.

statistics: Displays complete statistics about the HWTACACS server.

slot slot-number: Specifies the specified member device in an IRF. The *slot-number* argument indicates the member device ID.

Description

Use the `display hwtacacs` command to display configuration information or statistics of the specified or all HWTACACS schemes.

Note that:

- If no HWTACACS scheme is specified, the command will display the configuration information of all HWTACACS schemes.
- If no slot number is specified, the command will display the configuration information of the HWTACACS scheme on the main processing unit.

Related commands: `hwtacacs scheme`.

Examples

Display configuration information about HWTACACS scheme gy.

```
<Sysname> display hwtacacs gy

=======================================================================================
HWTACACS-server template name       : gy
Primary-authentication-server     : 172.31.1.11:49
Primary-authorization-server      : 172.31.1.11:49
Primary-accounting-server         : 172.31.1.11:49
Secondary-authentication-server   : 0.0.0.0:0
Secondary-authorization-server    : 0.0.0.0:0
Secondary-accounting-server       : 0.0.0.0:0
Current-authentication-server     : 172.31.1.11:49
Current-authorization-server      : 172.31.1.11:49
Current-accounting-server         : 172.31.1.11:49
NAS-IP-address                    : 0.0.0.0
key authentication                : 790131
key authorization                 : 790131
key accounting                    : 790131
Quiet-interval(min)               : 5
Realtime-accounting-interval(min) : 12
Response-timeout-interval(sec)    : 5
Acct-stop-PKT retransmit times    : 100
Username format                   : with-domain
Data traffic-unit                 : B
=======================================================================================
```
Table 3-1 display hwtacas command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWTACACS-server template name</td>
<td>Name of the HWTACACS scheme</td>
</tr>
<tr>
<td>Primary-authentication-server</td>
<td>IP address and port number of the primary authentication server. If there is no primary authentication server specified, the value of this field is 0.0.0.0:0. This rule is also applicable to the following eight fields.</td>
</tr>
<tr>
<td>Primary-authorization-server</td>
<td>IP address and port number of the primary authorization server</td>
</tr>
<tr>
<td>Primary-accounting-server</td>
<td>IP address and port number of the primary accounting server</td>
</tr>
<tr>
<td>Secondary-authentication-server</td>
<td>IP address and port number of the secondary authentication server</td>
</tr>
<tr>
<td>Secondary-authorization-server</td>
<td>IP address and port number of the secondary authorization server</td>
</tr>
<tr>
<td>Secondary-accounting-server</td>
<td>IP address and port number of the secondary accounting server</td>
</tr>
<tr>
<td>Current-authentication-server</td>
<td>IP address and port number of the currently used authentication server</td>
</tr>
<tr>
<td>Current-authorization-server</td>
<td>IP address and port number of the currently used authorization server</td>
</tr>
<tr>
<td>Current-accounting-server</td>
<td>IP address and port number of the currently used accounting server</td>
</tr>
<tr>
<td>NAS-IP-address</td>
<td>IP address of the NAS. If no NAS is specified, the value of this field is 0.0.0.0.</td>
</tr>
<tr>
<td>key authentication</td>
<td>Key for authentication</td>
</tr>
<tr>
<td>key authorization</td>
<td>Key for authorization</td>
</tr>
<tr>
<td>key accounting</td>
<td>Key for accounting</td>
</tr>
<tr>
<td>Quiet-interval</td>
<td>Quiet interval for the primary server</td>
</tr>
<tr>
<td>Realtime-accounting-interval</td>
<td>Real-time accounting interval</td>
</tr>
<tr>
<td>Response-timeout-interval</td>
<td>Server response timeout period</td>
</tr>
<tr>
<td>Acct-stop-PKT retransmit times</td>
<td>Number of stop-accounting packet transmission retries</td>
</tr>
<tr>
<td>Username format</td>
<td>with-domain. Whether a user name includes the domain name</td>
</tr>
<tr>
<td>Data traffic-unit</td>
<td>Unit for data flows</td>
</tr>
<tr>
<td>Packet traffic-unit</td>
<td>Unit for data packets</td>
</tr>
</tbody>
</table>
display stop-accounting-buffer

Syntax

display stop-accounting-buffer hwtacacs-scheme hwtacacs-scheme-name [slot slot-number]

View

Any view

Default Level

2: System level

Parameters

hwtacacs-scheme hwtacacs-scheme-name: Specifies a HWTACACS scheme by its name, a string of 1 to 32 characters.

slot slot-number: Specifies the specified member device in an IRF. The slot-number argument indicates the member device ID.

Description

Use the display stop-accounting-buffer command to display information about the stop-accounting requests buffered in the device.

Examples

Display information about the buffered stop-accounting requests for HWTACACS scheme hwt1.
<Sysname> display stop-accounting-buffer hwtacacs-scheme hwt1
Total 0 record(s) Matched

hwtacacs nas-ip

Syntax

hwtacacs nas-ip ip-address
undo hwtacacs nas-ip

View

System view

Default Level

2: System level

Parameters

ip-address: IP address in dotted decimal notation. It must be an address of the device and cannot be all 0s address, all 1s address, a class D address, a class E address or a loopback address.
Description

Use the `hwtacacs nas-ip` command to set the IP address for the device to use as the source address of the HWTACACS packets to be sent to the server.

Use the `undo hwtacacs nas-ip` command to remove the configuration.

By default, the source IP address of a packet sent to the server is the IP address of the outbound port.

Note that:
- Specifying a source address for the HWTACACS packets to be sent to the server can avoid the situation where the packets sent back by the HWTACACS server cannot reach the device as the result of a physical interface failure.
- If you configure the command for more than one time, the last configuration takes effect.
- The `nas-ip` command in HWTACACS scheme view is only for the current HWTACACS scheme, while the `hwtacacs nas-ip` command in system view is for all HWTACACS schemes. However, the `nas-ip` command in HWTACACS scheme view overwrites the configuration of the `hwtacacs nas-ip` command.

Related commands: `nas-ip`.

Examples

```bash
# Set the IP address for the device to use as the source address of the HWTACACS packets to 129.10.10.1.
<Sysname> system-view
[Sysname] hwtacacs nas-ip 129.10.10.1
```

hwtacacs scheme

Syntax

```
hwtacacs scheme hwtacacs-scheme-name
undo hwtacacs scheme hwtacacs-scheme-name
```

View

System view

Default Level

3: Manage level

Parameters

`hwtacacs-scheme-name`: HWTACACS scheme name, a case-insensitive string of 1 to 32 characters.

Description

Use the `hwtacacs scheme` command to create an HWTACACS scheme and enter HWTACACS scheme view.

Use the `undo hwtacacs scheme` command to delete an HWTACACS scheme.

By default, no HWTACACS scheme exists.

Note that you cannot delete an HWTACACS scheme with online users.
Examples

Create an HWTACACS scheme named hwt1 and enter HWTACACS scheme view.

SYSNAME> system-view
[SYSNAME] hwtacacs scheme hwt1
[SYSNAME-hwtacacs-hwt1]

key (HWTACACS scheme view)

Syntax

 key { accounting | authentication | authorization } string
 undo key { accounting | authentication | authorization } string

View

 HWTACACS scheme view

Default Level

 2: System level

Parameters

 accounting: Sets the shared key for HWTACACS accounting packets.
 authentication: Sets the shared key for HWTACACS authentication packets.
 authorization: Sets the shared key for HWTACACS authorization packets.

 string: Shared key, a string of 1 to 16 characters.

Description

 Use the key command to set the shared key for HWTACACS authentication, authorization, or accounting packets.

 Use the undo key command to remove the configuration.

 By default, no shared key is configured.

 Related commands: display hwtacacs.

Examples

Set the shared key for HWTACACS accounting packets to hello for HWTACACS scheme hwt1.

 <SYSNAME> system-view
 [SYSNAME] hwtacacs scheme hwt1
 [SYSNAME-hwtacacs-hwt1] key accounting hello

nas-ip (HWTACACS scheme view)

Syntax

 nas-ip ip-address
 undo nas-ip

View

 HWTACACS scheme view
Default Level

2: System level

Parameters

ip-address: IP address in dotted decimal notation. It must be an address of the device and cannot be all 0s address, all 1s address, a class D address, a class E address or a loopback address.

Description

Use the `nas-ip` command to set the IP address for the device to use as the source address of the HWTACACS packets to be sent to the server.

Use the `undo nas-ip` command to remove the configuration.

By default, the source IP address of a packet sent to the server is the IP address of the outbound port.

Note that:

- Specifying a source address for the HWTACACS packets to be sent to the server can avoid the situation where the packets sent back by the HWTACACS server cannot reach the device as the result of a physical interface failure.
- If you configure the command for more than one time, the last configuration takes effect.
- The `nas-ip` command in HWTACACS scheme view is only for the current HWTACACS scheme, while the `hwtacacs nas-ip` command in system view is for all HWTACACS schemes. However, the `nas-ip` command in HWTACACS scheme view overwrites the configuration of the `hwtacacs nas-ip` command.

Related commands: `hwtacacs nas-ip`.

Examples

```
# Set the IP address for the device to use as the source address of the HWTACACS packets to 10.1.1.1.
<Sysname> system-view
<Sysname> hwtacacs scheme hwt1
<Sysname-hwtacacs-hwt1] nas-ip 10.1.1.1
```

primary accounting (HWTACACS scheme view)

Syntax

```
primary accounting ip-address [ port-number ]
undo primary accounting
```

View

HWTACACS scheme view

Default Level

2: System level

Parameters

ip-address: IP address of the server, a valid unicast address in dotted decimal notation. The default is 0.0.0.0.
Description

Use the **primary accounting** command to specify the primary HWTACACS accounting server. Use the **undo primary accounting** command to remove the configuration. By default, no primary HWTACACS accounting server is specified.

Note that:
- The IP addresses of the primary and secondary accounting servers cannot be the same. Otherwise, the configuration fails.
- The HWTACACS service port configured on the device and that of the HWTACACS server must be consistent.
- If you configure the command for more than one time, the last configuration takes effect.
- You can remove an accounting server only when no active TCP connection for sending accounting packets is using it.

Examples

```
# Specify the primary accounting server.
<Sysname> system-view
[Sysname] hwtacacs scheme test1
[Sysname-hwtacacs-test1] primary accounting 10.163.155.12 49
```

Syntax

```
primary authentication ip-address [ port-number ]
undo primary authentication
```

View

HWTACACS scheme view

Default Level

2: System level

Parameters

- **ip-address**: IP address of the server, a valid unicast address in dotted decimal notation. The default is 0.0.0.0.
- **port-number**: Port number of the server. It ranges from 1 to 65535 and defaults to 49.

Description

Use the **primary authentication** command to specify the primary HWTACACS authentication server. Use the **undo primary authentication** command to remove the configuration. By default, no primary HWTACACS authentication server is specified.

Note that:
- The IP addresses of the primary and secondary authentication servers cannot be the same. Otherwise, the configuration fails.
● The HWTACACS service port configured on the device and that of the HWTACACS server must be consistent.
● If you configure the command for more than one time, the last configuration takes effect.
● You can remove an authentication server only when no active TCP connection for sending authentication packets is using it.

Related commands: `display hwtacacs`.

Examples

```
# Specify the primary authentication server.
<Sysname> system-view
[Sysname] hwtacacs scheme hwt1
[Sysname-hwtacacs-hwt1] primary authentication 10.163.155.13 49
```

primary authorization

Syntax

```
primary authorization ip-address [ port-number ]
undo primary authorization
```

View

HWTACACS scheme view

Default Level

2: System level

Parameters

- `ip-address`: IP address of the server, a valid unicast address in dotted decimal notation. The default is 0.0.0.0.
- `port-number`: Port number of the server. It ranges from 1 to 65535 and defaults to 49.

Description

Use the `primary authorization` command to specify the primary HWTACACS authorization server.

Use the `undo primary authorization` command to remove the configuration.

By default, no primary HWTACACS authorization server is specified.

Note that:

- The IP addresses of the primary and secondary authorization servers cannot be the same. Otherwise, the configuration fails.
- The HWTACACS service port configured on the device and that of the HWTACACS server must be consistent.
- If you configure the command for more than one time, the last configuration takes effect.
- You can remove an authorization server only when no active TCP connection for sending authorization packets is using it.

Related commands: `display hwtacacs`.
Examples

Configure the primary authorization server.
<Sysname> system-view
[Sysname] hwtacacs scheme hwt1
[Sysname-hwtacacs-hwt1] primary authorization 10.163.155.13 49

reset hwtacacs statistics

Syntax

reset hwtacacs statistics { accounting | all | authentication | authorization } [slot slot-number]

View

User view

Default Level

1: Monitor level

Parameters

accounting: Clears HWTACACS accounting statistics.
all: Clears all HWTACACS statistics.
authentication: Clears HWTACACS authentication statistics.
authorization: Clears HWTACACS authorization statistics.
slot slot-number: Clears HWTACACS statistics on the specified member device in an IRF. The slot-number argument indicates the member device ID.

Description

Use the reset hwtacacs statistics command to clear HWTACACS statistics.

Related commands: display hwtacacs.

Examples

Clear all HWTACACS statistics.
<Sysname> reset hwtacacs statistics all

reset stop-accounting-buffer

Syntax

reset stop-accounting-buffer hwtacacs-scheme hwtacacs-scheme-name [slot slot-number]

View

User view

Default Level

2: System level
Parameters

hwtacacs-scheme hwtacacs-scheme-name: Specifies a HWTACACS scheme by its name, a string of 1 to 32 characters.

slot slot-number: Specifies the specified member device in an IRF. The *slot-number* argument indicates the member device ID.

Description

Use the `reset stop-accounting-buffer` command to clear the buffered stop-accounting requests that get no responses.

Examples

```
# Clear the buffered stop-accounting requests for HWTACACS scheme hwt1.
<Sysname> reset stop-accounting-buffer hwtacacs-scheme hwt1
```

retry stop-accounting (HWTACACS scheme view)

Syntax

```
retry stop-accounting retry-times
undo retry stop-accounting
```

View

HWTACACS scheme view

Default Level

2: System level

Parameters

`retry-times`: Maximum number of stop-accounting request transmission attempts. It ranges from 1 to 300 and defaults to 100.

Description

Use the `retry stop-accounting` command to set the maximum number of stop-accounting request transmission attempts.

Use the `undo retry stop-accounting` command to restore the default.

Examples

```
# Set the maximum number of stop-accounting request transmission attempts to 50.
<Sysname> system-view
[Sysname] hwtacacs scheme hwt1
[Sysname-hwtacacs-hwt1] retry stop-accounting 50
```
secondary accounting (HWTACACS scheme view)

Syntax

```
secondary accounting ip-address [ port-number ]
undo secondary accounting
```

View

HWTACACS scheme view

Default Level

2: System level

Parameters

- **ip-address**: IP address of the server, a valid unicast address in dotted decimal notation. The default is 0.0.0.0.
- **port-number**: Port number of the server. It ranges from 1 to 65535 and defaults to 49.

Description

Use the `secondary accounting` command to specify the secondary HWTACACS accounting server. Use the `undo secondary accounting` command to remove the configuration. By default, no secondary HWTACACS accounting server is specified.

Note that:

- The IP addresses of the primary and secondary accounting servers cannot be the same. Otherwise, the configuration fails.
- The HWTACACS service port configured on the device and that of the HWTACACS server must be consistent.
- If you configure the command for more than one time, the last configuration takes effect.
- You can remove an accounting server only when no active TCP connection for sending accounting packets is using it.

Examples

```
# Specify the secondary accounting server.
<Sysname> system-view
<Sysname> hwtacacs scheme hwt1
<Sysname-hwtacacs-hwt1> secondary accounting 10.163.155.12 49
```

secondary authentication (HWTACACS scheme view)

Syntax

```
secondary authentication ip-address [ port-number ]
undo secondary authentication
```

View

HWTACACS scheme view
Default Level

2: System level

Parameters

ip-address: IP address of the server, a valid unicast address in dotted decimal notation. The default is 0.0.0.0.

port-number: Port number of the server. It ranges from 1 to 65535 and defaults to 49.

Description

Use the `secondary authentication` command to specify the secondary HWTACACS authentication server.

Use the `undo secondary authentication` command to remove the configuration.

By default, no secondary HWTACACS authentication server is specified.

Note that:

- The IP addresses of the primary and secondary authentication servers cannot be the same. Otherwise, the configuration fails.
- The HWTACACS service port configured on the device and that of the HWTACACS server must be consistent.
- If you configure the command for more than one time, the last configuration takes effect.
- You can remove an authentication server only when no active TCP connection for sending authentication packets is using it.

Related commands: `display hwtacacs`.

Examples

```
# Specify the secondary authentication server.
<Sysname> system-view
<Sysname> hwtacacs scheme hwt1
<Sysname-hwtacacs-hwt1> secondary authentication 10.163.155.13 49
```

secondary authorization

Syntax

```
secondary authorization ip-address [ port-number ]
```

```
undo secondary authorization
```

View

HWTACACS scheme view

Default Level

2: System level

Parameters

ip-address: IP address of the server, a valid unicast address in dotted decimal notation. The default is 0.0.0.0.

port-number: Port number of the server. It ranges from 1 to 65535 and defaults to 49.
Description

Use the **secondary authorization** command to specify the secondary HWTACACS authorization server.

Use the **undo secondary authorization** command to remove the configuration.

By default, no secondary HWTACACS authorization server is specified.

Note that:
- The IP addresses of the primary and secondary authorization servers cannot be the same. Otherwise, the configuration fails.
- The HWTACACS service port configured on the device and that of the HWTACACS server must be consistent.
- If you configure the command for more than one time, the last configuration takes effect.
- You can remove an authorization server only when no active TCP connection for sending authorization packets is using it.

Related commands: **display hwtacacs**.

Examples

```
# Configure the secondary authorization server.
<Sysname> system-view
<Sysname> hwtacacs scheme hwt1
<Sysname-hwtacacs-hwt1> secondary authorization 10.163.155.13 49
```

stop-accounting-buffer enable (HWTACACS scheme view)

Syntax

```
stop-accounting-buffer enable
undo stop-accounting-buffer enable
```

View

HWTACACS scheme view

Default Level

2: System level

Parameters

None

Description

Use the **stop-accounting-buffer enable** command to enable the device to buffer stop-accounting requests getting no responses.

Use the **undo stop-accounting-buffer enable** command to disable the device from buffering stop-accounting requests getting no responses.

By default, the device is enabled to buffer stop-accounting requests getting no responses.

Since stop-accounting requests affect the charge to users, a NAS must make its best effort to send every stop-accounting request to the HWTACACS accounting servers. For each stop-accounting request getting no response in the specified period of time, the NAS buffers and resends the packet.
until it receives a response or the number of transmission retries reaches the configured limit. In the latter case, the NAS discards the packet.

Examples

In HWTACACS scheme hwt1, enable the device to buffer the stop-accounting requests getting no responses.
<Sysname> system-view
[Sysname] hwtacacs scheme hwt1
[Sysname-hwtacacs-hwt1] stop-accounting-buffer enable

timer quiet (HWTACACS scheme view)

Syntax

```
timer quiet minutes
undo timer quiet
```

View

HWTACACS scheme view

Default Level

2: System level

Parameters

- **minutes**: Primary server quiet period, in minutes. It ranges from 1 to 255 and defaults to 5.

Description

Use the `timer quiet` command to set the quiet timer for the primary server, that is, the duration that the status of the primary server stays blocked before resuming the active state.

Use the `undo timer quiet` command to restore the default.

Related commands: `display hwtacacs`.

Examples

Set the quiet timer for the primary server to 10 minutes.
<Sysname> system-view
[Sysname] hwtacacs scheme hwt1
[Sysname-hwtacacs-hwt1] timer quiet 10

timer realtime-accounting (HWTACACS scheme view)

Syntax

```
timer realtime-accounting minutes
undo timer realtime-accounting
```

3-15
View

HWTACACS scheme view

Default Level

2: System level

Parameters

minutes: Real-time accounting interval in minutes. It is a multiple of 3 in the range 3 to 60 and defaults to 12.

Description

Use the timer realtime-accounting command to set the real-time accounting interval.

Use the undo timer realtime-accounting command to restore the default.

Note that:

- For real-time accounting, a NAS must transmit the accounting information of online users to the HWTACACS accounting server periodically. This command is for setting the interval.
- The setting of the real-time accounting interval somewhat depends on the performance of the NAS and the HWTACACS server: a shorter interval requires higher performance. You are therefore recommended to adopt a longer interval when there are a large number of users (more than 1000, inclusive). The following table lists the recommended ratios of the interval to the number of users.

Table 3-2 Recommended ratios of the accounting interval to the number of users

<table>
<thead>
<tr>
<th>Number of users</th>
<th>Real-time accounting interval (minute)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 99</td>
<td>3</td>
</tr>
<tr>
<td>100 to 499</td>
<td>6</td>
</tr>
<tr>
<td>500 to 999</td>
<td>12</td>
</tr>
<tr>
<td>1000 or more</td>
<td>15 or more</td>
</tr>
</tbody>
</table>

Examples

Set the real-time accounting interval to 51 minutes for HWTACACS scheme hwt1.

<Sysname> system-view
[Sysname] hwtacacs scheme hwt1
[Sysname-hwtacacs-hwt1] timer realtime-accounting 51

timer response-timeout (HWTACACS scheme view)

Syntax

 timer response-timeout seconds
 undo timer response-timeout

View

HWTACACS scheme view
Default Level

2: System level

Parameters

seconds: HWTACACS server response timeout period in seconds. It ranges from 1 to 300 and defaults to 5.

Description

Use the timer response-timeout command to set the HWTACACS server response timeout timer.
Use the undo timer command to restore the default.
As HWTACACS is based on TCP, the timeout of the server response timeout timer and/or the TCP timeout timer will cause the device to be disconnected from the HWTACACS server.
Related commands: display hwtacacs.

Examples

Set the HWTACACS server response timeout timer to 30 seconds for HWTACACS scheme hwt1.
<Sysname> system-view
[Sysname] hwtacacs scheme hwt1
[Sysname-hwtacacs-hwt1] timer response-timeout 30

user-name-format (HWTACACS scheme view)

Syntax

user-name-format { keep-original | with-domain | without-domain }

View

HWTACACS scheme view

Default Level

2: System level

Parameters

keep-original: Sends the username to the HWTACACS server as it is input.
with-domain: Includes the ISP domain name in the username sent to the HWTACACS server.
without-domain: Excludes the ISP domain name from the username sent to the HWTACACS server.

Description

Use the user-name-format command to specify the format of the username to be sent to a HWTACACS server.
By default, the ISP domain name is included in the username.
Note that:

- A username is generally in the format of userid@isp-name, of which isp-name is used by the device to determine the ISP domain to which a user belongs. Some earlier HWTACACS servers, however, cannot recognize a username including an ISP domain name. Before sending a username including a domain name to such a HWTACACS server, the device must remove the
domain name. This command is thus provided for you to decide whether to include a domain name in a username to be sent to a HWTACACS server.

- If a HWTACACS scheme defines that the username is sent without the ISP domain name, do not apply the HWTACACS scheme to more than one ISP domain, thus avoiding the confused situation where the HWTACACS server regards two users in different ISP domains but with the same userid as one.

- If the HWTACACS scheme is for wireless users, specify the keep-original keyword. Otherwise, authentication of the wireless users may fail.

Related commands: hwtacacs scheme.

Examples

Specify the device to remove the ISP domain name in the username sent to the HWTACACS servers for the HWTACACS scheme hwt1.

<Sysname> system-view
[Sysname] hwtacacs scheme hwt1
[Sysname-hwtacacs-hwt1] user-name-format without-domain
4 802.1X Configuration Commands

802.1X Configuration Commands

display dot1x

Syntax

display dot1x [sessions | statistics] [interface interface-list]

View

Any view

Default Level

1: Monitor level

Parameters

sessions: Displays 802.1X session information.
statistics: Displays 802.1X statistics.

interface interface-list: Specifies an Ethernet port list, which can contain multiple Ethernet ports. The interface-list argument is in the format of interface-list = { interface-type interface-number [to interface-type interface-number] } & <1-10>, where interface-type represents the port type, interface-number represents the port number, and & <1-10> means that you can provide up to 10 port indexes/port index lists for this argument. The start port number must be smaller than the end number and the two ports must be of the same type.

Description

Use the display dot1x command to display information about 802.1X.

If you specify neither the sessions keyword nor the statistics keyword, the command displays all information about 802.1X, including session information, statistics, and configurations.

Related commands: reset dot1x statistics, dot1x, dot1x retry, dot1x max-user, dot1x port-control, dot1x port-method, dot1x timer.

Examples

Display all information about 802.1X.
<Sysname> display dot1x
Equipment 802.1X protocol is enabled
CHAP authentication is enabled
EAD quick deploy is enabled

Configuration: Transmit Period 30 s, Handshake Period 15 s
Quiet Period 60 s, Quiet Period Timer is disabled
Supp Timeout 30 s, Server Timeout 100 s
Reauth Period 3600 s
The maximal retransmitting times 3

EAD quick deploy configuration:
URL: http://192.168.19.23
Free IP: 192.168.19.0 255.255.255.0
EAD timeout: 30m

The maximum 802.1X user resource number is 1024 per slot
Total current used 802.1X resource number is 1

GigabitEthernet1/0/1 is link-up
802.1X protocol is enabled
Handshake is disabled
Handshake secure is disabled
Periodic reauthentication is disabled
The port is an authenticator
Authenticate Mode is Auto
802.1X Multicast-trigger is enabled
Mandatory authentication domain: NOT configured
Port Control Type is Mac-based
Guest VLAN: 4
Max number of on-line users is 256

EAPOL Packet: Tx 1087, Rx 986
Sent EAP Request/Identity Packets : 943
EAP Request/Challenge Packets: 60
EAP Success Packets: 29, Fail Packets: 55
Received EAPOL Start Packets : 60
EAPOL LogOff Packets: 24
EAP Response/Identity Packets : 724
EAP Response/Challenge Packets: 54
Error Packets: 0

1. Authenticated user : MAC address: 0015-e9a6-7cfe

Controlled User(s) amount to 1

<table>
<thead>
<tr>
<th>Table 4-1 display dot1x command output description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field</td>
</tr>
<tr>
<td>Equipment 802.1X protocol is enabled</td>
</tr>
<tr>
<td>CHAP authentication is enabled</td>
</tr>
<tr>
<td>EAD quick deploy is enabled</td>
</tr>
<tr>
<td>Transmit Period</td>
</tr>
<tr>
<td>Handshake Period</td>
</tr>
<tr>
<td>Reauth Period</td>
</tr>
<tr>
<td>Field</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Quiet Period</td>
</tr>
<tr>
<td>Quiet Period Timer is disabled</td>
</tr>
<tr>
<td>Supp Timeout</td>
</tr>
<tr>
<td>Server Timeout</td>
</tr>
<tr>
<td>The maximal retransmitting times</td>
</tr>
<tr>
<td>EAD quick deploy configuration</td>
</tr>
<tr>
<td>URL</td>
</tr>
<tr>
<td>Free IP</td>
</tr>
<tr>
<td>EAD timeout</td>
</tr>
<tr>
<td>The maximum 802.1X user resource number per slot</td>
</tr>
<tr>
<td>Total current used 802.1X resource number</td>
</tr>
<tr>
<td>GigabitEthernet1/0/1 is link-up</td>
</tr>
<tr>
<td>802.1X protocol is disabled</td>
</tr>
<tr>
<td>Handshake is disabled</td>
</tr>
<tr>
<td>Handshake secure is disabled</td>
</tr>
<tr>
<td>Periodic reauthentication is disabled</td>
</tr>
<tr>
<td>The port is an authenticator</td>
</tr>
<tr>
<td>Authenticate Mode is Auto</td>
</tr>
<tr>
<td>802.1X Multicast-trigger is enabled</td>
</tr>
<tr>
<td>Mandatory authentication domain</td>
</tr>
<tr>
<td>Port Control Type is Mac-based</td>
</tr>
<tr>
<td>Guest VLAN</td>
</tr>
<tr>
<td>Max number of on-line users</td>
</tr>
<tr>
<td>EAPOL Packet</td>
</tr>
<tr>
<td>Sent EAP Request/Identity Packets</td>
</tr>
<tr>
<td>EAP Request/Challenge Packets</td>
</tr>
<tr>
<td>EAP Success Packets</td>
</tr>
<tr>
<td>Received EAPOL Start Packets</td>
</tr>
<tr>
<td>EAPOL LogOff Packets</td>
</tr>
<tr>
<td>Field</td>
</tr>
<tr>
<td>--------------------------------------</td>
</tr>
<tr>
<td>EAP Response/Identity Packets</td>
</tr>
<tr>
<td>EAP Response/Challenge Packets</td>
</tr>
<tr>
<td>Error Packets</td>
</tr>
<tr>
<td>Authenticated user</td>
</tr>
<tr>
<td>Controlled User(s) amount</td>
</tr>
</tbody>
</table>

dot1x

Syntax

In system view:

```
dot1x [ interface interface-list ]
undo dot1x [ interface interface-list ]
```

In Ethernet interface view:

```
dot1x
undo dot1x
```

View

System view, interface view

Default Level

2: System level

Parameters

interface interface-list: Specifies a port list, which can contain multiple ports. The interface-list argument is in the format of interface-list = { interface-type interface-number [to interface-type interface-number] } & <1-10>, where interface-type represents the port type, interface-number represents the port number, and & <1-10> means that you can provide up to 10 port indexes/port index lists for this argument. The start port number must be smaller than the end number and the two ports must be of the same type.

Description

Use the dot1x command in system view to enable 802.1X globally.

Use the undo dot1x command in system view to disable 802.1X globally.

Use the dot1x interface interface-list command in system view or the dot1x command in interface view to enable 802.1X for specified ports.

Use the undo dot1x interface interface-list command in system view or the undo dot1x command in interface view to disable 802.1X for specified ports.

By default, 802.1X is neither enabled globally nor enabled for any port.

Note that:
- 802.1X must be enabled both globally in system view and for the intended ports in system view or interface view. Otherwise, it does not function.
- You can configure 802.1X parameters either before or after enabling 802.1X.

Related commands: `display dot1x`.

Examples

```
# Enable 802.1X for ports GigabitEthernet 1/0/1, and GigabitEthernet 1/0/5 to GigabitEthernet 1/0/7.
<Sysname> system-view
[Sysname] dot1x interface GigabitEthernet 1/0/1 GigabitEthernet 1/0/5 to GigabitEthernet 1/0/7

Or

<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] dot1x
[Sysname-GigabitEthernet1/0/1] quit
[Sysname] interface GigabitEthernet 1/0/5
[Sysname-GigabitEthernet1/0/5] dot1x
[Sysname-GigabitEthernet1/0/5] quit
[Sysname] interface GigabitEthernet 1/0/6
[Sysname-GigabitEthernet1/0/6] dot1x
[Sysname-GigabitEthernet1/0/6] quit
[Sysname] interface GigabitEthernet 1/0/7
[Sysname-GigabitEthernet1/0/7] dot1x

# Enable 802.1X globally.
<Sysname> system-view
[Sysname] dot1x
```

dot1x authentication-method

Syntax

```
dot1x authentication-method { chap | eap | pap }
undo dot1x authentication-method
```

View

System view

Default Level

2: System level

Parameters

- **chap**: Authenticates supplicants using CHAP.
- **eap**: Authenticates supplicants using EAP.
- **pap**: Authenticates supplicants using PAP.
Description

Use the `dot1x authentication-method` command to set the 802.1X authentication method.

Use the `undo dot1x authentication-method` command to restore the default.

By default, CHAP is used.

- The password authentication protocol (PAP) transports passwords in clear text.
- The challenge handshake authentication protocol (CHAP) transports only usernames over the network. Compared with PAP, CHAP provides better security.
- With EAP relay authentication, the authenticator encapsulates 802.1X user information in the EAP attributes of RADIUS packets and sends the packets to the RADIUS server for authentication; it does not need to repackage the EAP packets into standard RADIUS packets for authentication. In this case, you can configure the `user-name-format` command but it does not take effect. For information about the `user-name-format` command, refer to **AAA Commands** in the **Security Volume**.

Note that:

- Local authentication supports PAP and CHAP.
- For RADIUS authentication, the RADIUS server must be configured accordingly to support PAP, CHAP, or EAP authentication.

Related commands: `display dot1x`.

Examples

```
# Set the 802.1X authentication method to PAP.
<Sysname> system-view
[Sysname] dot1x authentication-method pap
```

dot1x guest-vlan

Syntax

In system view:

```
dot1x guest-vlan guest-vlan-id [ interface interface-list ]
undo dot1x guest-vlan [ interface interface-list ]
```

In interface view:

```
dot1x guest-vlan guest-vlan-id
undo dot1x guest-vlan
```

View

System view, Layer 2 Ethernet interface view

Default Level

2: System level

Parameters

`guest-vlan-id`: ID of the VLAN to be specified as the guest VLAN, in the range 1 to 4094. It must already exist.
interface interface-list: Specifies a port list. The interface-list argument is in the format of interface-list = { interface-type interface-number [to interface-type interface-number] } & <1-10>, where interface-type represents the port type, interface-number represents the port number, and & <1-10> means that you can provide up to 10 port indexes/port index lists for this argument. The start port number must be smaller than the end number and the two ports must be of the same type.

Description

Use the `dot1x guest-vlan` command to configure the guest VLAN for specified or all ports.

Use the `undo dot1x guest-vlan` command to remove the guest VLAN(s) configured for specified or all ports.

By default, a port is configured with no guest VLAN.

Currently, on the S4210G series Ethernet switches, a guest VLAN can be only a port-based guest VLAN (PGV), which is supported on a port that uses the access control method of `portbased`.

Note that:

- In system view, this command configures a guest VLAN for all Layer 2 Ethernet ports if you do not specify the interface-list argument, and configures a guest VLAN for specified ports if you specify the interface-list argument.
- In interface view, you cannot specify the interface-list argument and can only configure guest VLAN for the current port.
- You must enable 802.1X for a guest VLAN to take effect.
- You must enable the 802.1X multicast trigger function for a PGV to take effect.
- After an PGV takes effect, if you change the port access method from `portbased` to `macbased`, the port will leave the guest VLAN.
- You are not allowed to delete a VLAN that is configured as a guest VLAN. To delete such a VLAN, you need to remove the guest VLAN configuration first.
- You cannot configure both the guest VLAN function and the free IP function on a port.

Related commands: `dot1x`, `dot1x port-method`, `dot1x multicast-trigger`, `mac-vlan enable`, and `display mac-vlan` in **VLAN Commands** in the **Access Volume**.

Examples

Specify port GigabitEthernet 1/0/1 to use VLAN 999 as its guest VLAN.

```
<Sysname> system-view
[Sysname] dot1x guest-vlan 999 interface GigabitEthernet 1/0/1
```

Specify ports GigabitEthernet 1/0/2 to GigabitEthernet 1/0/5 to use VLAN 10 as its guest VLAN.

```
<Sysname> system-view
[Sysname] dot1x guest-vlan 10 interface GigabitEthernet 1/0/2 to GigabitEthernet 1/0/5
```

Specify all ports to use VLAN 7 as their guest VLAN.

```
<Sysname> system-view
[Sysname] dot1x guest-vlan 7
```

Specify port GigabitEthernet 1/0/7 to use VLAN 3 as its guest VLAN.

```
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/7
[Sysname-GigabitEthernet1/0/7] dot1x guest-vlan 3
```
dot1x handshake

Syntax

- `dot1x handshake`
- `undo dot1x handshake`

View

- Interface view

Default Level

- 2: System level

Parameters

- None

Description

Use the `dot1x handshake` command to enable the online user handshake function so that the device can periodically send handshake messages to the client to check whether a user is online.

Use the `undo dot1x handshake` command to disable the function.

By default, the function is enabled.

Note that: To ensure that the online user handshake function can work normally, you are recommended to use the iNode 802.1X client software.

Examples

```
# Enable online user handshake.
<Sysname> system-view
<Sysname> interface GigabitEthernet 1/0/4
<Sysname-GigabitEthernet1/0/4> dot1x handshake
```

dot1x mandatory-domain

Syntax

- `dot1x mandatory-domain domain-name`
- `undo dot1x mandatory-domain`

View

- Interface view

Default Level

- 2: System level

Parameters

- `domain-name`: ISP domain name, a case-insensitive string of 1 to 24 characters.
Description

Use the **dot1x mandatory-domain** command to specify the mandatory authentication domain for users accessing the port.

Use the **undo dot1x mandatory-domain** command to remove the mandatory authentication domain.

By default, no mandatory authentication domain is specified.

Note that:
- When authenticating an 802.1X user trying to access the port, the system selects an authentication domain in the following order: the mandatory domain, the ISP domain specified in the username, and the default ISP domain.
- The specified mandatory authentication domain must exist.
- On a port configured with a mandatory authentication domain, the user domain name displayed by the **display connection** command is the name of the mandatory authentication domain. For detailed information about the **display connection** command, refer to **AAA Commands** in the **Security Volume**.

Related commands: **display dot1x**.

Examples

Configure the mandatory authentication domain **my-domain** for 802.1X users on GigabitEthernet 1/0/1.

```plaintext
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] dot1x mandatory-domain my-domain
```

After 802.1X user **usera** passes the authentication, display the user connection information on GigabitEthernet 1/0/1.

```plaintext
[Sysname-GigabitEthernet1/0/1] display connection interface GigabitEthernet 1/0/1
```

Index=68 ,Username=usera@my-domian
MAC=0015-e9a6-7cfe ,IP=3.3.3.3
Total 1 connection(s) matched.

dot1x max-user

Syntax

In system view:

- **dot1x max-user user-number [interface interface-list]**
- **undo dot1x max-user [interface interface-list]**

In Ethernet interface view:

- **dot1x max-user user-number**
- **undo dot1x max-user**

View

System view, Ethernet interface view
Default Level

2: System level

Parameters

user-number: Maximum number of users to be supported simultaneously. The valid settings and the default may vary by device.

interface interface-list: Specifies an Ethernet port list, which can contain multiple Ethernet ports. The interface-list argument is in the format of interface-list = { interface-type interface-number [to interface-type interface-number] } & <1-10>, where interface-type represents the port type, interface-number represents the port number, and & <1-10> means that you can provide up to 10 port indexes/port index lists for this argument. The start port number must be smaller than the end number and the two ports must be of the same type.

Description

Use the dot1x max-user command to set the maximum number of users to be supported simultaneously for specified or all ports.

Use the undo dot1x max-user command to restore the default.

With no interface specified, the command sets the threshold for all ports.

Related commands: display dot1x.

Examples

Set the maximum number of users for port GigabitEthernet 1/0/1 to support simultaneously as 32.

<Sysname> system-view
[Sysname] dot1x max-user 32 interface GigabitEthernet 1/0/1

Or

<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] dot1x max-user 32

dot1x multicast-trigger

Syntax

 dot1x multicast-trigger
 undo dot1x multicast-trigger

View

 Interface view

Default Level

2: System level

Parameters

None
Description

Use the **dot1x multicast-trigger** command to enable the multicast trigger function of 802.1X to send multicast trigger messages to the clients periodically.

Use the **undo dot1x multicast-trigger** command to disable this function.

By default, the multicast trigger function is enabled.

Related commands: **display dot1x**.

Examples

```
# Disable the multicast trigger function for interface GigabitEthernet 1/0/1.
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] undo dot1x multicast-trigger
```

dot1x port-control

Syntax

In system view:

```
dot1x port-control { authorized-force | auto | unauthorized-force } [ interface interface-list ]
undo dot1x port-control [ interface interface-list ]
```

In Ethernet interface view:

```
dot1x port-control { authorized-force | auto | unauthorized-force }
undo dot1x port-control
```

View

System view, Ethernet interface view

Default Level

2: System level

Parameters

- **authorized-force**: Places the specified or all ports in the authorized state, allowing users of the ports to access the network without authentication.
- **auto**: Places the specified or all ports in the unauthorized state initially to allow only EAPOL frames to pass, and turns the ports into the authorized state to allow access to the network after the users pass authentication. This is the most common choice.
- **unauthorized-force**: Places the specified or all ports in the unauthorized state, denying any access requests from users of the ports.
- **interface interface-list**: Specifies an Ethernet port list, which can contain multiple Ethernet ports. The `interface-list` argument is in the format of `interface-list = { interface-type interface-number [to interface-type interface-number] } & <1-10>`, where `interface-type` represents the port type, `interface-number` represents the port number, and `& <1-10>` means that you can provide up to 10 port indexes/port index lists for this argument. The start port number must be smaller than the end number and the two ports must be of the same type.
Description

Use the **dot1x port-control** command to set the access control mode for specified or all ports.

Use the **undo dot1x port-control** command to restore the default.

The default access control mode is **auto**.

Related commands: **display dot1x**.

Examples

```
# Set the access control mode of port GigabitEthernet 1/0/1 to unauthorized-force.
<Sysname> system-view
<Sysname> dot1x port-control unauthorized-force interface GigabitEthernet 1/0/1
```

```
Or

<Sysname> system-view
<Sysname> interface GigabitEthernet 1/0/1
<Sysname-GigabitEthernet1/0/1] dot1x port-control unauthorized-force
```

dot1x port-method

Syntax

In system view:

```
dot1x port-method { macbased | portbased } [ interface interface-list ]
undo dot1x port-method [ interface interface-list ]
```

In Ethernet interface view:

```
dot1x port-method { macbased | portbased }
undo dot1x port-method
```

View

System view, Ethernet interface view

Default Level

2: System level

Parameters

- **macbased**: Specifies to use the **macbased** authentication method. With this method, each user of a port must be authenticated separately, and when an authenticated user goes offline, no other users are affected.

- **portbased**: Specifies to use the **portbased** authentication method. With this method, after the first user of a port passes authentication, all other users of the port can access the network without authentication, and when the first user goes offline, all other users get offline at the same time.

interface interface-list: Specifies an Ethernet port list, which can contain multiple Ethernet ports. The **interface-list** argument is in the format of **interface-list = { interface-type interface-number [to interface-type interface-number] } & <1-10>**, where **interface-type** represents the port type, **interface-number** represents the port number, and & <1-10> means that you can provide up to 10 port indexes/port index lists for this argument. The start port number must be smaller than the end number and the two ports must be of the same type.
Description

Use the **dot1x port-method** command to set the access control method for specified or all ports.

Use the **undo dot1x port-method** command to restore the default.

The default access control method is **macbased**.

Related commands: **display dot1x**.

Examples

```bash
# Set the access control method to **portbased** for port GigabitEthernet 1/0/1.
<Sysname> system-view
[Sysname] dot1x port-method portbased interface GigabitEthernet 1/0/1

Or

<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] dot1x port-method portbased
```

dot1x quiet-period

Syntax

```
dot1x quiet-period
undo dot1x quiet-period
```

View

System view

Default Level

2: System level

Parameters

None

Description

Use the **dot1x quiet-period** command to enable the quiet timer function.

Use the **undo dot1x quiet-period** command to disable the function.

By default, the function is disabled.

After a supplicant fails the authentication, the authenticator refuses further authentication requests from the supplicant in the period dictated by the quiet timer.

Related commands: **display dot1x**, **dot1x timer**.

Examples

```bash
# Enable the quiet timer.
<Sysname> system-view
[Sysname] dot1x quiet-period
```
dot1x re-authenticate

Syntax

dot1x re-authenticate
undo dot1x re-authenticate

View

Ethernet interface view

Default Level

2: System level

Parameters

None

Description

Use the dot1x re-authenticate command to enable the periodic re-authentication function.

Use the undo dot1x re-authenticate command to restore the default.

By default, this function is disabled.

After periodic re-authentication is enabled on a port, the device will perform 802.1X authentication for online users on the port at the interval specified by the periodic re-authentication timer (which is configured by the dot1x timer reauth-period command). This is intended to track the connection status of online users and update the authorization attributes assigned by the server, such as the ACL, VLAN, and QoS Profile, ensuring that the users are in normal online state.

Related commands: dot1x timer reauth-period.

Examples

Enable the 802.1X re-authentication function on GigabitEthernet1/0/1 and configure the periodic re-authentication interval as 1800 seconds.

<Sysname> system-view
<Sysname> dot1x timer reauth-period 1800
<Sysname> interface gigabitethernet 1/0/1
<Sysname-Gigabitethernet1/0/1] dot1x re-authenticate

dot1x retry

Syntax

dot1x retry max-retry-value
undo dot1x retry

View

System view

Default Level

2: System level
Parameters

max-retry-value: Maximum number of attempts to send an authentication request to a supplicant, in the range 1 to 10.

Description

Use the `dot1x retry` command to set the maximum number of attempts to send an authentication request to a supplicant.

Use the `undo dot1x retry` command to restore the default.

By default, the authenticator can send an authentication request to a supplicant twice at most.

Note that after sending an authentication request to a supplicant, the authenticator may retransmit the request if it does not receive any response at an interval specified by the username request timeout timer or supplicant timeout timer. The number of retransmission attempts is one less than the value set by this command.

Related commands: `display dot1x`.

Examples

Set the maximum number of attempts to send an authentication request to a supplicant as 9.

```
<Sysname> system-view
[Sysname] dot1x retry 9
```

dot1x timer

Syntax

```
dot1x timer { handshake-period handshake-period-value | quiet-period quiet-period-value | reauth-period reauth-period-value | server-timeout server-timeout-value | supp-timeout supp-timeout-value | tx-period tx-period-value }
undo dot1x timer { handshake-period | quiet-period | reauth-period | server-timeout | supp-timeout | tx-period }
```

View

System view

Default Level

2: System level

Parameters

handshake-period-value: Setting for the handshake timer in seconds. It ranges from 5 to 1024 and defaults to 15.

quiet-period-value: Setting for the quiet timer in seconds. It ranges from 10 to 120 and defaults to 60.

reauth-period-value: Setting for the periodic re-authentication timer in seconds. It ranges from 60 to 7200 and defaults to 3600.

server-timeout-value: Setting for the server timeout timer in seconds. It ranges from 100 to 300 and defaults to 100.

supp-timeout-value: Setting for the supplicant timeout timer in seconds. It ranges from 1 to 120 and defaults to 30.
tx-period-value: Setting for the username request timeout timer in seconds. It ranges from 10 to 120 and defaults to 30.

Description

Use the dot1x timer command to set 802.1X timers.

Use the undo dot1x timer command to restore the defaults.

Several timers are used in the 802.1X authentication process to guarantee that the supplicants, the authenticators, and the RADIUS server interact with each other in a reasonable manner. You can use this command to set these timers:

- Handshake timer (handshake-period): After a supplicant passes authentication, the authenticator sends to the supplicant handshake requests at this interval to check whether the supplicant is online. If the authenticator receives no response after sending the allowed maximum number of handshake requests, it considers that the supplicant is offline.
- Quiet timer (quiet-period): When a supplicant fails the authentication, the authenticator refuses further authentication requests from the supplicant in this period of time.
- Periodic re-authentication timer (reauth-period): If you enable periodic re-authentication on a port (by the dot1x re-authenticate command), the device will re-authenticate online users on the port at the interval specified by this timer. If you change the re-authentication interval when there are users online, the device will continue to re-authenticate such users according to the original re-authentication interval setting for one time. Then the device will use the new interval for re-authentication of all online users.
- Server timeout timer (server-timeout): Once an authenticator sends a RADIUS Access-Request packet to the authentication server, it starts this timer. If this timer expires but it receives no response from the server, it retransmits the request.
- Supplicant timeout timer (supp-timeout): Once an authenticator sends an EAP-Request/MD5 Challenge frame to a supplicant, it starts this timer. If this timer expires but it receives no response from the supplicant, it retransmits the request.
- Username request timeout timer (tx-period): Once an authenticator sends an EAP-Request/Identity frame to a supplicant, it starts this timer. If this timer expires but it receives no response from the supplicant, it retransmits the request. In addition, to be compatible with clients that do not send EAPOL-Start requests unsolicitedly, the device multicasts EAP-Request/Identity frame periodically to detect the clients, with the multicast interval defined by tx-period.

It is unnecessary to change the timers unless in some special or extreme network environments. The change of a timer takes effect immediately.

Related commands: display dot1x.

Examples

Set the server timeout timer to 150 seconds.

<Sysname> system-view

[Sysname] dot1x timer server-timeout 150

reset dot1x statistics

Syntax

reset dot1x statistics [interface interface-list]
View

User view

Default Level

2: System level

Parameters

interface interface-list: Specifies an Ethernet port list, which can contain multiple Ethernet ports. The interface-list argument is in the format of interface-list = { interface-type interface-number [to interface-type interface-number] } & <1-10>, where interface-type represents the port type, interface-number represents the port number, and & <1-10> means that you can provide up to 10 port indexes/port index lists for this argument. The start port number must be smaller than the end number and the two ports must be of the same type.

Description

Use the reset dot1x statistics command to clear 802.1X statistics.

With the interface interface-list argument specified, the command clears 802.1X statistics on the specified ports. With the argument unspecified, the command clears global 802.1X statistics and 802.1X statistics on all ports.

Related commands: display dot1x.

Examples

Clear 802.1X statistics on port GigabitEthernet 1/0/1.

<Sysname> reset dot1x statistics interface GigabitEthernet 1/0/1
EAD Fast Deployment Configuration Commands

dot1x free-ip

Syntax

dot1x free-ip ip-address { mask-address | mask-length }
undo dot1x free-ip { ip-address { mask | mask-length } | all }

View

System view

Default Level

2: System level

Parameters

ip-address: IP address of the freely accessible network segment, also called a free IP.
mask: Mask of the freely accessible network segment.
mask-length: Length of the mask of the freely accessible network segment.
all: Specifies all the freely accessible network segments.

Description

Use the dot1x free-ip command to configure a freely accessible network segment, that is, a network segment that users can access before passing 802.1X authentication.

Use the undo dot1x free-ip command to remove one or all freely accessible network segments.

By default, no freely accessible network segment is configured.

Note that:

- The free IP function is mutually exclusive with the global MAC authentication function, the port security function, and the guest VLAN function on a port.
- The free IP function is effective only when the port access control mode is auto.
- The maximum number of freely accessible network segments is 4.

Related commands: display dot1x.

Examples

Configure 192.168.0.0 as a freely accessible network segment.
<Sysname> system-view
[Sysname] dot1x free-ip 192.168.0.0 24
dot1x timer ead-timeout

Syntax

```
dot1x timer ead-timeout ead-timeout-value  undo dot1x timer ead-timeout
```

View

System view

Default Level

2: System level

Parameters

```
ead-timeout-value: EAD rule timeout time, in the range 1 minute to 1440 minutes.
```

Description

Use the `dot1x timer ead-timeout` command to set the EAD rule timeout time.

Use the `undo dot1x timer ead-timeout` command to restore the default.

By default, the timeout time is 30 minutes.

Related commands: `display dot1x`.

Examples

```
# Set the EAD rule timeout time to 5 minutes.
<Sysname> system-view
 [Sysname] dot1x timer ead-timeout 5
```

dot1x url

Syntax

```
dot1x url url-string  undo dot1x [ url-string ]
```

View

System view

Default Level

2: System level

Parameters

```
url-string: Redirect URL, a case-sensitive string of 1 to 64 characters in the format http://string/.
```

Description

Use the `dot1x url` command to configure a redirect URL. After a redirect URL is configured, when a user uses a Web browser to access networks other than the free IP, the device will redirect the user to the redirect URL.

Use the `undo dot1x url` command to remove the redirect URL.
By default, no redirect URL is defined.

Note that:

- The redirect URL and the free IP must be in the same network segment; otherwise, the URL may be inaccessible.
- You can configure the `dot1x url` command for more than once but only the last one takes effect.

Related commands: `display dot1x`, `dot1x free-ip`.

Examples

```
# Configure the redirect URL as http://192.168.0.1.
<Sysname> system-view
<Sysname> dot1x url http://192.168.0.1
```
HABP Configuration Commands

display habp

Syntax

display habp

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the `display habp` command to display HABP configuration information.

Examples

Display HABP configuration information.
< Sysname > display habp
Global HABP information:
 HABP Mode: Server
 Sending HABP request packets every 20 seconds
 Bypass VLAN: 2

Table 6-1 display habp command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HABP Mode</td>
<td>HABP mode of the current device, server or client</td>
</tr>
<tr>
<td>Sending HABP request packets every 20 seconds</td>
<td>Interval to send HABP request packets</td>
</tr>
<tr>
<td>Bypass VLAN</td>
<td>ID of the VLAN in which HABP packets are transmitted</td>
</tr>
</tbody>
</table>

display habp table

Syntax

display habp table
View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the display habp table command to display HABP MAC address table entries.

Examples

Display HABP MAC address table entries.

<Sysname> display habp table

MAC Holdtime Receive Port
001f-3c00-0030 53 Ethernet1/1

Table 6-2 display habp table command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC</td>
<td>MAC address</td>
</tr>
<tr>
<td>Holdtime</td>
<td>Lifetime of an entry in seconds. The initial value is three times of the interval to send HABP request packets. An entry will age out if it is not updated during the period.</td>
</tr>
<tr>
<td>Receive Port</td>
<td>Port that learned the MAC address</td>
</tr>
</tbody>
</table>

display habp traffic

Syntax

display habp traffic

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the display habp traffic command to display HABP packet statistics.

Examples

Display HABP packet statistics.
HABP counters:
Packets output: 0, Input: 0
ID error: 0, Type error: 0, Version error: 0
Sent failed: 0

Table 6-3 display habp traffic command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets output</td>
<td>Number of HABP packets sent</td>
</tr>
<tr>
<td>Input</td>
<td>Number of HABP packets received</td>
</tr>
<tr>
<td>ID error</td>
<td>Number of packets with an incorrect ID</td>
</tr>
<tr>
<td>Type error</td>
<td>Number of packets with an incorrect type</td>
</tr>
<tr>
<td>Version error</td>
<td>Number of packets with an incorrect version number</td>
</tr>
<tr>
<td>Sent failed</td>
<td>Number of packets failed to be sent</td>
</tr>
</tbody>
</table>

habp enable

Syntax

habp enable
undo habp enable

View

System view

Default Level

2: System level

Parameters

None

Description

Use the **habp enable** command to enable HABP.
Use the **undo habp enable** command to disable HABP.
By default, HABP is enabled.
HABP is required when and only when the cluster function and 802.1X (or MAC authentication) are enabled on the device.

Examples

Enable HABP.

<Sysname> system-view

[Sysname] habp enable
hbp server vlan

Syntax

 hbp server vlan vlan-id
 undo hbp server

View

 System view

Default Level

 2: System level

Parameters

 vlan-id: ID of the VLAN in which HABP packets are to be transmitted, in the range 1 to 4094.

Description

Use the `hbp server vlan` command to configure HABP to work in server mode and specify the VLAN in which HABP packets are to be transmitted.

Use the `undo hbp server vlan` command to configure HABP to work in the default mode.

By default, HABP works in client mode.

Examples

 # Configure HABP to work in server mode and specify the VLAN for HABP packets as VLAN 2.
 <Sysname> system-view
 [Sysname] hbp server vlan 2

hbp timer

Syntax

 hbp timer interval
 undo hbp timer

View

 System view

Default Level

 2: System level

Parameters

 interval: Interval (in seconds) to send HABP request packets, in the range 5 to 600.

Description

Use the `hbp timer` command to set the interval to send HABP request packets.

Use the `undo hbp timer` command to restore the default.

The default interval is 20 seconds.
This command is required only on the HABP server.

Examples

Set the interval to send HABP request packets to 50 seconds.
< Sysname > system-view
[Sysname] habp timer 50
MAC Authentication Configuration Commands

display mac-authentication

Syntax

display mac-authentication [interface interface-list]

View

Any view

Default Level

2: System level

Parameters

interface interface-list: Specifies an Ethernet port list, in the format of \{ interface-type interface-number \[to interface-type interface-number \] \}&<1-10>, where &<1-10> indicates that you can specify up to 10 port ranges. A port range defined without the to interface-type interface-number portion comprises only one port. With an interface range, the end interface number and the start interface number must be of the same type and the former must be greater than the latter.

Description

Use the display mac-authentication command to display global MAC authentication information or MAC authentication information about specified ports.

Examples

Display global MAC authentication information.
 SYSNAME > display mac-authentication
 MAC address authentication is enabled.
 User name format is MAC address, like xxxxxxxxxxxx
 Fixed username:mac
 Fixed password:not configured
 Offline detect period is 300s
 Quiet period is 60s.
 Server response timeout value is 100s
 the max allowed user number is 1024 per slot
 Current user number amounts to 0
 Current domain: not configured, use default domain

Silent Mac User info:

| MAC Addr | From Port | Port Index |

7-1
GigabitEthernet1/0/1 is link-up
MAC address authentication is enabled
Authenticate success: 0, failed: 0
Current online user number is 0

<table>
<thead>
<tr>
<th>MAC Addr</th>
<th>Authenticate state</th>
<th>Auth Index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...(part of the output omitted)

Table 7-1 display mac-authentication command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC address authentication is enabled</td>
<td>Whether MAC authentication is enabled</td>
</tr>
<tr>
<td>User name format is MAC address, like</td>
<td>The username is in the format of an MAC address without hyphens, like xxxxxxxxxx.</td>
</tr>
<tr>
<td>xxxxxxxxxx</td>
<td>If the username format is configured as MCA address with hyphens, “like xx-xx-xx-xx-xx-xx” will be displayed.</td>
</tr>
<tr>
<td>Fixed username:</td>
<td>Fixed username</td>
</tr>
<tr>
<td>Fixed password:</td>
<td>Password of the fixed username</td>
</tr>
<tr>
<td>Offline detect period</td>
<td>Setting of the offline detect timer</td>
</tr>
<tr>
<td>Quiet period</td>
<td>Setting of the quiet timer</td>
</tr>
<tr>
<td>Server response timeout value</td>
<td>Setting of the server timeout timer</td>
</tr>
<tr>
<td>the max allowed user number</td>
<td>Maximum number of users each slot in the device supports</td>
</tr>
<tr>
<td>Current user number amounts to</td>
<td>Number of online users</td>
</tr>
<tr>
<td>Current domain: not configured, use default</td>
<td>Currently used ISP domain</td>
</tr>
<tr>
<td>domain</td>
<td></td>
</tr>
<tr>
<td>Silent Mac User info</td>
<td>Information about silent MAC addresses</td>
</tr>
<tr>
<td>GigabitEthernet1/0/1 is link-up</td>
<td>Status of the link on port GigabitEthernet 1/0/1</td>
</tr>
<tr>
<td>MAC address authentication is enabled</td>
<td>Whether MAC authentication is enabled on port GigabitEthernet 1/0/1</td>
</tr>
<tr>
<td>Authenticate success: 0, failed: 0</td>
<td>MAC authentication statistics, including the number of successful authentication attempts and that of unsuccessful authentication attempts</td>
</tr>
<tr>
<td>Current online user number</td>
<td>Number of online users on the port</td>
</tr>
<tr>
<td>MAC Addr</td>
<td>Online user MAC address</td>
</tr>
<tr>
<td>Authenticate state</td>
<td>User status. Possible values are:</td>
</tr>
<tr>
<td></td>
<td>• CONNECTING: The user is logging in.</td>
</tr>
<tr>
<td></td>
<td>• SUCCESS: The user has passed the authentication.</td>
</tr>
<tr>
<td></td>
<td>• FAILURE: The user failed the authentication.</td>
</tr>
<tr>
<td></td>
<td>• LOGOFF: The user has logged off.</td>
</tr>
<tr>
<td>Auth Index</td>
<td>Authenticator Index</td>
</tr>
</tbody>
</table>
mac-authentication

Syntax

In system view:

mac-authentication [interface interface-list]
undo mac-authentication [interface interface-list]

In Ethernet interface view:

mac-authentication
undo mac-authentication

View

System view, Ethernet interface view

Default Level

2: System level

Parameters

interface interface-list: Specifies an Ethernet port list, in the format of { interface-type interface-number [to interface-type interface-number] }&<1-10>, where &<1-10> indicates that you can specify up to 10 port ranges. A port range defined without the to interface-type interface-number portion comprises only one port.

Description

Use the mac-authentication command to enable MAC authentication globally or for one or more ports.

Use the undo mac-authentication command to disable MAC authentication globally or for one or more ports.

By default, MAC authentication is neither enabled globally nor enabled on any port.

Note that:

- In system view, if you provide the interface-list argument, the command enables MAC authentication for the specified ports; otherwise, the command enables MAC authentication globally. In Ethernet interface view, the command enables MAC authentication for the port because the interface-list argument is not available.
- You can enable MAC authentication for ports before enabling it globally. However, MAC authentication begins to function only after you also enable it globally.
- You can configure MAC authentication parameters globally or for specified ports either before or after enabling MAC authentication. If no MAC authentication parameters are configured when MAC authentication takes effect, the default values are used.

Examples

Enable MAC authentication globally.

<Sysname> system-view

[Sysname] mac-authentication

Mac-auth is enabled globally.

Enable MAC authentication for port GigabitEthernet 1/0/1.
mac-authentication domain

Syntax

mac-authentication domain isp-name
undo mac-authentication domain

View

System view

Default Level

2: System level

Parameters

isp-name: ISP domain name, a case-insensitive string of 1 to 24 characters that cannot contain any forward slash (/), colon (:), asterisk (*), question mark (?), less-than sign (<), greater-than sign (>), or @.

Description

Use the mac-authentication domain command to specify the ISP domain for MAC authentication.

Use the undo mac-authentication domain command to restore the default.

By default, the default ISP domain is used for MAC authentication users. For information about the default ISP domain, refer to the domain default enable command in AAA Commands of the Security Volume.

Examples

Specify the ISP domain for MAC authentication as domain1.
<Sysname> system-view
[Sysname] mac-authentication domain domain1

mac-authentication timer

Syntax

mac-authentication timer { offline-detect offline-detect-value | quiet quiet-value | server-timeout server-timeout-value }
undo mac-authentication timer { offline-detect | quiet | server-timeout }
View

System view

Default Level

2: System level

Parameters

offline-detect offline-detect-value: Specifies the offline detect interval, in the range 60 to 65,535 seconds.

quiet quiet-value: Specifies the quiet period, in the range 1 to 3,600 seconds.

server-timeout server-timeout-value: Specifies the server timeout period, in the range 100 to 300 seconds.

Description

Use the mac-authentication timer command to set the MAC authentication timers.

Use the undo mac-authentication timer command to restore the defaults.

By default, the offline detect interval is 300 seconds, the quiet period is 60 seconds, and the server timeout period is 100 seconds.

The following timers function in the process of MAC authentication:

- Offline detect timer: This timer sets the idle timeout interval for users. If no packet is received from a user over two consecutive timeout intervals, the system disconnects the user connection and notifies the RADIUS server.
- Quiet timer: Whenever a user fails MAC authentication, the device does not perform MAC authentication of the user during such a period.
- Server timeout timer: During authentication of a user, if the device receives no response from the RADIUS server in this period, it assumes that its connection to the RADIUS server has timed out and forbids the user from accessing the network.

Related commands: display mac-authentication.

Examples

Set the server timeout timer to 150 seconds.

<Sysname> system-view

[Sysname] mac-authentication timer server-timeout 150

mac-authentication user-name-format

Syntax

mac-authentication user-name-format { fixed [account name] [password { cipher | simple } password] } | mac-address [with-hyphen | without-hyphen]

undo mac-authentication user-name-format

View

System view
Default Level

2: System level

Parameters

fixed: Uses the MAC authentication username type of fixed username.

account name: Specifies the fixed username. The name argument is a case-insensitive string of 1 to 55 characters and defaults to mac.

password { cipher | simple } password: Specifies the password for the fixed username. Specify the cipher keyword to display the password in cipher text or the simple keyword to display the password in plain text. In the former case, the password can be either a string of 1 to 63 characters in plain text or a string of 24 or 88 characters in cipher text. In the latter case, the password must be a string of 1 to 63 characters in plain text.

mac-address: Uses the source MAC address of a user as the username for authentication.

with-hyphen: Indicates that the MAC address must include “-“, like xx-xx-xx-xx-xx-xx. The letters in the address must be in lower case.

without-hyphen: Indicates that the MAC address must not include “-“, like xxxxxxxxxxxx. The letters in the address must be in lower case.

Description

Use the mac-authentication user-name-format command to configure the MAC authentication username type and, if the type of fixed username is used, the username and password for MAC authentication.

Use the undo mac-authentication user-name-format command to restore the default.

By default, each user’s source MAC address is used as the username and password for MAC authentication, with “-“ in the MAC address.

Note that:

- When the type of MAC address is used, each user’s source MAC address is used as both the username and password for MAC authentication.
- In cipher display mode, a password in plain text with no more than 16 characters will be encrypted into a password in cipher text with 24 characters, and a password in plain text with 16 to 63 characters will be encrypted into a password in cipher text with 88 characters. For a password with 24 characters, if it can be decrypted by the system, it will be treated as a cipher-text one; otherwise, it will be treated as a plain-text one.

Related commands: display mac-authentication.

Examples

Configure the username for MAC authentication as abc, and the password displayed in plain text as xyz.

<Sysname> system-view

[Sysname] mac-authentication user-name-format fixed account abc password simple xyz
reset mac-authentication statistics

Syntax

reset mac-authentication statistics [interface interface-list]

View

User view

Default Level

2: System level

Parameters

interface interface-list: Specifies an Ethernet port list, in the format of { interface-type interface-number [to interface-type interface-number] }&<1-10>, where &<1-10> indicates that you can specify up to 10 port ranges. A port range defined without the to interface-type interface-number portion comprises only one port.

Description

Use the reset mac-authentication statistics command to clear MAC authentication statistics.

Note that:

- If you do not specify the interface-list argument, the command clears the global MAC authentication statistics and the MAC authentication statistics on all ports.
- If you specify the interface-list argument, the command clears the MAC authentication statistics on the specified ports.

Related commands: display mac-authentication.

Examples

Clear MAC authentication statistics on GigabitEthernet 1/0/1.

<Sysname> reset mac-authentication statistics interface GigabitEthernet 1/0/1
Port Security Configuration Commands

display port-security

Syntax

 display port-security [interface interface-list]

View

 Any view

Default Level

 2: System level

Parameters

 interface-list: Ethernet port list, in the format of { interface-type interface-number [to interface-type interface-number] }&<1-10>, where &<1-10> means that you can specify up to 10 port or port ranges. The starting port and ending port of a port range must be of the same type and the ending port number must be greater than the starting port number.

Description

 Use the display port-security command to display port security configuration information, operation information, and statistics about one or more specified ports or all ports.

Examples

 # Display port security configuration information, operation information, and statistics about all ports.
 <Sysname> display port-security
 Equipment port-security is enabled
 AddressLearn trap is enabled
 Intrusion trap is enabled
 Dot1x logon trap is enabled
 Dot1x logoff trap is enabled
 Dot1x logfailure trap is enabled
 RALM logon trap is enabled
 RALM logoff trap is enabled
 RALM logfailure trap is enabled
 Disableport Timeout: 20s
 OUI value:
 Index is 1, OUI value is 000d1a
Index is 2, OUI value is 003c12

GigabitEthernet1/0/1 is link-down
 Port mode is UserloginWithOUI
 NeedtoKnow mode is needtoknowonly
 Intrusion mode is disableport
 Max MAC address number is 50
 Stored MAC address number is 0
 Authorization is ignored

GigabitEthernet1/0/2 is link-down
 Port mode is noRestriction
 NeedtoKnow mode is disabled
 Intrusion mode is no action
 Max MAC address number is not configured
 Stored MAC address number is 0
 Authorization is permitted

Table 8-1 display port-security command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment port-security is enabled</td>
<td>Port security is enabled.</td>
</tr>
<tr>
<td>AddressLearn trap is enabled</td>
<td>Address learning trap is enabled.</td>
</tr>
<tr>
<td>Intrusion trap is enabled</td>
<td>Intrusion protection trap is enabled.</td>
</tr>
<tr>
<td>Dot1x logon trap is enabled</td>
<td>802.1X logon trap is enabled.</td>
</tr>
<tr>
<td>Dot1x logoff trap is enabled</td>
<td>802.1X logoff trap is enabled.</td>
</tr>
<tr>
<td>Dot1x logfailure is enabled</td>
<td>802.1X authentication failure trap is enabled.</td>
</tr>
<tr>
<td>RALM logon trap is enabled</td>
<td>MAC authentication success trap is enabled.</td>
</tr>
<tr>
<td>RALM logoff trap is enabled</td>
<td>MAC authenticated user logoff trap is enabled.</td>
</tr>
<tr>
<td>RALM logfailure trap is enabled</td>
<td>MAC authentication failure trap is enabled.</td>
</tr>
<tr>
<td>Disableport Timeout</td>
<td>Silence timeout of the port, in seconds.</td>
</tr>
<tr>
<td>OUI value</td>
<td>24-bit OUI value</td>
</tr>
<tr>
<td>Index</td>
<td>OUI index</td>
</tr>
<tr>
<td>Port mode is UserloginWithOUI</td>
<td>The port security mode is UserloginWithOUI.</td>
</tr>
<tr>
<td>NeedtoKnow mode is needtoknowonly</td>
<td>The NTK mode is needtoknowonly.</td>
</tr>
<tr>
<td>Intrusion mode is disableport</td>
<td>Intrusion protection action is set to disableport.</td>
</tr>
<tr>
<td>Max MAC address number</td>
<td>Maximum number of secure MAC addresses allowed on the port</td>
</tr>
<tr>
<td>Stored MAC address number</td>
<td>Number of MAC addresses stored</td>
</tr>
<tr>
<td>Authorization is ignored</td>
<td>Authorization information from the server is ignored. By default, the information takes effect and this field is displayed as “Authorization is permitted.”</td>
</tr>
</tbody>
</table>
display port-security mac-address block

Syntax

display port-security mac-address block [interface interface-type interface-number] [vlan vlan-id] [count]

View

Any view

Default Level

2: System level

Parameters

interface interface-type interface-number: Specifies a port by its type and number.

vlan vlan-id: Specifies a VLAN by its number, which is in the range 1 to 4094.

count: Displays only the count of the blocked MAC addresses.

Description

Use the display port-security mac-address block command to display information about blocked MAC addresses.

With no keyword or argument specified, the command displays information about all blocked MAC addresses.

Related commands: port-security intrusion-mode.

Examples

Display information about all blocked MAC addresses.
<Sysname> display port-security mac-address block
MAC ADDR From Port VLAN ID
0002-0002-0002 GigabitEthernet1/0/1 1
000d-88f8-0577 GigabitEthernet1/0/1 1

--- On slot 2, 2 mac address(es) found ---
--- 2 mac address(es) found ---

Display the count of all blocked MAC addresses.
<Sysname> display port-security mac-address block count
--- On slot 2, 2 mac address(es) found ---
--- 2 mac address(es) found ---

Display information about all blocked MAC addresses in VLAN 1.
<Sysname> display port-security mac-address block vlan 1
MAC ADDR From Port VLAN ID
0002-0002-0002 GigabitEthernet1/0/1 1
000d-88f8-0577 GigabitEthernet1/0/1 1

--- On slot 2, 2 mac address(es) found ---
--- 2 mac address(es) found ---
Display information about all blocked MAC addresses of port GigabitEthernet 1/0/1.

```
<Sysname> display port-security mac-address block interface GigabitEthernet1/0/1
MAC ADDR             From Port                  VLAN ID
000d-88f8-0577      GigabitEthernet1/0/1                1
--- On slot 2, 1 mac address(es) found ---
--- 1 mac address(es) found ---
```

Display information about all blocked MAC addresses of port GigabitEthernet 1/0/1 in VLAN 1.

```
<Sysname> display port-security mac-address block interface GigabitEthernet 1/0/1 vlan 1
MAC ADDR             From Port                  VLAN ID
000d-88f8-0577      GigabitEthernet1/0/1                1
--- On slot 2, 1 mac address(es) found ---
--- 1 mac address(es) found ---
```

Table 8-2 display port-security mac-address block command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC ADDR</td>
<td>Blocked MAC address</td>
</tr>
<tr>
<td>From Port</td>
<td>Port having received frames with the blocked MAC address being the source address</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>ID of the VLAN to which the port belongs</td>
</tr>
<tr>
<td>2 mac address(es) found</td>
<td>Number of blocked MAC addresses</td>
</tr>
</tbody>
</table>

display port-security mac-address security

Syntax

```
display port-security mac-address security [ interface interface-type interface-number ] [ vlan vlan-id ] [ count ]
```

View

Any view

Default Level

2: System level

Parameters

- `interface interface-type interface-number`: Specifies a port by its type and number.
- `vlan vlan-id`: Specifies a VLAN by its number, which is in the range 1 to 4094.
- `count`: Displays only the count of the secure MAC addresses.

Description

Use the `display port-security mac-address security` command to display information about secure MAC addresses.
With no keyword or argument specified, the command displays information about all secure MAC addresses.

Related commands: **port-security mac-address security**.

Examples

Display information about all secure MAC addresses.

```
<Sysname> display port-security mac-address security
```

```
MAC ADDR         VLAN ID  STATE         PORT INDEX               AGING TIME(s)
0002-0002-0002   1      Security     GigabitEthernet1/0/1     NOAGED
000d-88f8-0577   1      Security     GigabitEthernet1/0/1     NOAGED

--- 2 mac address(es) found ---
```

Display only the count of the secure MAC addresses.

```
<Sysname> display port-security mac-address count
```

```
2 mac address(es) found
```

Display information about secure MAC addresses in a specified VLAN.

```
<Sysname> display port-security mac-address security vlan 1
```

```
MAC ADDR         VLAN ID  STATE         PORT INDEX               AGING TIME(s)
0002-0002-0002   1      Security     GigabitEthernet1/0/1     NOAGED
000d-88f8-0577   1      Security     GigabitEthernet1/0/1     NOAGED

--- 2 mac address(es) found ---
```

Display information about secure MAC addresses on the specified port.

```
<Sysname> display port-security mac-address security interface GigabitEthernet1/0/1
```

```
MAC ADDR         VLAN ID  STATE         PORT INDEX               AGING TIME(s)
000d-88f8-0577   1      Security     GigabitEthernet1/0/1     NOAGED

--- 1 mac address(es) found ---
```

Display information about secure MAC addresses that are on the specified port and in the specified VLAN.

```
<Sysname> display port-security mac-address security interface GigabitEthernet 1/0/1 vlan 1
```

```
MAC ADDR         VLAN ID  STATE         PORT INDEX               AGING TIME(s)
000d-88f8-0577   1      Security     GigabitEthernet1/0/1     NOAGED

--- 1 mac address(es) found ---
```

Table 8-3 display port-security mac-address command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC ADDR</td>
<td>Secure MAC address</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>VLAN to which the port belongs</td>
</tr>
<tr>
<td>STATE</td>
<td>Type of the MAC address added</td>
</tr>
<tr>
<td>PORT INDEX</td>
<td>Port to which the secure MAC address belongs</td>
</tr>
<tr>
<td>AGING TIME(s)</td>
<td>Period of time before the secure MAC address ages out</td>
</tr>
</tbody>
</table>

8-5
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxx mac address(es) found</td>
<td>Number of secure MAC addresses stored</td>
</tr>
</tbody>
</table>

port-security authorization ignore

Syntax

```
port-security authorization ignore
undo port-security authorization ignore
```

View

Layer 2 Ethernet interface view

Default Level

2: System level

Parameters

None

Description

Use the `port-security authorization ignore` command to configure a port to ignore the authorization information from the RADIUS server.

Use the `undo port-security port-mode ignore` command to restore the default.

By default, a port uses the authorization information from the RADIUS server.

After a user passes RADIUS authentication, the RADIUS server performs authorization based on the authorization attributes configured for the user's account. For example, it may assign a VLAN.

Related commands: `display port-security`.

Examples

```
# Configure port GigabitEthernet 1/0/1 to ignore the authorization information from the RADIUS server.
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] port-security authorization ignore
```

port-security enable

Syntax

```
port-security enable
undo port-security enable
```

View

System view

Default Level

2: System level
Parameters

None

Description

Use the `port-security enable` command to enable port security.

Use the `undo port-security enable` command to disable port security.

By default, port security is disabled.

Note that:

1) Port security cannot be enabled when 802.1X or MAC authentication is enabled globally.

2) Enabling port security resets the following configurations on a port to the defaults bracketed, making them dependent completely on the port security mode:
 - 802.1X (disabled), port access control method (`macbased`), and port access control mode (`auto`)
 - MAC authentication (disabled)

3) Disabling port security resets the following configurations on a port to the defaults bracketed:
 - Port security mode (`noRestrictions`)
 - 802.1X (disabled), port access control method (`macbased`), and port access control mode (`auto`)
 - MAC authentication (disabled)

4) Port security cannot be disabled if there is any user present on a port.

Related commands: `display port-security`, `dot1x`, `dot1x port-method`, `dot1x port-control` in 802.1X Commands of the Security Volume, `mac-authentication` in MAC Authentication Commands of the Security Volume.

Examples

```
# Enable port security.
<Sysname> system-view
[Sysname] port-security enable
```

port-security intrusion-mode

Syntax

```
port-security intrusion-mode { blockmac | disableport | disableport-temporarily }
undo port-security intrusion-mode
```

View

Layer 2 Ethernet interface view

Default Level

2: System level

Parameters

- **blockmac**: Adds the source MAC addresses of illegal frames to the blocked MAC address list and discards frames with blocked source MAC addresses. A blocked MAC address is restored to normal after being blocked for three minutes, which is fixed and cannot be changed. You can use the `display port-security mac-address block` command to view the blocked MAC address list.

- **disableport**: Disables the port permanently upon detecting an illegal frame received on the port.
disableport-temporarily: Disables the port for a specified period of time whenever it receives an illegal frame. Use the **port-security timer disableport** command to set the period.

Description

Use the **port-security intrusion-mode** command to configure the intrusion protection feature, so that the interface performs configured security policies in response to received illegal packets.

Use the **undo port-security intrusion-mode** command to restore the default.

By default, intrusion protection is disabled.

You can use the **undo shutdown** command to restore the connection of the port.

Related commands: **display port-security**, **display port-security mac-address block**, **port-security timer disableport**.

Examples

Configure port GigabitEthernet 1/0/1 to block the source MAC addresses of illegal frames after intrusion protection is triggered.

```
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] port-security intrusion-mode blockmac
```

port-security mac-address security

Syntax

In Layer 2 Ethernet interface view:

```
port-security mac-address security mac-address vlan vlan-id
```

In system view:

```
port-security mac-address security mac-address interface interface-type interface-number vlan vlan-id
undo port-security mac-address security [ [ mac-address [ interface interface-type interface-number ] ] vlan vlan-id ]
```

View

Layer 2 Ethernet Interface view, system view

Default Level

2: System level

Parameters

- **mac-address**: Secure MAC address, in the H-H-H format.
- **interface interface-type interface-number**: Specifies a Layer 2 Ethernet port by its type and number.
- **vlan-id**: ID of the VLAN to which the secure MAC address belongs, in the range 1 to 4094.

Description

Use the **port-security mac-address security** command to add a secure MAC address.

Use the **undo port-security mac-address security** command to remove specified secure MAC addresses.
By default, no secure MAC address is configured.

Note that:
- The port must belong to the specified VLAN.
- You can configure a secure MAC address only if port security is enabled and the specified port operates in autoLearn mode.
- The `undo port-security mac-address security` command can be used in system view only.

Related commands: `display port-security`.

Examples

Enable port security, set the port security mode of port GigabitEthernet 1/0/1 to autoLearn, and add a secure MAC address of 0001-0001-0002 (belonging to VLAN 10) for port GigabitEthernet 1/0/1 in system view.

```plaintext
<Sysname> system-view
[Sysname] port-security enable
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] port-security max-mac-count 100
[Sysname-GigabitEthernet1/0/1] port-security port-mode autolearn
[Sysname-GigabitEthernet1/0/1] quit
[Sysname] port-security mac-address security 0001-0001-0002 interface gigabitethernet 1/0/1 vlan 10
```

Enable port security, set the port security mode of port GigabitEthernet 1/0/1 to autoLearn, and add a secure MAC address of 0001-0002-0003 (belonging to VLAN 4) for port GigabitEthernet 1/0/1 in interface view.

```plaintext
<Sysname> system-view
[Sysname] port-security enable
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] port-security max-mac-count 100
[Sysname-GigabitEthernet1/0/1] port-security port-mode autolearn
[Sysname-GigabitEthernet1/0/1] port-security mac-address security 0001-0002-0003 vlan 4
```

port-security max-mac-count

Syntax

```plaintext
port-security max-mac-count count-value
undo port-security max-mac-count
```

View

Ethernet interface view

Default Level

2: System level

Parameters

- `count-value`: Maximum number of secure MAC addresses allowed on the port, ranging 1 to 1,024.
Description

Use the **port-security max-mac-count** command to set the maximum number of secure MAC addresses allowed on the port.

Use the **undo port-security max-mac-count** command to restore the default setting.

By default, the maximum number of secure MAC addresses is not limited.

Note that:
- You cannot change the maximum number of secure MAC addresses for a port working in the **autoLearn** mode.
- The maximum number of secure MAC addresses allowed on a port does not include or limit that of the static MAC addresses manually configured.
- The maximum number of secure MAC addresses allowed on a port must not be less than the number of MAC addresses stored on the port.

Related commands: **display port-security**.

Examples

```bash
# Set the maximum number of secure MAC addresses allowed on port GigabitEthernet 1/0/1 to 100.
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] port-security max-mac-count 100
```

port-security ntk-mode

Syntax

```
port-security ntk-mode { ntk-withbroadcasts | ntk-withmulticasts | ntkonly }
undo port-security ntk-mode
```

View

Ethernet interface view

Default Level

2: System level

Parameters

- **ntk-withbroadcasts**: Sends only frames destined for authenticated MAC addresses or the broadcast address.
- **ntk-withmulticasts**: Sends only frames destined for authenticated MAC addresses, multicast addresses, or the broadcast address.
- **ntkonly**: Sends only frames destined for authenticated MAC addresses.

Description

Use the **port-security ntk-mode** command to configure the NTK feature.

Use the **undo port-security ntk-mode** command to restore the default.

By default, NTK is disabled on a port and all frames are allowed to be sent.
The need to know (NTK) feature checks the destination MAC addresses in outbound frames to allow frames to be sent to only devices passing authentication, thus preventing illegal devices from intercepting network traffic.

Related commands: display port-security.

Examples

Set the NTK mode of port GigabitEthernet 1/0/1 to ntkonly, allowing the port to forward received packets to only devices passing authentication.

<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] port-security ntk-mode ntkonly

port-security oui

Syntax

port-security oui oui-value index index-value
undo port-security oui index index-value

View

System view

Default Level

2: System level

Parameters

oui-value: Organizationally unique identifier (OUI) string, a 48-bit MAC address in the H-H-H format. The system automatically uses only the 24 high-order bits as the OUI value.

index-value: OUI index, in the range 1 to 16.

Description

Use the port-security oui command to configure an OUI value for user authentication. This value is used when the port security mode is UserLoginWithOUI.

Use the undo port-security oui command to delete an OUI value with the specified OUI index.

By default, no OUI value is configured.

Note that an OUI value configured by using the port-security oui command takes effect only when the security mode is UserLoginWithOUI.

Related commands: display port-security.

Examples

Configure an OUI value of 000d2a, setting the index to 4.

<Sysname> system-view
[Sysname] port-security oui 000d-2a10-0033 index 4
port-security port-mode

Syntax

```
port-security port-mode { autolearn | mac-authentication | mac-else-userlogin-secure | mac-else-userlogin-secure-ext | secure | userlogin | userlogin-secure | userlogin-secure-ext | userlogin-secure-or-mac | userlogin-secure-or-mac-ext | userlogin-withoui }
undo port-security port-mode
```

View

Interface view

Default Level

2: System level

Parameters

- **autolearn**: Operates in autoLearn mode.
- **mac-authentication**: Operates in macAddressWithRadius mode.
- **mac-else-userlogin-secure**: Operates in macAddressElseUserLoginSecure mode.
- **mac-else-userlogin-secure-ext**: Operates in macAddressElseUserLoginSecureExt mode.
- **secure**: Operates in secure mode.
- **userlogin**: Operates in userLogin mode.
- **userlogin-secure**: Operates in userLoginSecure mode.
- **userlogin-secure-ext**: Operates in userLoginSecureExt mode.
- **userlogin-secure-or-mac**: Operates in macAddressOrUserLoginSecure mode.
- **userlogin-secure-or-mac-ext**: Operates in macAddressOrUserLoginSecureExt mode.
- **userlogin-withoui**: Operates in userLoginWithOUI mode.

Description

Use the **port-security port-mode** command to set the port security mode of a port.

Use the **undo port-security port-mode** command to restore the default.

By default, a port operates in noRestrictions mode, where port security does not take effect.

Note that:

- Configuration of port security mode on a port is mutually exclusive with the configuration of 802.1X authentication, port access control method, port access control mode, and MAC authentication on the port.
- With port security enabled, you can change the port security mode of a port only when the port is operating in noRestrictions mode, the default mode. You can use the **undo port-security port-mode** command to restore the default port security mode.
- Before configuring the port security mode to autoLearn, be sure to configure the maximum number of secure MAC addresses allowed on the port by using the **port-security max-mac-count** command.
- You cannot change the port security mode of a port with users online.

Related commands: **display port-security**.
Examples

Enable port security and configure the port security mode of port GigabitEthernet 1/0/1 as secure.

```plaintext
<Sysname> system-view
[Sysname] port-security enable
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] port-security port-mode secure
```

Change the port security mode of port GigabitEthernet 1/0/1 to userLogin.

```plaintext
[Sysname-GigabitEthernet1/0/1] undo port-security port-mode
[Sysname-GigabitEthernet1/0/1] port-security port-mode userlogin
```

port-security timer disableport

Syntax

```
port-security timer disableport time-value
undo port-security timer disableport
```

View

System view

Default Level

2: System level

Parameters

`time-value`: Silence timeout during which the port remains disabled, in seconds. It ranges from 20 to 300.

Description

Use the `port-security timer disableport` command to set the silence timeout during which the port remains disabled.

Use the `undo port-security timer disableport` command to restore the default.

By default, the silence timeout is 20 seconds.

If you configure the intrusion protection policy as disabling the port temporarily whenever it receives an illegal frame, you can use this command to set the silence period.

Related commands: `display port-security`.

Examples

Configure the intrusion protection policy as disabling the port temporarily whenever it receives an illegal frame and set the silence timeout to 30 seconds.

```plaintext
<Sysname> system-view
[Sysname] port-security timer disableport 30
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] port-security intrusion-mode disableport-temporarily
```
port-security trap

Syntax

```
port-security trap { addresslearned | dot1xlogfailure | dot1xlogoff | dot1xlogon | intrusion | ralmlogfailure | ralmlogoff | ralmlogon }
undo port-security trap { addresslearned | dot1xlogfailure | dot1xlogoff | dot1xlogon | intrusion | ralmlogfailure | ralmlogoff | ralmlogon }
```

View

System view

Default Level

2: System level

Parameters

- **addresslearned**: Address learning trap. When enabled, this function allows the system to send a trap message when a port learns a new MAC address.
- **dot1xlogfailure**: Trap for 802.1X authentication failure.
- **dot1xlogon**: Trap for successful 802.1X authentication.
- **dot1xlogoff**: Trap for 802.1X user logoff events.
- **intrusion**: Trap for illegal frames.
- **ralmlogfailure**: Trap for MAC authentication failure.
- **ralmlogoff**: Trap for MAC authentication user logoff events.
- **ralmlogon**: Trap for successful MAC authentication.

Note

RALM (RADIUS Authenticated Login using MAC-address) means RADIUS authentication based on MAC address.

Description

Use the `port-security trap` command to enable port security traps.
Use the `undo port-security trap` command to disable port security traps.

By default, no port security trap is enabled.

This command involves the trap feature. With the trap feature, a device can send trap information upon receiving packets that result from, for example, intrusion, abnormal login, or logout operations, allowing you to monitor operations of interest.

Related commands: `display port-security`.

Examples

```
# Enable address learning trap.
```
<Sysname> system-view

[Sysname] port-security trap addresslearned
IP Source Guard Configuration Commands

display ip check source

Syntax

display ip check source [interface interface-type interface-number | ip-address ip-address | mac-address mac-address]

View

Any view

Default Level

1: Monitor level

Parameters

interface interface-type interface-number: Displays the dynamic bindings of the interface specified by its type and number.

ip-address ip-address: Displays the dynamic bindings of an IP address.

mac-address mac-address: Displays the dynamic bindings of an MAC address (in the format of H-H-H).

Description

Use the display ip check source command to display dynamic bindings.

With no options specified, the command displays the dynamic bindings of all interfaces.

Related commands: ip check source.

Examples

Display all dynamic bindings.
<Sysname> display ip check source
Total entries found: 2

<table>
<thead>
<tr>
<th>MAC</th>
<th>IP</th>
<th>Vlan</th>
<th>Port</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>040a-0000-4000</td>
<td>10.1.0.9</td>
<td>2</td>
<td>GigabitEthernet1/0/1</td>
<td>DHCP-SNP</td>
</tr>
<tr>
<td>040a-0000-2000</td>
<td>10.1.0.7</td>
<td>2</td>
<td>GigabitEthernet1/0/1</td>
<td>DHCP-SNP</td>
</tr>
</tbody>
</table>
Table 9-1 display ip check source command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total entries found</td>
<td>Total number of found entries</td>
</tr>
<tr>
<td>MAC</td>
<td>MAC address of the dynamic binding. N/A means that no MAC address is bound in the entry.</td>
</tr>
<tr>
<td>IP</td>
<td>IP address of the dynamic binding. N/A means that no IP address is bound in the entry.</td>
</tr>
<tr>
<td>Vlan</td>
<td>VLAN to which the obtained binding entry belongs. N/A means that no VLAN is bound in the entry.</td>
</tr>
<tr>
<td>Port</td>
<td>Port to which the dynamic binding entry is applied</td>
</tr>
<tr>
<td>Status</td>
<td>Type of dynamically obtaining the binding entry</td>
</tr>
</tbody>
</table>

display user-bind

Syntax

`display user-bind [interface interface-type interface-number | ip-address ip-address | mac-address mac-address]`

View

Any view

Default Level

1: Monitor level

Parameters

- `interface interface-type interface-number`: Displays the static bindings of the interface specified by its type and number.
- `ip-address ip-address`: Displays the static bindings of an IP address.
- `mac-address mac-address`: Displays the static bindings of an MAC address (in the format of H-H-H).

Description

Use the `display user-bind` command to display static bindings.

With no options specified, the command displays static bindings of all interfaces.

Related commands: `user-bind`.

Examples

```
# Display all static bindings.
<Sysname> display user-bind
  Total entries found: 4
  MAC       IP       Vlan   Port                     Status
  N/A       1.1.1.1  N/A    GigabitEthernet1/0/1  Static
  0001-0001-0001  2.2.2.2  200    GigabitEthernet1/0/1  Static
  0003-0003-0003  N/A    N/A    GigabitEthernet1/0/2  Static
  0004-0004-0004  4.4.4.4  N/A    GigabitEthernet1/0/2  Static
```
Table 9-2 display user-bind command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total entries found</td>
<td>Total number of found entries</td>
</tr>
<tr>
<td>MAC</td>
<td>MAC address of the binding. N/A means that no MAC address is bound in the entry.</td>
</tr>
<tr>
<td>IP</td>
<td>IP address of the binding. N/A means that no IP address is bound in the entry.</td>
</tr>
<tr>
<td>Vlan</td>
<td>VLAN of the binding. N/A means that no VLAN is bound in the entry.</td>
</tr>
<tr>
<td>Port</td>
<td>Port of the binding</td>
</tr>
<tr>
<td>Status</td>
<td>Type of the binding. Static means that the binding is manually configured.</td>
</tr>
</tbody>
</table>

ip check source

Syntax

```plaintext
ip check source { ip-address | ip-address mac-address | mac-address }
undo ip check source
```

View

Ethernet interface view, VLAN interface view

Default Level

2: System level

Parameters

- `ip-address`: Specifies to bind source IP address to the port.
- `ip-address mac-address`: Specifies to bind source IP address and MAC address to the port.
- `mac-address`: Specifies to bind source MAC address to the port.

Description

Use the `ip check source` command to configure the dynamic binding function on a port.

Use the `undo ip check source` command to restore the default.

By default, the dynamic binding function is disabled.

Note that: You cannot configure the dynamic binding function on a port that is in an aggregation group.

Related commands: `display ip check source`.

Examples

```plaintext
# Configure dynamic binding function on port GigabitEthernet1/0/1 to filter packets based on both source IP address and MAC address.
<Sysname> system-view
<Sysname> interface gigabitethernet1/0/1
<Sysname-GigabitEthernet1/0/1] ip check source ip-address mac-address
```
user-bind

Syntax

user-bind { ip-address ip-address | ip-address ip-address mac-address mac-address | mac-address mac-address } [vlan vlan-id]
undo user-bind { ip-address ip-address | ip-address ip-address mac-address mac-address | mac-address mac-address } [vlan vlan-id]

View

Layer-2 Ethernet interface view

Default Level

2: System level

Parameters

ip-address ip-address: Specifies the IP address for the static binding. The IP address can only be a Class A, Class B, or Class C address and can be neither 127.x.x.x nor 0.0.0.0.
mac-address mac-address: Specifies the MAC address for the static binding in the format of H-H-H. The MAC address cannot be all 0s, all Fs (a broadcast address), or a multicast address.
vlan vlan-id: Specifies the VLAN for the static binding. vlan-id is the ID of the VLAN to be bound, in the range 1 to 4094.

Description

Use the user-bind command to configure a static binding.
Use the undo user-bind command to delete a static binding.
By default, no static binding exists on a port.

Note that:
- The system does not support repeatedly configuring a binding entry to one port.
- For products supporting multi-port binding, a binding entry can be configured to multiple ports; for products that do not support multi-port binding, a binding entry can be configured to only one port.
- You cannot configure a static binding on a port that is in an aggregation group.

Related commands: display user-bind.

Examples

Configure a static binding on port GigabitEthernet1/0/1.
<Sysname> system-view
[Sysname] interface gigabitethernet1/0/1
[Sysname-GigabitEthernet1/0/1] user-bind ip-address 192.168.0.1 mac-address 0001-0001-0001
SSH2.0 Configuration Commands

SSH2.0 Server Configuration Commands

display ssh server

Syntax

display ssh server { session | status }

View

Any view

Default Level

1: Monitor level

Parameters

session: Displays the session information of the SSH server.
status: Displays the status information of the SSH server.

Description

Use the display ssh server command on an SSH server to display SSH server status information or session information.

Related commands: ssh server authentication-retries, ssh server rekey-interval, ssh server authentication-timeout, ssh server enable, ssh server compatible-ssh1x enable.

Note

This command is also available on an SFTP server.

Examples

Display the SSH server status information.
<Sysname> display ssh server status
SSH Server: Disable
SSH version : 1.99
SSH authentication-timeout : 60 second(s)
SSH server key generating interval : 0 hour(s)
SSH authentication retries : 3 time(s)
SFTP server: Disable
Table 10-1 display ssh server status command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSH Server</td>
<td>Whether the SSH server function is enabled</td>
</tr>
<tr>
<td>SSH version</td>
<td>SSH protocol version</td>
</tr>
<tr>
<td></td>
<td>When the SSH supports SSH1, the protocol version is 1.99. Otherwise, the protocol version is 2.0.</td>
</tr>
<tr>
<td>SSH authentication-timeout</td>
<td>Authentication timeout period</td>
</tr>
<tr>
<td>SSH server key generating interval</td>
<td>SSH server key pair update interval</td>
</tr>
<tr>
<td>SSH authentication retries</td>
<td>Maximum number of SSH authentication attempts</td>
</tr>
<tr>
<td>SFTP server</td>
<td>Whether the SFTP server function is enabled</td>
</tr>
<tr>
<td>SFTP server Idle-Timeout</td>
<td>SFTP connection idle timeout period</td>
</tr>
</tbody>
</table>

Display the SSH server session information.

```bash
<Sysname> display ssh server session
```

<table>
<thead>
<tr>
<th>Conn</th>
<th>Ver</th>
<th>Encry</th>
<th>State</th>
<th>Retry</th>
<th>SerType</th>
<th>Username</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTY 0</td>
<td>2.0</td>
<td>DES</td>
<td>Established</td>
<td>0</td>
<td>SFTP</td>
<td>client001</td>
</tr>
</tbody>
</table>

Table 10-2 display ssh server session command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conn</td>
<td>Connected VTY channel</td>
</tr>
<tr>
<td>Ver</td>
<td>SSH server protocol version</td>
</tr>
<tr>
<td>Encry</td>
<td>Encryption algorithm</td>
</tr>
<tr>
<td>State</td>
<td>Status of the session, including: Init, Ver-exchange, Keys-exchange, Auth-request, Serv-request, Established, Disconnected</td>
</tr>
<tr>
<td>Retry</td>
<td>Number of authentication attempts</td>
</tr>
<tr>
<td>SerType</td>
<td>Service type (SFTP, Stelnet)</td>
</tr>
<tr>
<td>Username</td>
<td>Name of a user during login</td>
</tr>
</tbody>
</table>

display ssh user-information

Syntax

display ssh user-information [username]

View

Any view

Default Level

1: Monitor level
Parameters

username: SSH username, a string of 1 to 80 characters.

Description

Use the `display ssh user-information` command on an SSH server to display information about one or all SSH users.

With the _username_ argument not specified, the command displays information about all SSH users.

Related commands: `ssh user`.

Note

This command is also available on an SFTP server.

Examples

Display information about all SSH users.

```bash
<Sysname> display ssh user-information
Total ssh users : 2
Username    Authentication-type   User-public-key-name     Service-type
yemx        password              null                    stelnet|sftp
test        publickey             pubkey                     sftp
```

Table 10-3 display ssh user-information command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>Name of the user</td>
</tr>
<tr>
<td>Authentication-type</td>
<td>Authentication method. If this field has a value of <code>password</code>, the next field will have a value of <code>null</code>.</td>
</tr>
<tr>
<td>User-public-key-name</td>
<td>Public key of the user</td>
</tr>
<tr>
<td>Service-type</td>
<td>Service type</td>
</tr>
</tbody>
</table>

ssh server authentication-retries

Syntax

```bash
ssh server authentication-retries times
undo ssh server authentication-retries
```

View

System view

Default Level

2: System level
Parameters

times: Maximum number of authentication attempts, in the range 1 to 5.

Description

Use the `ssh server authentication-retries` command to set the maximum number of SSH connection authentication attempts, which takes effect at next login.

Use the `undo ssh server authentication-retries` command to restore the default.

By default, the maximum number of SSH connection authentication attempts is 3.

Note that:

- Authentication will fail if the number of authentication attempts (including both publickey and password authentication) exceeds that specified in the `ssh server authentication-retries` command.
- If the authentication method of SSH users is `password-publickey`, the maximum number of SSH connection authentication attempts must be at least 2. This is because SSH2.0 users must pass both password and publickey authentication.

Related commands: `display ssh server`.

Examples

```bash
# Set the maximum number of SSH connection authentication attempts to 4.
<Sysname> system-view
[Sysname] ssh server authentication-retries 4
```

ssh server authentication-timeout

Syntax

```
ssh server authentication-timeout time-out-value
undo ssh server authentication-timeout
```

View

System view

Default Level

2: System level

Parameters

`time-out-value`: Authentication timeout period in seconds, in the range 1 to 120.

Description

Use the `ssh server authentication-timeout` command to set the SSH user authentication timeout period on the SSH server.

Use the `undo ssh server authentication-timeout` command to restore the default.

By default, the authentication timeout period is 60 seconds.

Related commands: `display ssh server`.
Examples

Set the SSH user authentication timeout period to 10 seconds.
<Sysname> system-view
[Sysname] ssh server authentication-timeout 10

ssh server compatible-ssh1x enable

Syntax

```plaintext
ssh server compatible-ssh1x enable
undo ssh server compatible-ssh1x
```

View

System view

Default Level

2: System level

Parameters

None

Description

Use the `ssh server compatible-ssh1x` command to enable the SSH server to work with SSH1 clients.
Use the `undo ssh server compatible-ssh1x` command to disable the SSH server from working with SSH1 clients.
By default, the SSH server can work with SSH1 clients.
This configuration takes effect only for users logging in after the configuration.
Related commands: `display ssh server`.

Examples

Enable the SSH server to work with SSH1 clients.
<Sysname> system-view
[Sysname] ssh server compatible-ssh1x enable

ssh server enable

Syntax

```plaintext
ssh server enable
undo ssh server enable
```

View

System view

Default Level

2: System level
Parameters

None

Description

Use the ssh server enable command to enable SSH server.

Use the undo ssh server enable command to disable SSH server.

By default, SSH server is disabled.

Examples

Enable SSH server.
<Sysname> system-view
[Sysname] ssh server enable

ssh server rekey-interval

Syntax

ssh server rekey-interval hours

undo ssh server rekey-interval

View

System view

Default Level

2: System level

Parameters

hours: Server key pair update interval in hours, in the range 1 to 24.

Description

Use the ssh server rekey-interval command to set the interval for updating the RSA server key.

Use the undo ssh server rekey-interval command to remove the configuration.

By default, the update interval of the RSA server key is 0, that is, the RSA server key is not updated.

Related commands: display ssh server.

Caution

- This command is only available to SSH users using SSH1 client software.
- The system does not update any DSA key pair periodically.

Examples

Set the RSA server key pair update interval to 3 hours.
<Sysname> system-view
ssh user

Syntax

```
ssh user  username  service-type stelnet  authentication-type  {  password  |  { any  | password-publickey  | publickey } assign publickey  keyname  }
ssh user  username  service-type  { all  | sftp } authentication-type  {  password  |  { any  | password-publickey  | publickey } assign publickey  keyname  work-directory  directory-name  }
undo ssh user  username
```

View

System view

Default Level

2: System level

Parameters

- **username**: SSH username, a case-sensitive string of 1 to 80 characters.
- **service-type**: Specifies the service type of an SSH user, which can be one of the following:
 - **all**: Specifies both secure Telnet and secure FTP.
 - **sftp**: Specifies the service type as secure FTP.
 - **stelnet**: Specifies the service type of secure Telnet.
- **authentication-type**: Specifies the authentication method of an SSH user, which can be one the following:
 - **password**: Performs password authentication.
 - **any**: Performs either password authentication or publickey authentication.
 - **password-publickey**: Specifies that SSH2 clients perform both password authentication and publickey authentication and that SSH1 clients perform either type of authentication.
 - **publickey**: Performs publickey authentication.
- **assign publickey keyname**: Assigns an existing public key to an SSH user. `keyname` indicates the name of the client public key and is a string of 1 to 64 characters.
- **work-directory directory-name**: Specifies the working folder for an SFTP user. `directory-name` indicates the name of the working folder and is a string of 1 to 135 characters.

Description

Use the `ssh user` command to create an SSH user and specify the service type and authentication method.

Use the `undo ssh user` command to delete an SSH user.

Note that:

- For a publickey authentication user, you must configure the username and the public key on the device. For a password authentication user, you can configure the account information on either the device or the remote authentication server such as a RADIUS server.
- If you use the `ssh user` command to configure a public key for a user who has already had a public key, the new one overwrites the old one.

[Sysname] ssh server rekey-interval 3
- Authentication method and public key configuration takes effect only for users logging in after the configuration.
- If an SFTP user has been assigned a public key, it is necessary to set a working folder for the user.
- The working folder of an SFTP user is subject to the user authentication method. For a user using only password authentication, the working folder is the AAA authorized one. For a user using only publickey authentication or using both the publickey and password authentication methods, the working folder is the one set by using the `ssh user` command.

Related commands: `display ssh user-information`.

Examples

```bash
# Create an SSH user named `user1`, setting the service type as `sftp`, the authentication method as `publickey`, the work folder of the SFTP server as `flash`, and assigning a public key named `key1` to the user.
<Sysname> system-view
[Sysname] ssh user user1 service-type sftp authentication-type publickey assign publickey key1 work-directory flash:
```

SSH2.0 Client Configuration Commands

display ssh client source

Syntax

display ssh client source

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the `display ssh client source` command to display the source IP address or source interface currently set for the SSH client.

If neither source IP address nor source interface is specified for the SSH client, the system will prompt you to specify the source information.

Related commands: `ssh client source`.

Examples

```bash
# Display the source IP address of the SSH client.
<Sysname> display ssh client source
The source IP address you specified is 192.168.0.1
```
display ssh server-info

Syntax

`display ssh server-info`

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the `display ssh server-info` command on a client to display mappings between SSH servers and their host public keys saved on the client.

When an SSH client needs to authenticate the SSH server, it uses the locally saved public key of the server for the authentication. If the authentication fails, you can use this command to check the public key of the server saved on the client.

Related commands: `ssh client authentication server`.

Note

This command is also available on an SFTP client.

Examples

```bash
# Display the mappings between host public keys and SSH servers saved on the client.

<Sysname> display ssh server-info

<table>
<thead>
<tr>
<th>Server Name(IP)</th>
<th>Server public key name</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.0.1</td>
<td>abc_key01</td>
</tr>
<tr>
<td>192.168.0.2</td>
<td>abc_key02</td>
</tr>
</tbody>
</table>
```

Table 10-4 display ssh server-info command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server Name(IP)</td>
<td>Name or IP address of the server</td>
</tr>
<tr>
<td>Server public key name</td>
<td>Name of the host public key of the server</td>
</tr>
</tbody>
</table>
ssh client authentication server

Syntax

- `ssh client authentication server server assign publickey keyname`
- `undo ssh client authentication server server assign publickey`

View

- System view

Default Level

- 2: System level

Parameters

- `server`: IP address or name of the server, a string of 1 to 80 characters.
- `keyname`: Name of the host public key of the server, a string of 1 to 64 characters.

Description

Use the `ssh client authentication server` command on a client to configure the host public key of the server so that the client can determine whether the server is trustworthy.

Use the `undo ssh authentication server` command to remove the configuration.

By default, the host public key of the server is not configured, and when logging into the server, the client uses the IP address or host name used for login as the public key name.

If the client does not support first authentication, it will reject unauthenticated servers. In this case, you need to configure the public keys of the servers and specify the mappings between public keys and servers on the client, so that the client uses the correct public key of a server to authenticate the server.

Note that the specified host public key of the server must already exist.

Related commands: `ssh client first-time enable`.

Examples

```
# Configure the public key of the server with the IP address of 192.168.0.1 to be key1.
<Sysname> system-view
[Sysname] ssh client authentication server 192.168.0.1 assign publickey key1
```

ssh client first-time enable

Syntax

- `ssh client first-time enable`
- `undo ssh client first-time`

View

- System view

Default Level

- 2: System level
Parameters

None

Description

Use the `ssh client first-time enable` command to enable the first authentication function. Use the `undo ssh client first-time` command to disable the function.

By default, the function is enabled.

With first-time authentication, when an SSH client not configured with the server host public key accesses the server for the first time, the user can continue accessing the server, and save the host public key on the client. When accessing the server again, the client will use the saved server host public key to authenticate the server.

Without first-time authentication, a client not configured with the server host public key will deny to access the server. To access the server, a user must configure in advance the server host public key locally and specify the public key name for authentication.

Note that as the server may update its key pairs periodically, clients must obtain the most recent public keys of the server for successful authentication of the server.

Examples

```
# Enable the first authentication function.
<Sysname> system-view
[Sysname] ssh client first-time enable
```

```
ssh client ipv6 source
```

Syntax

```
ssh client ipv6 source { ipv6 ipv6-address | interface interface-type interface-number }
undo ssh client ipv6 source
```

View

System view

Default Level

3: Manage level

Parameters

- `ipv6 ipv6-address`: Specifies a source IPv6 address.
- `interface interface-type interface-number`: Specifies a source interface by its type and number.

Description

Use the `ssh client ipv6 source` command to specify the source IPv6 address or source interface for the SSH client.

Use the `undo ssh client ipv6 source` command to remove the configuration.

By default, the client uses the source address specified by the route of the device to access the SSH server.
Related commands: `display ssh client source`.

Examples

```plaintext
# Specify the source IPv6 address as 2:2::2:2 for the SSH client.
<Sysname> system-view
[Sysname] ssh client ipv6 source ipv6 2:2::2
```

ssh client source

Syntax

```
ssh client source { ip ip-address | interface interface-type interface-number }
undo ssh client source
```

View

System view

Default Level

3: Manage level

Parameters

- `ip ip-address`: Specifies a source IPv4 address.
- `interface interface-type interface-number`: Specifies a source interface by its type and number.

Description

Use the `ssh client source` command to specify the source IPv4 address or source interface of the SSH client.

Use the `undo ssh client source` command to remove the configuration.

By default, an SSH client uses the IP address of the interface specified by the route to access the SSH server.

Related commands: `display ssh client source`.

Examples

```plaintext
# Specify the source IPv4 address of the SSH client as 192.168.0.1.
<Sysname> system-view
[Sysname] ssh client source ip 192.168.0.1
```

`ssh2`

Syntax

```
ssh2 server [ port-number ] [ identity-key { dsa | rsa } | prefer-cotos-cipher { aes128 | des } | prefer-cotos-hmac { md5 | md5-96 | sha1 | sha1-96 } | prefer-kex { dh-group-exchange | dh-group1 | dh-group14 } | prefer-stoc-cipher { aes128 | des } | prefer-stoc-hmac { md5 | md5-96 | sha1 | sha1-96 } ] *
```

View

User view
Default Level

0: Visit level

Parameters

server: IPv4 address or host name of the server, a case-insensitive string of 1 to 20 characters.

port-number: Port number of the server, in the range 0 to 65535. The default is 22.

identity-key: Specifies the algorithm for publickey authentication, either *dsa* or *rsa*. The default is *dsa*.

prefer-ctos-cipher: Preferred encryption algorithm from client to server, defaulted to *aes128*.

- *aes128*: Encryption algorithm aes128-cbc

prefer-ctos-hmac: Preferred HMAC algorithm from client to server, defaulted to *sha1*.

- *md5*: HMAC algorithm hmac-md5.
- *md5-96*: HMAC algorithm hmac-md5-96.
- *sha1*: HMAC algorithm hmac-sha1.
- *sha1-96*: HMAC algorithm hmac-sha1-96.

prefer-kex: Preferred key exchange algorithm, defaulted to *dh-group-exchange*.

prefer-stoc-cipher: Preferred encryption algorithm from server to client, defaulted to *aes128*.

prefer-stoc-hmac: Preferred HMAC algorithm from server to client, defaulted to *sha1*.

Description

Use the *ssh2* command to establish a connection to an IPv4 SSH server and specify the public key algorithm, the preferred key exchange algorithm, and the preferred encryption algorithms and preferred HMAC algorithms between the client and server.

Note that when the client’s authentication method is publickey, the client needs to get the local private key for validation. As the publickey authentication includes RSA and DSA algorithms, you must specify an algorithm (by using the *identity-key* keyword) in order to get the correct data for the local private key. By default, the encryption algorithm is DSA.

Examples

```
# Log in to remote SSH2.0 server 10.214.50.51, using the following algorithms:

- Preferred key exchange algorithm: DH-group1
- Preferred encryption algorithm from server to client: AES128
- Preferred HMAC algorithm from client to server: MD5
- Preferred HMAC algorithm from server to client: SHA1-96.

<Sysname> ssh2 10.214.50.51 prefer-kex dh-group1 prefer-stoc-cipher aes128 prefer-ctos-hmac md5 prefer-stoc-hmac sha1-96
```
ssh2 ipv6

Syntax

```
ssh2 ipv6 server [ port-number ] [ identity-key { dsa | rsa } | prefer-ctos-cipher { aes128 | des } | prefer-ctos-hmac { md5 | md5-96 | sha1 | sha1-96 } | prefer-kex { dh-group-exchange | dh-group1 | dh-group14 } | prefer-stoc-cipher { aes128 | des } | prefer-stoc-hmac { md5 | md5-96 | sha1 | sha1-96 } ] *
```

View

User view

Default Level

0: Visit level

Parameters

- **server**: IPv6 address or host name of the server, a case-insensitive string of 1 to 46 characters.
- **port-number**: Port number of the server, in the range 0 to 65535. The default is 22.
- **identity-key**: Specifies the algorithm for publickey authentication, either `dsa` or `rsa`. The default is `dsa`.
- **prefer-ctos-cipher**: Preferred encryption algorithm from client to server, defaulted to `aes128`.
- **prefer-ctos-hmac**: Preferred HMAC algorithm from client to server, defaulted to `sha1`.
 - `md5`: HMAC algorithm hmac-md5.
 - `md5-96`: HMAC algorithm hmac-md5-96.
 - `sha1`: HMAC algorithm hmac-sha1.
- **prefer-kex**: Preferred key exchange algorithm, default to `dh-group-exchange`.
 - `dh-group-exchange`: Key exchange algorithm diffie-hellman-group-exchange-sha1.
 - `dh-group1`: Key exchange algorithm diffie-hellman-group1-sha1.
 - `dh-group14`: Key exchange algorithm diffie-hellman-group14-sha1.
- **prefer-stoc-cipher**: Preferred encryption algorithm from server to client, defaulted to `aes128`.
- **prefer-stoc-hmac**: Preferred HMAC algorithm from server to client, defaulted to `sha1`.

Description

Use the `ssh2 ipv6` command to establish a connection to an IPv6 SSH server and specify public key algorithm, the preferred key exchange algorithm, and the preferred encryption algorithms and preferred HMAC algorithms between the client and server.

Note that when the client’s authentication method is publickey, the client needs to get the local private key for validation. As the publickey authentication includes RSA and DSA algorithms, you must specify an algorithm (by using the `identity-key` keyword) in order to get the correct data for the local private key. By default, the encryption algorithm is DSA.

Examples

```
# Login to remote SSH2.0 server 2000::1, setting the algorithms as follows:

- Preferred key exchange algorithm: DH-group1
```
• Preferred encryption algorithm from server to client: AES128
• Preferred HMAC algorithm from client to server: MD5
• Preferred HMAC algorithm from server to client: SHA1-96.

```<Sysname> ssh2 ipv6 2000::1 prefer-kex dh-group1 prefer-stoc-cipher aes128 prefer-ctos-hmac md5 prefer-stoc-hmac sha1-96```

### SFTP Server Configuration Commands

**sftp server enable**

Syntax

```
sftp server enable
undo sftp server enable
```

**View**

System view

**Default Level**

2: System level

**Parameters**

None

**Description**

Use the `sftp server enable` command to enable SFTP server.
Use the `undo sftp server enable` command to disable SFTP server.
By default, SFTP server is disabled.
Related commands: `display ssh server`.

**Examples**

```
Enable SFTP server.
<Sysname> system-view
<Sysname> sftp server enable
```

**sftp server idle-timeout**

Syntax

```
sftp server idle-timeout time-out-value
undo sftp server idle-timeout
```

**View**

System view

**Default Level**

2: System level
Parameters

\textit{time-out-value}: Timeout period in minutes. It ranges from 1 to 35,791.

Description

Use the \texttt{sftp server idle-timeout} command to set the idle timeout period for SFTP user connections.

Use the \texttt{undo sftp server idle-timeout} command to restore the default.

By default, the idle timeout period is 10 minutes.

Related commands: \texttt{display ssh server}.

Examples

\begin{verbatim}
# Set the idle timeout period for SFTP user connections to 500 minutes.
<Sysname> system-view
[Sysname] sftp server idle-timeout 500
\end{verbatim}

SFTP Client Configuration Commands

\texttt{bye}

Syntax

\begin{verbatim}
bye
\end{verbatim}

View

SFTP client view

Default Level

3: Manage level

Parameters

None

Description

Use the \texttt{bye} command to terminate the connection with a remote SFTP server and return to user view.

This command functions as the \texttt{exit} and \texttt{quit} commands.

Examples

\begin{verbatim}
# Terminate the connection with the remote SFTP server.
sftp-client> bye
Bye
<Sysname>
\end{verbatim}

\texttt{cd}

Syntax

\begin{verbatim}
cd \{remote-path\}
\end{verbatim}
View

SFTP client view

Default Level

3: Manage level

Parameters

remote-path: Name of a path on the server.

Description

Use the cd command to change the working path on a remote SFTP server. With the argument not specified, the command displays the current working path.

Note

- You can use the cd .. command to return to the upper-level directory.
- You can use the cd / command to return to the root directory of the system.

Examples

# Change the working path to new1.

sftp-client> cd new1
Current Directory is:
/new1

cdup

Syntax

cdup

View

SFTP client view

Default Level

3: Manage level

Parameters

None

Description

Use the cdup command to return to the upper-level directory.

Examples

# From the current working directory /new1, return to the upper-level directory.

sftp-client> cdup
delete

Syntax

\texttt{delete \textit{remote-file}\&\textlangle 1-10\rangle}

View

SFTP client view

Default Level

3: Manage level

Parameters

\textit{remote-file}\&\textlangle 1-10\rangle: Name of a file on the server. \&\textlangle 1-10\rangle means that you can provide up to 10 filenames, which are separated by space.

Description

Use the \texttt{delete} command to delete the specified file(s) from a server.

This command functions as the \texttt{remove} command.

Examples

\begin{verbatim}
# Delete file temp.c from the server.
sftp-client> delete temp.c
The following files will be deleted:
/temp.c
Are you sure to delete it? [Y/N]:y
This operation may take a long time. Please wait...

File successfully Removed
\end{verbatim}

dir

Syntax

\texttt{dir [-a | -l] [ \textit{remote-path} ]}

View

SFTP client view

Default Level

3: Manage level

Parameters

\texttt{-a}: Displays the filenames or the folder names of the specified directory.
\texttt{-l}: Displays in a list form detailed information of the files and folders of the specified directory.
\textit{remote-path} : Name of the directory to be queried.
Description

Use the `dir` command to display file and folder information under a specified directory.

With the `-a` and `-l` keyword not specified, the command displays detailed information of files and folders under the specified directory in a list form.

With the `remote-path` not specified, the command displays the file and folder information of the current working directory.

This command functions as the `ls` command.

Examples

# Display in a list form detailed file and folder information under the current working directory.

```
sftp-client> dir
-rwxrwxrwx 1 noone nogroup 1759 Aug 23 06:52 config.cfg
-rwxrwxrwx 1 noone nogroup 225 Aug 24 08:01 pubkey2
-rwxrwxrwx 1 noone nogroup 283 Aug 24 07:39 pubkey1
-rwxrwxrwx 1 noone nogroup 225 Sep 28 08:28 pub1
drwxrwxrwx 1 noone nogroup 0 Sep 28 08:24 new1
drwxrwxrwx 1 noone nogroup 0 Sep 28 08:18 new2
-rwxrwxrwx 1 noone nogroup 225 Sep 28 08:30 pub2
```

display sftp client source

Syntax

```
display sftp client source
```

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the `display sftp client source` command to display the source IP address or source interface currently set for the SFTP client.

If neither source IP address nor source interface is specified for the SFTP client, the system will prompt you to specify the source information.

Related commands: `sftp client source`.

Examples

# Display the source IP address of the SFTP client.

```
<Sysname> display sftp client source
The source IP address you specified is 192.168.0.1
```
exit

Syntax

exit

View

SFTP client view

Default Level

3: Manage level

Parameters

None

Description

Use the exit command to terminate the connection with a remote SFTP server and return to user view. This command functions as the bye and quit commands.

Examples

# Terminate the connection with the remote SFTP server.

sftp-client> exit
Bye
<Sysname>

get

Syntax

get remote-file [ local-file ]

View

SFTP client view

Default Level

3: Manage level

Parameters

remote-file: Name of a file on the remote SFTP server.
local-file: Name for the local file.

Description

Use the get command to download a file from a remote SFTP server and save it locally.

If you do not specify the local-file argument, the file will be saved locally with the same name as that on the remote SFTP server.

Examples

# Download file temp1.c and save it as temp.c locally.
sftp-client> get temp1.c temp.c
Remote file:/temp1.c ---> Local file: temp.c
Downloading file successfully ended

help

Syntax

    help [ all | command-name ]

View

    SFTP client view

Default Level

    3: Manage level

Parameters

    all: Displays a list of all commands.
    command-name: Name of a command.

Description

    Use the help command to display a list of all commands or the help information of an SFTP client command.
    With neither the argument nor the keyword specified, the command displays a list of all commands.

Examples

    # Display the help information of the get command.
    sftp-client> help get
get remote-path [local-path]  Download file.Default local-path is the same as remote-path

ls

Syntax

    ls [-a | -l] [ remote-path ]

View

    SFTP client view

Default Level

    3: Manage level

Parameters

    -a: Displays the filenames or the folder names of the specified directory.
    -l: Displays in a list form detailed information of the files and folders of the specified directory
    remote-path: Name of the directory to be queried.
Description

Use the `ls` command to display file and folder information under a specified directory.

With the `–a` and `–l` keyword not specified, the command displays detailed information of files and folders under the specified directory in a list form.

With the `remote-path` not specified, the command displays the file and folder information of the current working directory.

This command functions as the `dir` command.

Examples

# Display in a list form detailed file and folder information under the current working directory.

```plaintext
sftp-client> ls
-rw-rw-r-- 1 noone nogroup 1759 Aug 23 06:52 config.cfg
-rw-rw-r-- 1 noone nogroup 225 Aug 24 08:01 pubkey2
-rw-rw-r-- 1 noone nogroup 283 Aug 24 07:39 pubkey1
-rw-rw-r-- 1 noone nogroup 225 Sep 28 08:28 pub1
drwxrwxrwx 1 noone nogroup 0 Sep 28 08:24 new1
drwxrwxrwx 1 noone nogroup 0 Sep 28 08:18 new2
-rw-rw-r-- 1 noone nogroup 225 Sep 28 08:30 pub2
```

mkdir

Syntax

`mkdir remote-path`

View

SFTP client view

Default Level

3: Manage level

Parameters

`remote-path`: Name for the directory on a remote SFTP server.

Description

Use the `mkdir` command to create a directory on a remote SFTP server.

Examples

# Create a directory named `test` on the remote SFTP server.

```plaintext
sftp-client> mkdir test
New directory created
```

put

Syntax

`put local-file [ remote-file ]`
View
  SFTP client view

Default Level
  3: Manage level

Parameters
  local-file: Name of a local file.
  remote-file: Name for the file on a remote SFTP server.

Description
  Use the put command to upload a local file to a remote SFTP server.
  If you do not specify the remote-file argument, the file will be saved remotely with the same name as the local one.

Examples
  # Upload local file temp.c to the remote SFTP server and save it as temp1.c.
  sftp-client> put temp.c temp1.c
  Local file: temp.c ---> Remote file: /temp1.c
  Uploading file successfully ended

pwd

Syntax
  pwd

View
  SFTP client view

Default Level
  3: Manage level

Parameters
  None

Description
  Use the pwd command to display the current working directory of a remote SFTP server.

Examples
  # Display the current working directory of the remote SFTP server.
  sftp-client> pwd
  /
**quit**

**Syntax**

```
quit
```

**View**

SFTP client view

**Default Level**

3: Manage level

**Parameters**

None

**Description**

Use the `quit` command to terminate the connection with a remote SFTP server and return to user view. This command functions as the `bye` and `exit` commands.

**Examples**

```
Terminate the connection with the remote SFTP server.
sftp-client> quit
Bye
<Sysname>
```

**remove**

**Syntax**

```
remove remote-file&<1-10>
```

**View**

SFTP client view

**Default Level**

3: Manage level

**Parameters**

- `remote-file&<1-10>`: Name of a file on an SFTP server. `<1-10>` means that you can provide up to 10 filenames, which are separated by space.

**Description**

Use the `remove` command to delete the specified file(s) from a remote server. This command functions as the `delete` command.

**Examples**

```
Delete file temp.c from the server.
sftp-client> remove temp.c
The following files will be deleted:
```
/temp.c
Are you sure to delete it? [Y/N]:y
This operation may take a long time. Please wait...

File successfully Removed

rename

Syntax

rename oldname newname

View

SFTP client view

Default Level

3: Manage level

Parameters

oldname: Original file name or directory name.
newname: New file name or directory name.

Description

Use the rename command to change the name of a specified file or directory on an SFTP server.

Examples

# Change the name of a file on the SFTP server from temp1.c to temp2.c.
sftp-client> rename temp1.c temp2.c
File successfully renamed

rmdir

Syntax

rmdir remote-path<&1-10>

View

SFTP client view

Default Level

3: Manage level

Parameters

remote-path<&1-10>: Name of the directory on the remote SFTP server. &<1-10> means that you can provide up to 10 directory names that are separated by space.

Description

Use the rmdir command to delete the specified directories from an SFTP server.
Examples

# On the SFTP server, delete directory temp1 in the current directory.

    sftp-client> rmdir temp1
    Directory successfully removed

sftp

Syntax

    sftp  server [ port-number ] [ identity-key { dsa | rsa } ] [ prefer-ctos-cipher { aes128 | des } ] [ prefer-ctos-hmac { md5 | md5-96 | sha1 | sha1-96 } ] [ prefer-kex { dh-group-exchange | dh-group1 | dh-group14 } ] [ prefer-stoc-cipher { aes128 | des } ] [ prefer-stoc-hmac { md5 | md5-96 | sha1 | sha1-96 } ]

View

User view

Default Level

3: Manage level

Parameters

server: IPv4 address or host name of the server, a case-insensitive string of 1 to 20 characters.

port-number: Port number of the server, in the range 0 to 65535. The default is 22.

identity-key: Specifies the algorithm for publickey authentication, either dsa or rsa. The default is dsa.

prefer-ctos-cipher: Preferred encryption algorithm from client to server, defaulted to aes128.


prefer-ctos-hmac: Preferred HMAC algorithm from client to server, defaulted to sha1.

- md5: HMAC algorithm hmac-md5.
- md5-96: HMAC algorithm hmac-md5-96.
- sha1: HMAC algorithm hmac-sha1.

prefer-kex: Preferred key exchange algorithm, defaulted to dh-group-exchange.

- dh-group-exchange: Key exchange algorithm diffie-hellman-group-exchange-sha1.
- dh-group1: Key exchange algorithm diffie-hellman-group1-sha1.
- dh-group14: Key exchange algorithm diffie-hellman-group14-sha1.

prefer-stoc-cipher: Preferred encryption algorithm from server to client, defaulted to aes128.

prefer-stoc-hmac: Preferred HMAC algorithm from server to client, defaulted to sha1.

Description

Use the sftp command to establish a connection to a remote IPv4 SFTP server and enter SFTP client view.

Note that when the client’s authentication method is publickey, the client needs to get the local private key for validation. As the publickey authentication includes RSA and DSA algorithms, you must specify
an algorithm (by using the identity-key keyword) in order to get the correct data for the local private key. By default, the encryption algorithm is DSA.

**Examples**

# Connect to SFTP server 10.1.1.2, using the following algorithms:

- Preferred key exchange algorithm: **dh-group1**.
- Preferred encryption algorithm from server to client: **aes128**.
- Preferred HMAC algorithm from client to server: **md5**.
- Preferred HMAC algorithm from server to client: **sha1-96**.

```<Sysname> sftp 10.1.1.2 prefer-kex dh-group1 prefer-stoc-cipher aes128 prefer-ctos-hmac md5 prefer-stoc-hmac sha1-96
Input Username:
```

**sftp client ipv6 source**

**Syntax**

```sftp client ipv6 source { ipv6 ipv6-address | interface interface-type interface-number }
undo sftp client ipv6 source```

View

System view

Default Level

3: Manage level

Parameters

- **ipv6 ipv6-address**: Specifies a source IPv6 address.
- **interface interface-type interface-number**: Specifies a source interface by its type and number.

Description

Use the **sftp client ipv6 source** command to specify the source IPv6 address or source interface for an SFTP client.

Use the **undo sftp client ipv6 source** command to remove the configuration.

By default, the client uses the interface address specified by the route of the device to access the SFTP server.

Related commands: **display sftp client source**.

Examples

Specify the source IPv6 address of the SFTP client as 2:2::2.

```
<Sysname> system-view
[Sysname] sftp client ipv6 source ipv6 2:2::2:
```

sftp client source

Syntax

```sftp client source { ip ip-address | interface interface-type interface-number }
```
undo sftp client source

View

System view

Default Level

3: Manage level

Parameters

- **ip ip-address**: Specifies a source IPv4 address.
- **interface interface-type interface-number**: Specifies a source interface by its type and number.

Description

Use the `sftp client source` command to specify the source IPv4 address or interface of an SFTP client.

Use the `undo sftp source-interface` command to remove the configuration.

By default, a client uses the IP address of the interface specified by the route to access the SFTP server.

Related commands: `display sftp client source`.

Examples

```bash
# Specify the source IP address of the SFTP client as 192.168.0.1.
<Sysname> system-view
[Sysname] sftp client source ip 192.168.0.1
```

sftp ipv6

Syntax

```bash
sftp ipv6 server [ port-number ] [ identity-key { dsa | rsa } | prefer-ctos-cipher { aes128 | des } | prefer-ctos-hmac { md5 | md5-96 | sha1 | sha1-96 } | prefer-kex { dh-group-exchange | dh-group1 | dh-group14 } | prefer-stoc-cipher { aes128 | des } | prefer-stoc-hmac { md5 | md5-96 | sha1 | sha1-96 } ]
```

View

User view

Default Level

3: Manage level

Parameters

- **server**: IPv6 address or host name of the server, a case-insensitive string of 1 to 46 characters.
- **port-number**: Port number of the server, in the range 0 to 65535. The default is 22.
- **identity-key**: Specifies the algorithm for publickey authentication, either **dsa** or **rsa**. The default is **dsa**.
- **prefer-ctos-cipher**: Preferred encryption algorithm from client to server, defaulted to **aes128**.
 - **aes128**: Encryption algorithm aes128-cbc.
- **des**: Encryption algorithm des-cbc.

prefer-ctos-hmac: Preferred HMAC algorithm from client to server, defaulted to **sha1**.

- **md5**: HMAC algorithm hmac-md5.
- **md5-96**: HMAC algorithm hmac-md5-96.
- **sha1**: HMAC algorithm hmac-sha1.
- **sha1-96**: HMAC algorithm hmac-sha1-96.

prefer-kex: Preferred key exchange algorithm, defaulted to **dh-group-exchange**.

- **dh-group-exchange**: Key exchange algorithm diffie-hellman-group-exchange-sha1.
- **dh-group1**: Key exchange algorithm diffie-hellman-group1-sha1.
- **dh-group14**: Key exchange algorithm diffie-hellman-group14-sha1.

prefer-stoc-cipher: Preferred encryption algorithm from server to client, defaulted to **aes128**.

prefer-stoc-hmac: Preferred HMAC algorithm from server to client, defaulted to **sha1**.

Description

Use the `sftp ipv6` command to establish a connection to a remote IPv6 SFTP server and enter SFTP client view.

Note that when the client’s authentication method is publickey, the client needs to get the local private key for validation. As the publickey authentication includes RSA and DSA algorithms, you must specify an algorithm (by using the `identity-key` keyword) in order to get the correct data for the local private key. By default, the encryption algorithm is DSA.

Examples

Connect to server 2:5::8:9, using the following algorithms:

- Preferred key exchange algorithm: **dh-group1**.
- Preferred encryption algorithm from server to client: **aes128**.
- Preferred HMAC algorithm from client to server: **md5**.
- Preferred HMAC algorithm from server to client: **sha1-96**.

```<Sysname> sftp ipv6 2:5::8:9 prefer-kex dh-group1 prefer-stoc-cipher aes128 prefer-ctos-hmac md5 prefer-stoc-hmac sha1-96```
11 PKI Configuration Commands

PKI Configuration Commands

attribute

Syntax

attribute id { alt-subject-name { fqdn | ip } | { issuer-name | subject-name } { dn | fqdn | ip } } { ctn | equ | nctn | nequ } attribute-value
undo attribute { id | all }

View

Certificate attribute group view

Default Level

2: System level

Parameters

id: Sequence number of the certificate attribute rule, in the range 1 to 16.
alt-subject-name: Specifies the name of the alternative certificate subject.
fqdn: Specifies the FQDN of the entity.
ip: Specifies the IP address of the entity.
issuer-name: Specifies the name of the certificate issuer.
subject-name: Specifies the name of the certificate subject.
ctn: Specifies the contain operation.
equ: Specifies the equal operation.
nctn: Specifies the not-contain operation.
nequ: Specifies the not-equal operation.
attribute-value: Value of the certificate attribute, a case-insensitive string of 1 to 128 characters.
all: Specifies all certificate attributes.

Description

Use the attribute command to configure the attribute rules of the certificate issuer name, certificate subject name and alternative certificate subject name.

Use the undo attribute command to delete the attribute rules of one or all certificates.

By default, there is no restriction on the issuer name, subject name, and alternative subject name of a certificate.
Note that the attribute of the alternative certificate subject name does not appear as a distinguished name, and therefore the `dn` keyword is not available for the attribute.

**Examples**

# Create a certificate attribute rule, specifying that the DN in the subject name includes the string of abc.

```
<Sysname> system-view
[Sysname] pki certificate attribute-group mygroup
[Sysname-pki-cert-attribute-group-mygroup] attribute 1 subject-name dn ctn abc
```

# Create a certificate attribute rule, specifying that the FQDN in the issuer name cannot be the string of abc.

```
[Sysname-pki-cert-attribute-group-mygroup] attribute 2 issuer-name fqdn nequ abc
```

# Create a certificate attribute rule, specifying that the IP address in the alternative subject name cannot be 10.0.0.1.

```
[Sysname-pki-cert-attribute-group-mygroup] attribute 3 alt-subject-name ip nequ 10.0.0.1
```

c**a identifier**

**Syntax**

```
c a identifier name
undo ca identifier
```

**View**

PKI domain view

**Default Level**

2: System level

**Parameters**

`name`: Identifier of the trusted CA, a case-insensitive string of 1 to 63 characters.

**Description**

Use the `ca identifier` command to specify the trusted CA and bind the device with the CA.

Use the ` undo ca identifier` command to remove the configuration.

By default, no trusted CA is specified for a PKI domain.

Certificate request, retrieval, revocation, and query all depend on the trusted CA.

**Examples**

# Specify the trusted CA as `new-ca`.

```
<Sysname> system-view
[Sysname] pki domain 1
[Sysname-pki-domain-1] ca identifier new-ca
```
**certificate request entity**

**Syntax**

```
certificate request entity entity-name
undo certificate request entity
```

**View**

PKI domain view

**Default Level**

2: System level

**Parameters**

*entity-name*: Name of the entity for certificate request, a case-insensitive string of 1 to 15 characters.

**Description**

Use the `certificate request entity` command to specify the entity for certificate request. Use the `undo certificate request entity` command to remove the configuration. By default, no entity is specified for a PKI domain.

Related commands: `pki entity`.

**Examples**

```bash
Specify the entity for certificate request as entity1.
<Sysname> system-view
[Sysname] pki domain 1
[Sysname-pki-domain-1] certificate request entity entity1
```

**certificate request from**

**Syntax**

```
certificate request from { ca | ra }
undo certificate request from
```

**View**

PKI domain view

**Default Level**

2: System level

**Parameters**

*ca*: Indicates that the entity requests a certificate from a CA.
*ra*: Indicates that the entity requests a certificate from an RA.

**Description**

Use the `certificate request from` command to specify the authority for certificate request.
Use the ```undo certificate request from``` command to remove the configuration. By default, no authority is specified for a PKI domain view.

### Examples

```
Specify that the entity requests a certificate from the CA.
<Sysname> system-view
[Sysname] pki domain 1
[Sysname-pki-domain-1] certificate request from ca
```

---

**certificate request mode**

**Syntax**

```
certificate request mode { auto [key-length key-length] password { cipher | simple } password]* | manual }
undo certificate request mode
```

**View**

PKI domain view

**Default Level**

2: System level

**Parameters**

- **auto**: Specifies to request a certificate in auto mode.
- **key-length**: Length of the RSA keys, in the range 512 to 2,048 bits. It is 1,024 bits by default.
- **password**: Password for certificate revocation, a case-sensitive string of 1 to 31 characters.
- **cipher**: Specifies to display the password in cipher text.
- **simple**: Specifies to display the password in clear text.
- **manual**: Specifies to request a certificate in manual mode.

**Description**

Use the ```certificate request mode``` command to set the certificate request mode. Use the ```undo certificate request mode``` command to restore the default. By default, manual mode is used.

In auto mode, an entity automatically requests a certificate from an RA or CA when it has no certificate or when the existing certificate is about to expire. In manual mode, all operations associated with certificate request are carried out manually.

Related commands: ```pki request-certificate```.

### Examples

```
Specify to request a certificate in auto mode.
<Sysname> system-view
[Sysname] pki domain 1
[Sysname-pki-domain-1] certificate request mode auto
```
**certificate request polling**

**Syntax**

```
certificate request polling { count count | interval minutes }
undo certificate request polling { count | interval }
```

**View**

PKI domain view

**Default Level**

2: System level

**Parameters**

- `count`: Maximum number of attempts to poll the status of the certificate request, in the range 1 to 100.
- `minutes`: Polling interval, in the range 5 to 168 minutes.

**Description**

Use the `certificate request polling` command to specify the certificate request polling interval and attempt limit.

Use the `undo certificate request polling` command to restore the defaults.

By default, the polling is executed every 20 minutes for up to 50 times.

After an applicant makes a certificate request, the CA may need a long period of time if it verifies the certificate request manually. During this period, the applicant needs to query the status of the request periodically to get the certificate as soon as possible after the certificate is signed.

Related commands: `display pki certificate`.

**Examples**

```
Specify the polling interval as 15 minutes and the maximum number of attempts as 40.
<Sysname> system-view
<Sysname> pki domain 1
<Sysname-pki-domain-1> certificate request polling interval 15
<Sysname-pki-domain-1> certificate request polling count 40
```

**certificate request url**

**Syntax**

```
certificate request url url-string
undo certificate request url
```

**View**

PKI domain view

**Default Level**

2: System level
Parameters

url-string: URL of the server for certificate request, a case-insensitive string of 1 to 127 characters. It comprises the location of the server and the location of CGI command interface script in the format of http: //server_location/ca_script_location, where server_location must be an IP address and does not support domain name resolution currently.

Description

Use the certificate request url command to specify the URL of the server for certificate request through SCEP.

Use the undo certificate request url command to remove the configuration.

By default, no URL is specified for a PKI domain.

Examples

# Specify the URL of the server for certificate request.
<Sysname> system-view
[Sysname] pki domain 1
[Sysname-pki-domain-1] certificate request url
http://169.254.0.100/certsrv/mscep/mscep.dll

common-name

Syntax

  common-name name
  undo common-name

View

  PKI entity view

Default Level

  2: System level

Parameters

  name: Common name of an entity, a case-insensitive string of 1 to 31 characters. No comma can be included.

Description

Use the common-name command to configure the common name of an entity, which can be, for example, the user name.

Use the undo common-name command to remove the configuration.

By default, no common name is specified.

Examples

# Configure the common name of an entity as test.
<Sysname> system-view
[Sysname] pki entity 1
country

Syntax

    country country-code-str
    undo country

View

    PKI entity view

Default Level

    2: System level

Parameters

    country-code-str: Country code for the entity, a 2-character case-insensitive string.

Description

    Use the **country** command to specify the code of the country to which an entity belongs. It is a standard 2-character code, for example, CN for China.

    Use the **undo country** command to remove the configuration.

    By default, no country code is specified.

Examples

    # Set the country code of an entity to **CN**.
    <Sysname> system-view
    [Sysname] pki entity 1
    [Sysname-pki-entity-1] country CN

crl check

Syntax

    crl check { disable | enable }

View

    PKI domain view

Default Level

    2: System level

Parameters

    disable: Disables CRL checking.
    enable: Enables CRL checking.

Description

    Use the **crl check** command to enable or disable CRL checking.
By default, CRL checking is enabled.

CRLs are files issued by the CA to publish all certificates that have been revoked. Revocation of a certificate may occur before the certificate expires. CRL checking is intended for checking whether a certificate has been revoked. A revoked certificate is no longer trusted.

Examples

# Disable CRL checking.
<Sysname> system-view
[Sysname] pki domain 1
[Sysname-pki-domain-1] crl check disable

crl update-period

Syntax

crl update-period hours
undo crl update-period

View

PKI domain view

Default Level

2: System level

Parameters

hours: CRL update period, in the range 1 to 720 hours.

Description

Use the crl update-period command to set the CRL update period, that is, the interval at which the PKI entity downloads the latest CRLs.

Use the undo crl update-period command to restore the default.

By default, the CRL update period depends on the next update field in the CRL file.

The CRL update period is the interval at which a PKI entity with a certificate downloads a CRL from LDAP server.

Examples

# Set the CRL update period to 20 hours.
<Sysname> system-view
[Sysname] pki domain 1
[Sysname-pki-domain-1] crl update-period 20

crl url

Syntax

crl url url-string
undo crl url
View

PKI domain view

Default Level

2: System level

Parameters

url-string: URL of the CRL distribution point, a case-insensitive string of 1 to 127 characters in the format of ldap://server_location or http://server_location, where server_location must be an IP address and does not support domain name resolution currently.

Description

Use the crl url command to specify the URL of the CRL distribution point.

Use the undo crl url command to remove the configuration.

By default, no CRL distribution point URL is specified.

Note that when the URL of the CRL distribution point is not set, you should acquire the CA certificate and a local certificate, and then acquire a CRL through SCEP.

Examples

# Specify the URL of the CRL distribution point.
<Sysname> system-view
[Sysname] pki domain 1
[Sysname-pki-domain-1] crl url ldap://169.254.0.30

display pki certificate

Syntax

display pki certificate { { ca | local } domain domain-name | request-status }

View

Any view

Default Level

2: System level

Parameters

ca: Displays the CA certificate.

local: Displays the local certificate.

domain-name: Name of the PKI domain, a string of 1 to 15 characters.

request-status: Displays the status of a certificate request.

Description

Use the display pki certificate command to display the contents or request status of a certificate.

Related commands: pki retrieval-certificate, pki domain and certificate request polling.
Examples

# Display the local certificate.

```<Sysname> display pki certificate local domain 1
Certificate:
Data:
 Version: 3 (0x2)
 Serial Number:
 10B7D4E3 00010000 0086
 Signature Algorithm: md5WithRSAEncryption
 Issuer:
 emailAddress=myca@aabbcc.net
 C=CN
 ST=Country A
 L=City X
 O=abc
 OU=bjs
 CN=new-ca
 Validity
 Not Before: Jan 13 08:57:21 2004 GMT
 Not After : Jan 20 09:07:21 2005 GMT
 Subject:
 C=CN
 ST=Country B
 L=City Y
 CN=pki test
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (512 bit)
 Modulus (512 bit):
 00D41D1F ...
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Subject Alternative Name:
 DNS: hyf.xxyyzz.net
 X509v3 CRL Distribution Points:
 URI:http://1.1.1.1:447/myca.crl
 ...
 Signature Algorithm: md5WithRSAEncryption
 A3A5A447 4D08387D ...
```

Table 11-1 display pki certificate command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>Version of the certificate</td>
</tr>
<tr>
<td>Serial Number</td>
<td>Serial number of the certificate</td>
</tr>
<tr>
<td>Signature Algorithm</td>
<td>Signature algorithm</td>
</tr>
<tr>
<td>Issuer</td>
<td>Issuer of the certificate</td>
</tr>
</tbody>
</table>
display pki certificate access-control-policy

Syntax

display pki certificate access-control-policy { policy-name | all }

View

Any view

Default Level

1: Monitor level

Parameters

policy-name: Name of the certificate attribute-based access control policy, a string of 1 to 16 characters.

all: Specifies all certificate attribute-based access control policies.

Description

Use the display pki certificate access-control-policy command to display information about a specified or all certificate attribute-based access control policies.

Examples

# Display information about the certificate attribute-based access control policy named mypolicy.
<Sysname> display pki certificate access-control-policy mypolicy
access-control-policy name: mypolicy
    rule 1 deny mygroup1
    rule 2 permit mygroup2

Table 11-2 display pki certificate access-control-policy command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-control-policy</td>
<td>Name of the certificate attribute-based access control policy</td>
</tr>
<tr>
<td>rule number</td>
<td>Number of the access control rule</td>
</tr>
</tbody>
</table>
display pki certificate attribute-group

Syntax

display pki certificate attribute-group { group-name | all }

View

Any view

Default Level

1: Monitor level

Parameters

  group-name: Name of a certificate attribute group, a string of 1 to 16 characters.
  all: Specifies all certificate attribute groups.

Description

Use the display pki certificate attribute-group command to display information about a specified or all certificate attribute groups.

Examples

# Display information about certificate attribute group mygroup.
<Sysname> display pki certificate attribute-group mygroup
attribute group name: mygroup
  attribute 1 subject-name  dn  ctn  abc
  attribute 2 issuer-name  fqdn  nctn  app

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>attribute group name</td>
<td>Name of the certificate attribute group</td>
</tr>
<tr>
<td>attribute number</td>
<td>Number of the attribute rule</td>
</tr>
<tr>
<td>subject-name</td>
<td>Name of the certificate subject</td>
</tr>
<tr>
<td>dn</td>
<td>DN of the entity</td>
</tr>
<tr>
<td>ctn</td>
<td>Indicates the contain operations</td>
</tr>
<tr>
<td>abc</td>
<td>Value of attribute 1</td>
</tr>
<tr>
<td>issuer-name</td>
<td>Name of the certificate issuer</td>
</tr>
<tr>
<td>fqdn</td>
<td>FQDN of the entity</td>
</tr>
<tr>
<td>nctn</td>
<td>Indicates the not-contain operations</td>
</tr>
<tr>
<td>app</td>
<td>Value of attribute 2</td>
</tr>
</tbody>
</table>

display pki crl domain

Syntax

display pki crl domain domain-name
View

Any view

Default Level

2: System level

Parameters

domain-name: Name of the PKI domain, a string of 1 to 15 characters.

Description

Use the display pki crl domain command to display the locally saved CRLs.

Related commands: pki retrieval-crl, pki domain.

Examples

# Display the locally saved CRLs.
<Sysname> display pki crl domain 1
Certificate Revocation List (CRL):
    Version 2 (0x1)
    Signature Algorithm: sha1WithRSAEncryption
    Issuer:
        C=CN
        O=abc
        OU=soft
        CN=A Test Root
    Last Update: Jan 5 08:44:19 2004 GMT
    Next Update: Jan 5 21:42:13 2004 GMT
    CRL extensions:
        X509v3 Authority Key Identifier:
            keyid:0F71448E E075CAB8 ADDB3A12 0B747387 45D612EC
        Revoked Certificates:
            Serial Number: 05a234448E...
            Revocation Date: Sep 6 12:33:22 2004 GMT
            CRL entry extensions:...
            Serial Number: 05a278445E...
            Revocation Date: Sep 7 12:33:22 2004 GMT
            CRL entry extensions:...

Table 11-4 display pki crl domain command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>Version of the CRLs</td>
</tr>
<tr>
<td>Signature Algorithm</td>
<td>Signature algorithm used by the CRLs</td>
</tr>
<tr>
<td>Issuer</td>
<td>CA issuing the CRLs</td>
</tr>
<tr>
<td>Last Update</td>
<td>Last update time</td>
</tr>
<tr>
<td>Next Update</td>
<td>Next update time</td>
</tr>
<tr>
<td>CRL extensions</td>
<td>Extensions of CRL</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>X509v3 Authority Key Identifier</td>
<td>CA issuing the CRLs. The certificate version is X.509v3.</td>
</tr>
<tr>
<td>keyid</td>
<td>ID of the public key</td>
</tr>
<tr>
<td></td>
<td>A CA may have multiple key pairs. This field indicates the key pair used by the CRL's signature.</td>
</tr>
<tr>
<td>Revoked Certificates</td>
<td>Revoked certificates</td>
</tr>
<tr>
<td>Serial Number</td>
<td>Serial number of the revoked certificate</td>
</tr>
<tr>
<td>Revocation Date</td>
<td>Revocation date of the certificate</td>
</tr>
</tbody>
</table>

**fqdn**

**Syntax**

fqdn name-str  
undo fqdn

**View**

PKI entity view

**Default Level**

2: System level

**Parameters**

name-str: Fully qualified domain name (FQDN) of an entity, a case-insensitive string of 1 to 127 characters.

**Description**

Use the `fqdn` command to configure the FQDN of an entity.

Use the `undo fqdn` command to remove the configuration.

By default, no FQDN is specified for an entity.

An FQDN is the unique identifier of an entity on a network. It consists of a host name and a domain name and can be resolved into an IP address.

**Examples**

# Configure the FQDN of an entity as pki.domain-name.com.

```
<Sysname> system-view
[Sysname] pki entity 1
[Sysname-pki-entity-1] fqdn pki.domain-name.com
```

**ip (PKI entity view)**

**Syntax**

ip ip-address  
undo ip
View

PKI entity view

Default Level

2: System level

Parameters

ip-address: IP address for an entity.

Description

Use the ip command to configure the IP address of an entity.

Use the undo ip command to remove the configuration.

By default, no IP address is specified for an entity.

Examples

# Configure the IP address of an entity as 11.0.0.1.

<Sysname> system-view
[Sysname] pki entity 1
[Sysname-pki-entity-1] ip 11.0.0.1

Idap-server

Syntax

ldap-server ip ip-address [ port port-number ] [ version version-number ]
undo ldap-server

View

PKI domain view

Default Level

2: System level

Parameters

ip-address: IP address of the LDAP server, in dotted decimal format.

port-number: Port number of the LDAP server, in the range 1 to 65535. The default is 389.

version-number: LDAP version number, either 2 or 3. By default, it is 2.

Description

Use the ldap-server command to specify an LDAP server for a PKI domain.

Use the undo ldap-server command to remove the configuration.

By default, no LDP server is specified for a PKI domain.

Examples

# Specify an LDAP server for PKI domain 1.

<Sysname> system-view
locality

Syntax

locality locality-name
undo locality

View

PKI entity view

Default Level

2: System level

Parameters

locality-name: Name for the geographical locality, a case-insensitive string of 1 to 31 characters. No comma can be included.

Description

Use the locality command to configure the geographical locality of an entity, which can be, for example, a city name.

Use the undo locality command to remove the configuration.

By default, no geographical locality is specified for an entity.

Examples

# Configure the locality of an entity as city.
<Sysname> system-view
<Sysname> pki entity 1
<Sysname> pki-domain-1] ldap-server ip 169.254.0.30

organization

Syntax

organization org-name
undo organization

View

PKI entity view

Default Level

2: System level

Parameters

org-name: Organization name, a case-insensitive string of 1 to 31 characters. No comma can be included.
Description

Use the **organization** command to configure the name of the organization to which the entity belongs.

Use the **undo organization** command to remove the configuration.

By default, no organization name is specified for an entity.

**Examples**

# Configure the name of the organization to which an entity belongs as **org-name**.

```bash
<Sysname> system-view
[Sysname] pki entity 1
[Sysname-pki-entity-1] organization org-name
```

**organization-unit**

**Syntax**

```bash
organization-unit org-unit-name
undo organization-unit
```

**View**

PKI entity view

**Default Level**

2: System level

**Parameters**

**org-unit-name**: Organization unit name for distinguishing different units in an organization, a case-insensitive string of 1 to 31 characters. No comma can be included.

**Description**

Use the **organization-unit** command to specify the name of the organization unit to which this entity belongs.

Use the **undo organization-unit** command to remove the configuration.

By default, no organization unit name is specified for an entity.

**Examples**

# Configure the name of the organization unit to which an entity belongs as **unit-name**.

```bash
<Sysname> system-view
[Sysname] pki entity 1
[Sysname-pki-entity-1] organization-unit unit-name
```

**pki certificate access-control-policy**

**Syntax**

```bash
pki certificate access-control-policy policy-name
undo pki certificate access-control-policy { policy-name | all }
```
Default Level
2: System level

Parameters

policy-name: Name of the certificate attribute-based access control policy, a case-insensitive string of 1 to 16 characters. It cannot be “a”, “al” or “all”.

all: Specifies all certificate attribute-based access control policies.

Description

Use the pki certificate access-control-policy command to create a certificate attribute-based access control policy and enter its view.

Use the undo pki certificate access-control-policy command to remove a specified or all certificate attribute-based access control policies.

No access control policy exists by default.

Examples

# Configure an access control policy named mypolicy and enter its view.
<Sysname> system-view
<Sysname> pki certificate access-control-policy mypolicy
<Sysname-pki-cert-acp-mypolicy>

pki certificate attribute-group

Syntax

pki certificate attribute-group group-name
undo pki certificate attribute-group { group-name | all }

View
System view

Default Level
2: System level

Parameters

group-name: Name for the certificate attribute group, a case-insensitive string of 1 to 16 characters. It cannot be “a”, “al” or “all”.

all: Specifies all certificate attribute groups.

Description

Use the pki certificate attribute-group command to create a certificate attribute group and enter its view.
Use the `undo pki certificate attribute-group` command to delete one or all certificate attribute groups.

By default, no certificate attribute group exists.

**Examples**

```bash
Create a certificate attribute group named `mygroup` and enter its view.
<Sysname> system-view
[Sysname] pki certificate attribute-group mygroup
[Sysname-pki-cert-attribute-group-mygroup]
```

**pki delete-certificate**

**Syntax**

```bash
pki delete-certificate { ca | local } domain domain-name
```

**View**

System view

**Default Level**

2: System level

**Parameters**

- `ca`: Deletes the locally stored CA certificate.
- `local`: Deletes the locally stored local certificate.
- `domain-name`: Name of the PKI domain whose certificates are to be deleted, a string of 1 to 15 characters.

**Description**

Use the `pki delete-certificate` command to delete the certificate locally stored for a PKI domain.

**Examples**

```bash
Delete the local certificate for PKI domain cer.
<Sysname> system-view
[Sysname] pki delete-certificate local domain cer
```

**pki domain**

**Syntax**

```bash
pki domain domain-name
undo pki domain domain-name
```

**View**

System view

**Default Level**

2: System level
Parameters

domain-name: PKI domain name, a case-insensitive string of 1 to 15 characters.

Description

Use the pki domain command to create a PKI domain and enter PKI domain view or enter the view of an existing PKI domain.

Use the undo pki domain command to remove a PKI domain.

By default, no PKI domain exists.

Examples

# Create a PKI domain and enter its view.
<Sysname> system-view
[Sysname] pki domain 1
[Sysname-pki-domain-1]

pki entity

Syntax

pki entity entity-name
undo pki entity entity-name

View

System view

Default Level

2: System level

Parameters

entity-name: Name for the entity, a case-insensitive string of 1 to 15 characters.

Description

Use the pki entity command to create a PKI entity and enter PKI entity view.

Use the undo pki entity command to remove a PKI entity.

By default, no entity exists.

You can configure a variety of attributes for an entity in PKI entity view. An entity is intended only for convenience of reference by other commands.

Examples

# Create a PKI entity named en and enter its view.
<Sysname> system-view
[Sysname] pki entity en
[Sysname-pki-entity-en]
pki import-certificate

Syntax

```
pki import-certificate { ca | local } domain domain-name { der | p12 | pem } [filename filename]
```

View

System view

Default Level

2: System level

Parameters

- **ca**: Specifies the CA certificate.
- **local**: Specifies the local certificate.
- **domain-name**: Name of the PKI domain, a string of 1 to 15 characters.
- **der**: Specifies the certificate format of DER.
- **p12**: Specifies the certificate format of P12.
- **pem**: Specifies the certificate format of PEM.
- **filename**: Name of the certificate file, a case-insensitive string of 1 to 127 characters. It defaults to `domain-name_ca.cer`, `domain-name_local.cer`, or `domain-name_peerentity_entity-name.cer`, the name for the file to be created to save the imported certificate.

Description

Use the `pki import-certificate` command to import a CA certificate or local certificate from a file and save it locally.

Related commands: `pki domain`.

Examples

```
Import the CA certificate for PKI domain cer in the format of PEM.
<Sysname> system-view
[Sysname] pki import-certificate ca domain cer pem
```

pki request-certificate domain

Syntax

```
pki request-certificate domain domain-name [password] [pkcs10 [filename filename]]
```

View

System view

Default Level

2: System level

Parameters

- **domain-name**: Name of the PKI domain name, a string of 1 to 15 characters.
**password**: Password for certificate revocation, a case-sensitive string of 1 to 31 characters.

**pkcs10**: Displays the BASE64-encoded PKCS#10 certificate request.

**filename**: Name of the file for saving the PKCS#10 certificate request, a case-insensitive string of 1 to 127 characters.

**Description**

Use the `pki request-certificate domain` command to request a local certificate from a CA through SCEP. If SCEP fails, you can use the `pkcs10` keyword to save the local certificate request in BASE64 format and send it to the CA by an out-of-band means like phone, disk or e-mail.

This operation will not be saved in the configuration file.

Related commands: `pki domain`.

**Examples**

# Display the PKCS#10 certificate request information.

```
<Sysname> system-view
[Sysname] pki request-certificate domain 1 pkcs10
[Sysname] pki request-certificate domain 1 pkcs10
-----BEGIN CERTIFICATE REQUEST-----
MIIBTDCBtgIBADANMQswCQYDVQQDEwJqajCBnzANBgkqhkiG9w0BAQEFAAOGjQAwgYc
9EAEw5Drj8ofs9THA4ezkDcQPBy8pVH1KumampPsJmx8sGG2NTbrDTbTT5ALx3LIj1
B3/d/ndKp[ch/0Fb/JVDCb5gdw32tZB[cK/CW/WZ3oZ7Vdu5TED61N8
4m+hfp1WqoV6lty3o9pXuQ18peUDcfN6WV3LBYy1y1WctkLkECAwEAAaAMMA0G
C5gGS1b3DQEBAUAA4GBAA8E781d7m6NVCZugv/I/1tqZ3T5e4H9Qo5NiCk1Ew
R8owWnA0XtGmBQyBNCtG0f5Nh[HrXZeT5+MByF0nm5K/mn1ro5JKMfKv46P1CZ
JUjsugaY02Gh0BY0BvycrP9iILxuX1aqjh1MB1qVsallQOHS7YMvnp6hXAQlkmM4c
-----END CERTIFICATE REQUEST-----
```

**pki retrieval-certificate**

**Syntax**

```
pki retrieval-certificate { ca | local } domain domain-name
```

**View**

System view

**Default Level**

2: System level

**Parameters**

- `ca`: Retrieves the CA certificate.
- `local`: Retrieves the local certificate.
- `domain-name`: Name of the PKI domain used for certificate request.

**Description**

Use the `pki retrieval-certificate` command to retrieve a certificate from the server for certificate distribution.
Related commands: `pki domain`.

**Examples**

```
Retrieve the CA certificate from the certificate issuing server.
<Sysname> system-view
 [Sysname] pki retrieval-certificate ca domain 1
```

### pki retrieval-crl domain

**Syntax**

```
pki retrieval-crl domain domain-name
```

**View**

System view

**Default Level**

2: System level

**Parameters**

- `domain-name`: Name of the PKI domain, a string of 1 to 15 characters.

**Description**

Use the `pki retrieval-crl domain` command to retrieve the latest CRLs from the server for CRL distribution.

CRLs are used to verify the validity of certificates.

Related commands: `pki domain`.

**Examples**

```
Retrieve CRLs.
<Sysname> system-view
 [Sysname] pki retrieval-crl domain 1
```

### pki validate-certificate

**Syntax**

```
pki validate-certificate { ca | local } domain domain-name
```

**View**

System view

**Default Level**

2: System level

**Parameters**

- `ca`: Verifies the CA certificate.
- `local`: Verifies the local certificate.
domain-name: Name of the PKI domain to which the certificate to be verified belongs, a string of 1 to 15 characters.

Description

Use the **pki validate-certificate** command to verify the validity of a certificate.

The focus of certificate validity verification is to check that the certificate is signed by the CA and that the certificate has neither expired nor been revoked.

Related commands: **pki domain**.

Examples

```bash
Verify the validity of the local certificate.
<Sysname> system-view
[Sysname] pki validate-certificate local domain 1
```

root-certificate fingerprint

Syntax

```plaintext
root-certificate fingerprint { md5 | sha1 } string
undo root-certificate fingerprint
```

View

PKI domain view

Default Level

2: System level

Parameters

- **md5**: Uses an MD5 fingerprint.
- **sha1**: Uses a SHA1 fingerprint.

**string**: Fingerprint to be used. An MD5 fingerprint must be a string of 32 characters in hexadecimal. A SHA1 fingerprint must be a string of 40 characters in hexadecimal.

Description

Use the **root-certificate fingerprint** command to configure the fingerprint to be used for verifying the validity of the CA root certificate.

Use the **undo root-certificate fingerprint** command to remove the configuration.

By default, no fingerprint is configured for verifying the validity of the CA root certificate.

Examples

```bash
Configure an MD5 fingerprint for verifying the validity of the CA root certificate.
<Sysname> system-view
[Sysname] pki domain 1
```

# Configure a SHA1 fingerprint for verifying the validity of the CA root certificate.
**rule (access control policy view)**

**Syntax**

```
rule [id] { deny | permit } group-name
undo rule { id | all }
```

**View**

Access control policy view

**Default Level**

2: System level

**Parameters**

- **id**: Number of the certificate attribute access control rule, in the range 1 to 16. The default is the smallest unused number in this range.
- **deny**: Indicates that a certificate whose attributes match an attribute rule in the specified attribute group is considered invalid and denied.
- **permit**: Indicates that a certificate whose attributes match an attribute rule in the specified attribute group is considered valid and permitted.
- **group-name**: Name of the certificate attribute group to be associated with the rule, a case-insensitive string of 1 to 16 characters. It cannot be “a”, “ai” or “all”.
- **all**: Specifies all access control rules.

**Description**

Use the `rule` command to create a certificate attribute access control rule. Use the `undo rule` command to delete a specified or all access control rules. By default, no access control rule exists. Note that a certificate attribute group must exist to be associated with a rule.

**Examples**

```bash
Create an access control rule, specifying that a certificate is considered valid when it matches an attribute rule in certificate attribute group mygroup.
<Sysname> system-view
[Sysname] pki certificate access-control-policy mypolicy
[Sysname-pki-cert-acp-mypolicy] rule 1 permit mygroup
```

**state**

**Syntax**

```
state state-name
undo state
```

**Note**

- The `rule` command is used to manage access control rules for certificate attributes. It allows administrators to specify rules that determine whether a certificate is considered valid or invalid based on its attributes.
- The `state` command is used to manage the state of access control policies. It allows administrators to activate or deactivate policies accordingly.
View
   PKI entity view

Default Level
   2: System level

Parameters
   state-name: State or province name, a case-insensitive string of 1 to 31 characters. No comma can be included.

Description
   Use the state command to specify the name of the state or province where an entity resides.
   Use the undo state command to remove the configuration.
   By default, no state or province is specified.

Examples
   # Specify the state where an entity resides.
   <Sysname> system-view
   [Sysname] pki entity 1
   [Sysname-pki-entity-1] state country
SSL Configuration Commands

ciphersuite

Syntax

ciphersuite [ rsa_aes_128_cbc_sha | rsa_des_cbc_sha | rsa_rc4_128_md5 | rsa_rc4_128_sha ] *

View

SSL server policy view

Default Level

2: System level

Parameters

rsa_aes_128_cbc_sha: Specifies the key exchange algorithm of RSA, the data encryption algorithm of 128-bit AES_CBC, and the MAC algorithm of SHA.

rsa_des_cbc_sha: Specifies the key exchange algorithm of RSA, the data encryption algorithm of DES_CBC, and the MAC algorithm of SHA.

rsa_rc4_128_md5: Specifies the key exchange algorithm of RSA, the data encryption algorithm of 128-bit RC4, and the MAC algorithm of MD5.

rsa_rc4_128_sha: Specifies the key exchange algorithm of RSA, the data encryption algorithm of 128-bit RC4, and the MAC algorithm of SHA.

Description

Use the ciphersuite command to specify the cipher suite(s) for an SSL server policy to support.

By default, an SSL server policy supports all cipher suites.

With no keyword specified, the command configures an SSL server policy to support all cipher suites.

Related commands: display ssl server-policy.

Examples

# Specify the cipher suites for SSL server policy policy1 to support as rsa_rc4_128_md5 and rsa_rc4_128_sha.
<Sysname> system-view
<Sysname> ssl server-policy policy1
<Sysname-ssl-server-policy-policy1> ciphersuite rsa_rc4_128_md5 rsa_rc4_128_sha
client-verify enable

Syntax

    client-verify enable
    undo client-verify enable

View

    SSL server policy view

Default Level

    2: System level

Parameters

    None

Description

    Use the `client-verify enable` command to enable certificate-based SSL client authentication, that is, to enable the SSL server to perform certificate-based authentication of the client during the SSL handshake process.

    Use the `undo client-verify enable` command to restore the default.

    By default, certificate-based SSL client authentication is disabled.

Examples

    # Enable certificate-based client authentication.
    <Sysname> system-view
    [Sysname] ssl server-policy policy1
    [Sysname-ssl-server-policy-policy1] client-verify enable

close-mode wait

Syntax

    close-mode wait
    undo close-mode wait

View

    SSL server policy view

Default Level

    2: System level

Parameters

    None
**Description**

Use the `close-mode wait` command to set the SSL connection close mode to wait. In this mode, after sending a close-notify message to a client, the server does not close the connection until it receives a close-notify message from the client.

Use the `undo close-mode wait` command to restore the default.

By default, an SSL server sends a close-notify alert message to the client and close the connection without waiting for the close-notify alert message from the client.

Related commands: `display ssl server-policy`.

**Examples**

```
<Sysname> system-view
[Sysname] ssl server-policy policy1
[Sysname-ssl-server-policy-policy1] close-mode wait
```

**display ssl client-policy**

**Syntax**

```
display ssl client-policy { policy-name | all }
```

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

`policy-name`: SSL client policy name, a case-insensitive string of 1 to 16 characters.

`all`: Displays information about all SSL client policies.

**Description**

Use the `display ssl client-policy` command to view information about a specified or all SSL client policies.

**Examples**

```
Display information about SSL client policy policy1.
<Sysname> display ssl client-policy policy1
SSL Client Policy: policy1
 SSL Version: SSL 3.0
 PKI Domain: 1
 Prefer Ciphersuite:
 RSA_RC4_128_SHA
```
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSL Client Policy</td>
<td>SSL client policy name</td>
</tr>
<tr>
<td>SSL Version</td>
<td>Version of the protocol used by the SSL client policy, SSL 3.0 or TLS 1.0.</td>
</tr>
<tr>
<td>PKI Domain</td>
<td>PKI domain of the SSL client policy</td>
</tr>
<tr>
<td>Prefer Ciphersuite</td>
<td>Preferred cipher suite of the SSL client policy</td>
</tr>
</tbody>
</table>

**display ssl server-policy**

**Syntax**

`display ssl server-policy { policy-name | all }`

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

- `policy-name`: SSL server policy name, a case-insensitive string of 1 to 16 characters.
- `all`: Displays information about all SSL server policies.

**Description**

Use the `display ssl server-policy` command to view information about a specified or all SSL server policies.

**Examples**

# Display information about SSL server policy policy1.

```
<Sysname> display ssl server-policy policy1
SSL Server Policy: policy1
 PKI Domain: domain1
 Ciphersuite:
 RSA_RC4_128_MD5
 RSA_RC4_128_SHA
 RSA_DES_CBC_SHA
 RSA_AES_128_CBC_SHA
 Handshake Timeout: 3600
 Close-mode: wait disabled
 Session Timeout: 3600
 Session Cachesize: 500
 Client-verify: disabled
```
Table 12-2 display ssl server-policy command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSL Server Policy</td>
<td>SSL server policy name</td>
</tr>
<tr>
<td>PKI Domain</td>
<td>PKI domain used by the SSL server policy</td>
</tr>
<tr>
<td>Ciphersuite</td>
<td>Cipher suite supported by the SSL server policy</td>
</tr>
<tr>
<td>Handshake Timeout</td>
<td>Handshake timeout time of the SSL server policy, in seconds</td>
</tr>
<tr>
<td>Close-mode</td>
<td>Close mode of the SSL server policy, which can be:</td>
</tr>
<tr>
<td></td>
<td>• wait disabled: In this mode, the server sends a close-notify message to the client and then closes the connection immediately without waiting for the close-notify message of the client.</td>
</tr>
<tr>
<td></td>
<td>• wait enabled: In this mode, the server sends a close-notify message to the client and then waits for the close-notify message of the client. Only after receiving the expected message, does the server close the connection.</td>
</tr>
<tr>
<td>Session Timeout</td>
<td>Session timeout time of the SSL server policy, in seconds</td>
</tr>
<tr>
<td>Session Cachesize</td>
<td>Maximum number of buffered sessions of the SSL server policy</td>
</tr>
<tr>
<td>Client-verify</td>
<td>Whether client authentication is enabled</td>
</tr>
</tbody>
</table>

**handshake timeout**

**Syntax**

handshake timeout time
undo handshake timeout

**View**

SSL server policy view

**Default Level**

2: System level

**Parameters**

- **time**: Handshake timeout time in seconds, in the range 180 to 7,200.

**Description**

Use the **handshake timeout** command to set the handshake timeout time for an SSL server policy.

Use the **undo handshake timeout** command to restore the default.

By default, the handshake timeout time is 3,600 seconds.

If the SSL server does not receive any packet from the SSL client before the handshake timeout time expires, the SSL server will terminate the handshake process.

**Related commands**: display ssl server-policy.

**Examples**

# Set the handshake timeout time of SSL server policy policy1 to 3,000 seconds.
pki-domain

Syntax

pki-domain domain-name
undo pki-domain

View

SSL server policy view, SSL client policy view

Default Level

2: System level

Parameters

domain-name: Name of a PKI domain, a case-insensitive string of 1 to 15 characters.

Description

Use the pki-domain command to specify a PKI domain for an SSL server policy or SSL client policy.
Use the undo pki-domain command to restore the default.
By default, no PKI domain is configured for an SSL server policy or SSL client policy.
Related commands: display ssl server-policy and display ssl client-policy.

Examples

# Configure SSL server policy policy1 to use the PKI domain named server-domain.
<Sysname> system-view
<Sysname> ssl server-policy policy1
<Sysname-ssl-server-policy-policy1] pki-domain server-domain

# Configure SSL client policy policy1 to use the PKI domain named client-domain.
<Sysname> system-view
<Sysname> ssl client-policy policy1
<Sysname-ssl-client-policy-policy1] pki-domain client-domain

prefer-cipher

Syntax

prefer-cipher { rsa_aes_128_cbc_sha | rsa_des_cbc_sha | rsa_rc4_128_md5 | rsa_rc4_128_sha }
undo prefer-cipher

View

SSL client policy view
Default Level

2: System level

Parameters

- **rsa_aes_128_cbc_sha**: Specifies the key exchange algorithm of RSA, the data encryption algorithm of 128-bit AES_CBC, and the MAC algorithm of SHA.
- **rsa_des_cbc_sha**: Specifies the key exchange algorithm of RSA, the data encryption algorithm of DES_CBC, and the MAC algorithm of SHA.
- **rsa_rc4_128_md5**: Specifies the key exchange algorithm of RSA, the data encryption algorithm of 128-bit RC4, and the MAC algorithm of MD5.
- **rsa_rc4_128_sha**: Specifies the key exchange algorithm of RSA, the data encryption algorithm of 128-bit RC4, and the MAC algorithm of SHA.

Description

Use the `prefer-cipher` command to specify the preferred cipher suite for an SSL client policy.

Use the `undo prefer-cipher` command to restore the default.

By default, the preferred cipher suite for an SSL client policy is `rsa_rc4_128_md5`.

Related commands: `display ssl client-policy`.

Examples

```
Set the preferred cipher suite for SSL client policy policy1 to rsa_aes_128_cbc_sha.
<Sysname> system-view
[Sysname] ssl client-policy policy1
[Sysname-ssl-client-policy-policy1] prefer-cipher rsa_aes_128_cbc_sha
```

session

Syntax

```
session { cachesize size | timeout time } *
undo session { cachesize | timeout } *
```

View

SSL server policy view

Default Level

2: System level

Parameters

- **size**: Maximum number of cached sessions, in the range 100 to 1,000.
- **time**: Caching timeout time in seconds, in the range 1,800 to 72,000.

Description

Use the `session` command to set the maximum number of cached sessions and the caching timeout time.

Use the `undo session` command to restore the default.
By default, the maximum number of cached sessions is 500 and the caching timeout time is 3,600 seconds.

The process of the session parameters negotiation and session establishment by using the SSL handshake protocol is quite complicated. SSL allows reusing the negotiated session parameters to establish sessions. Therefore, the SSL server needs to maintain information about existing sessions. Note that the number of sessions and the time that the session information will be maintained are limited:

- If the number of sessions in the cache reaches the maximum, SSL rejects to cache new sessions.
- If a session exists in the cache for a period equal to the caching timeout time, SSL will remove the information of the session.

Related commands: **display ssl server-policy**.

### Examples

```
Set the caching timeout time to 4,000 seconds and the maximum number of cached sessions to 600.
<Sysname> system-view
[Sysname] ssl server-policy policy1
[Sysname-ssl-server-policy-policy1] session timeout 4000 cachesize 600
```

### ssl client-policy

**Syntax**

```
ssl client-policy policy-name
undo ssl client-policy { policy-name | all }
```

**View**

System view

**Default Level**

2: System level

**Parameters**

*policy-name*: SSL client policy name, a case-insensitive string of 1 to 16 characters, which cannot be “a”, “ai” and “all”.

*all*: Specifies all SSL client policies.

**Description**

Use the **ssl client-policy** command to create an SSL policy and enter its view.

Use the **undo ssl client-policy** command to remove a specified or all SSL client policies.

Related commands: **display ssl client-policy**.

**Examples**

```
Create an SSL client policy named policy1 and enter its view.
<Sysname> system-view
[Sysname] ssl client-policy policy1
[Sysname-ssl-client-policy-policy1]
```
ssl server-policy

Syntax

    ssl server-policy policy-name
    undo ssl server-policy { policy-name | all }

View

    System view

Default Level

    2: System level

Parameters

    policy-name: SSL server policy name, a case-insensitive string of 1 to 16 characters, which cannot be “a”, “al” and “all”.
    all: Specifies all SSL server policies.

Description

    Use the ssl server-policy command to create an SSL server policy and enter its view.
    Use the undo ssl server-policy command to remove a specified or all SSL server policies.
    Note that you cannot delete an SSL server policy that has been associated with one or more application layer protocols.

Examples

    # Create an SSL server policy named policy1 and enter its view.
    <Sysname> system-view
    [Sysname] ssl server-policy policy1
    [Sysname-ssl-server-policy-policy1]

version

Syntax

    version { ssl3.0 | tls1.0 }
    undo version

View

    SSL client policy view

Default Level

    2: System level

Parameters

    ssl3.0: Specifies SSL 3.0.
    tls1.0: Specifies TLS 1.0.
Description

Use the `version` command to specify the SSL protocol version for an SSL client policy.

Use the `undo version` command to restore the default.

By default, the SSL protocol version for an SSL client policy is TLS 1.0.

Related commands: `display ssl client-policy`.

Examples

# Specify the SSL protocol version for SSL client policy policy1 as SSL 3.0.

```bash
<Sysname> system-view
[Sysname] ssl client-policy policy1
[Sysname-ssl-client-policy-policy1] version ssl3.0
```
Public Key Configuration Commands

display public-key local public

Syntax

display public-key local \{ dsa | rsa \} public

View

Any view

Default Level

1: Monitor level

Parameters

dsa: DSA key pair.
rsa: RSA key pair.

Description

Use the `display public-key local public` command to display the public key information of the local key pair(s).

Related commands: public-key local create.

Examples

# Display the public key information of the local RSA key pairs.

<Sysname> display public-key local rsa public

RAR

Time of Key pair created: 19:59:16  2007/10/25
Key name: HOST_KEY
Key type: RSA Encryption Key

Key code:
30819F300D06092A864886F70D010101050003818D003081902818100BC4C392A97734A633BA0F1DB01F84EB51228EC86ADEE1DBA597E0D9066FDC4F04776CEA3610D2578341F5D049143656F1287502C06D39D39F28F0F5
CBA630DA8CD1C16EC8E8A7A65282F240FE8757E7937DCCDB5DB20CD1F471401B7117139702348444A2D8900497A87B8DF13D61C4DEF8A3D14A7DC07624791FC1D226F62DF30203010001

RAR

Time of Key pair created: 19:59:17  2007/10/25
Key name: SERVER_KEY
**display public-key peer**

**Syntax**

```
display public-key peer [brief | name publickey-name]
```

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

- **brief**: Displays brief information about all the public keys of peers.
- **name publickey-name**: Specifies a peer's host public key by its name, which is a case-sensitive string of 1 to 64 characters.

**Description**

Use the `display public-key peer` command to display information about the specified or all locally saved public keys of peers.
With neither the `brief` keyword nor the name `publickey-name` combination specified, the command displays detailed information about all locally saved public keys of peers.

You can use the `public-key peer` command or the `public-key peer import sshkey` command to get a local copy of the public keys of a peer.

Related commands: `public-key peer`, `public-key peer import sshkey`.

Examples

```
Display detailed information about the peer host public key named `idrsa`.
<Sysname> display public-key peer name idrsa

Key Name : idrsa
Key Type : RSA
Key Module: 1024

Key Code:
30819D300D06092A864886F70D010105003818B00308187028181009C46A8710216CEC0C01C7CE136BA76 C79AA6040B79F9E305E453998C7ADE8276069410803D5974F708496947AB39B3F93C5CE5695B6AB7442D563 93BF241F99A639DD029E29B1F5C1FD05CC1C44FBD6CFFB58BE6F035F0A2C596B27D123D159846B7CB9A775 7C5800FADA9FD72F65672F4A549EE99F6309S11BD37789955020123

Display brief information about all locally saved public keys of the peers.
<Sysname> display public-key peer brief

Type Module Name

RSA 1024 idrsa
DSA 1024 10.1.1.1
```

`peer-public-key end`

Syntax

```
peer-public-key end
```

View

Public key view

Default Level

2: System level

Parameters

None

Description

Use the `peer-public-key end` command to return from public key view to system view.

Related commands: `public-key peer`.

Examples

```
Exit public key view.
```
public-key-code begin

Syntax

public-key-code begin

View

Public key view

Default Level

2: System level

Parameters

None

Description

Use the **public-key-code begin** command to enter public key code view.

After entering public key code view, you can input the key in a correct format. Spaces and carriage returns are allowed between characters.

You can input the key data displayed with the **display public-key local public** command so that the format requirements are met.

Related commands: **public-key peer**, **public-key-code end**.

Examples

# Enter public key code view and input the key.

```bash
<Sysname> system-view
[Sysname] public-key peer key1
[Sysname-pkey-public-key] public-key-code begin
[Sysname-pkey-key-code] 30819F300D06092A864886F70D0101050003818D003081890281810000EC801
4F82515F6335A0A
[Sysname-pkey-key-code] E8F899C01EC94E5760A079BD73E4F4D97F3500EDB308C29481B77E719D164313
5877E13B1C531B4
[Sysname-pkey-key-code] FF1877A5E2E7B1FA4710DB0744F66F6600EFE166F1B854E2371D5B952ADF6B80
EB5F26298FCF3D6
[Sysname-pkey-key-code] 1F0C2EAD9813ECB16C5C7DC09812D4EE3E9A0B074276FFD4AF2050BD4A9B1DDE
675AC30CB020301
[Sysname-pkey-key-code] 0000
```

public-key-code end

Syntax

public-key-code end
Public key code view

Default Level
2: System level

Parameters
None

Description
Use the `public-key-code end` command to return from public key code view to public key view and to save the configured public key.

The system verifies the key before saving it. If the key contains invalid characters, the system displays an error message and discards the key. Otherwise, the system saves the key.

Related commands: `public-key peer`, `public-key-code begin`.

Examples

```
Exit public key code view and save the configured public key.
<Sysname> system-view
[Sysname] public-key peer key1
[Sysname-pkey-public-key] public-key-code begin
[Sysname-pkey-key-code]30819F300D06092A864886F70D0101050003818D0030818902818100C0EC801
4F82515F6335A0A
[Sysname-pkey-key-code]EF8F999C01EC94E5760A079BD73E4F4D97F3500EDB308C29481B77E719D164313
5877E13B1C531B4
[Sysname-pkey-key-code]FF1877A5E2E7B1FA471DB0744F66F660EEFE166F1B854E2371D5B952ADF6B80
EB5F52698FCFD6
[Sysname-pkey-key-code]1F0C2EAAD9813ECB16C57DC09812D4EE3E9A0B74276FFD4AF2050BD4A9B1DDE
675AC30CB020301
[Sysname-pkey-key-code]0001
[Sysname-pkey-key-code] public-key-code end
[Sysname-pkey-public-key]
```

public-key local create

Syntax

```
public-key local create { dsa | rsa }
```

View
System view

Default Level
2: System level

Parameters
dsa: DSA key pair.
rsa: RSA key pair.

Description

Use the `public-key local create` command to create local key pair(s).

Note that:

- When using this command to create DSA or RSA key pairs, you will be prompted to provide the length of the key modulus. The modulus length is in the range 512 to 2048 bits, and defaults to 1024 bits. If the type of key pair already exists, the system will ask you whether you want to overwrite it.
- The configuration of this command can survive a reboot.

Related commands: `public-key local destroy`, `display public-key local public`.

Examples

```
Create local RSA key pairs.
<Sysname> system-view
[Sysname] public-key local create rsa
The range of public key size is (512 ~ 2048).
NOTES: If the key modulus is greater than 512, it will take a few minutes.
Press CTRL+C to abort.
Input the bits of the modulus [default = 1024]:
Generating Keys...
++++++
++++++
++++++++
++++++++
+++++++

Create a local DSA key pair.
<Sysname> system-view
[Sysname] public-key local create dsa
The range of public key size is (512 ~ 2048).
NOTES: If the key modulus is greater than 512, it will take a few minutes.
Press CTRL+C to abort.
Input the bits of the modulus [default = 1024]:
Generating Keys...
*
*
```
Default Level

2: System level

Parameters

dsa: DSA key pair.
rsa: RSA key pair.

Description

Use the **public-key local destroy** command to destroy the local key pair(s).
Related commands: **public-key local create**.

Examples

```
Destroy the local RSA key pairs.
<Sysname> system-view
[Sysname] public-key local destroy rsa
Warning: Confirm to destroy these keys? [Y/N]:y

Destroy the local DSA key pair.
<Sysname> system-view
[Sysname] public-key local destroy dsa
Warning: Confirm to destroy these keys? [Y/N]:y
```

**public-key local export dsa**

Syntax

```
public-key local export dsa { openssh | ssh2 } [filename]
```

View

System view

Default Level

1: Monitor level

Parameters

**openssh**: Uses the format of OpenSSH.

**ssh2**: Uses the format of SSH2.0.

**filename**: Name of the file for storing public key. For detailed information about file name, refer to **File System Management** in the **System Volume**.

Description

Use the **public-key local export dsa** command to display the local DSA public key on the screen or export it to a specified file.

If you do not specify the **filename** argument, the command displays the local DSA public key on the screen; otherwise, the command exports the local DSA public key to the specified file and saves the file.

SSH2.0 and OpenSSH are two different public key formats for different requirements.
Related commands: **public-key local create**, **public-key local destroy**.

**Examples**

# Export the local DSA public key in OpenSSH format to a file named `key.pub`.

```shell
<Sysname> system-view
[Sysname] public-key local export dsa openssh key.pub
```

# Display the local DSA public key in SSH2.0 format.

```shell
<Sysname> system-view
[Sysname] public-key local export dsa ssh2
```

```
---- BEGIN SSH2 PUBLIC KEY ----
Comment: "dsa-key-20070625"
AAAAB3NzaC1kc3MAAACCBANdXJixFhMRMIR8Yv2blGHE8KQj9/5ra4WzT09yzhG6UL+CM7Ozb5sJlhUij3B7b0T7IsnTan3W6Jsy5h312Anh+kliUCRHyLDyJ5sG/WD+AIQd3XF+a+xKJFadu68HRKNl/BnjXcitTQchQb2WCLFLqL6xINo1QOHgRx9ozAAAFQDHcyGMc3717kp77y3tMPSO2s6RxwAAIEAaQCeF0xHS68pMuacDx8YUXrZWUGE2zN/OrpbzTV75MTPoS0cJFFKyDNDNakkrOVnsZJlijW8T6ULllLFs3ThbdABMs5xsCAhocJGscXth15HlbB+y61MXwb2BcdQey4PIEMAh8yMugQVwhhYhxzlqosAo9LFYXaf0JRLxjMmwnu8AAACBANvLNEKdDt6xcatPjxsSrxfXFVIdRjxw59QzKnH87GagbP4ccUp3KmcRzupgz1qNtfgz0LzHnGLyGxPp7Qk2/ruuHN0bJfBoLO2/RyGqDJiqB4FQwmrkwJuauY9gQy+mgE6dmHn0VG4gAxx9MQxDIBjzbRZX0bvxMdNKR22
---- END SSH2 PUBLIC KEY ----
```

# Display the local DSA public key in OpenSSH format.

```shell
<Sysname> system-view
[Sysname] public-key local export dsa openssh
```

```
AAAAB3NzaC1kc3MAAACCBANdXJixFhMRMIR8Yv2blGHE8KQj9/5ra4WzT09yzhG6UL+CM7Ozb5sJlhUij3B7b0T7IsnTan3W6Jsy5h312Anh+kliUCRHyLDyJ5sG/WD+AIQd3XF+a+xKJFadu68HRKNl/BnjXcitTQchQb2WCLFLqL6xINo1QOHgRx9ozAAAFQDHcyGMc3717kp77y3tMPSO2s6RxwAAIEAaQCeF0xHS68pMuacDx8YUXrZWUGE2zN/OrpbzTV75MTPoS0cJFFKyDNDNakkrOVnsZJlijW8T6ULllLFs3ThbdABMs5xsCAhocJGscXth15HlbB+y61MXwb2BcdQey4PIEMAh8yMugQVwhhYhxzlqosAo9LFYXaf0JRLxjMmwnu8AAACBANvLNEKdDt6xcatPjxsSrxfXFVIdRjxw59QzKnH87GagbP4ccUp3KmcRzupgz1qNtfgz0LzHnGLyGxPp7Qk2/ruuHN0bJfBoLO2/RyGqDJiqB4FQwmrkwJuauY9gQy+mgE6dmHn0VG4gAxx9MQxDIBjzbRZX0bvxMdNKR22_dsa-key
```

### public-key local export rsa

**Syntax**

```shell
public-key local export rsa { openssh | ssh1 | ssh2 } [filename]
```

**View**

System view

**Default Level**

1: Monitor level

**Parameters**

- **openssh**: Uses the format of OpenSSH.
- **ssh1**: Uses the format of SSH1.5.
- **ssh2**: Uses the format of SSH2.0.
**filename**: Name of the file for storing the public key. For detailed information about file name, refer to File System Management in the System Volume.

**Description**

Use the `public-key local export rsa` command to display the local RSA public key on the screen or export them to a specified file.

If you do not specify the `filename` argument, the command displays the local RSA public key on the screen; otherwise, the command exports the local RSA public key to the specified file and saves the file.

SSH1, SSH2.0 and OpenSSH are three different public key formats for different requirements.

Related commands: `public-key local create`, `public-key local destroy`.

**Examples**

```
Export the local RSA public key in OpenSSH format to a file named key.pub.
<Sysname> system-view
[Sysname] public-key local export rsa openssh key.pub

Display the local RSA public key in SSH2.0 format.
<Sysname> system-view
[Sysname] public-key local export rsa ssh2
----- BEGIN SSH2 PUBLIC KEY -----
Comment: "rsa-key-20070625"
AAAAB3NzaC1yc2EAAAADAQABAAABAgQDAo0dVYR1S5f30eLKGKNqub5HU3M0TT8aGlER2GmcR125gSegbo1x6ut5N1c5+jJxuRCU4+gMc76is8d+2d50FqIweEkHHk5SG/ddgXt/1AZ6cY81bdu/CKxSi-glKUpbw4vSv+X5KeE7j+o0MqO
pzh3W768/+ulriz+lLcwVTs51Q==
----- END SSH2 PUBLIC KEY -----

Display the local RSA public key in OpenSSH format.
<Sysname> system-view
[Sysname] public-key local export rsa openssh
ssh-rsa
AAAAB3nzaC1yc2EAAAADAQABAAABAgQDAo0dVYR1S5f30eLKGKNqub5HU3M0TT8aGlER2GmcR125gSegbo1x6ut5N1c5+jJxuRCU4+gMc76is8d+2d50FqIweEkHHk5SG/ddgXt/1AZ6cY81bdu/CKxSi-glKUpbw4vSv+X5KeE7j+o0MqO
pzh3W768/+ulriz+lLcwVTs51Q== rsa-key
```

**public-key peer**

**Syntax**

```
public-key peer keyname
undo public-key peer keyname
```

**View**

System view

**Default Level**

2: System level
Parameters

keyname: Public key name, a case-sensitive string of 1 to 64 characters.

Description

Use the public-key peer command to configure the public key name and enter public key view.

Use the undo public-key peer command to remove a configured peer public key.

After entering public key view, you can configure the public key of the peer with the public-key-code begin and public-key-code end commands. This requires that you obtain the hexadecimal public key from the peer beforehand.

Related commands: public-key-code begin, public-key-code end, display public-key peer.

Examples

# Enter public key view, specifying a public key name of key1.
<Sysname> system-view
[Sysname] public-key peer key1
[Sysname-pkey-public-key]

public-key peer import sshkey

Syntax

public-key peer keyname import sshkey filename
undo public-key peer keyname

View

System view

Default Level

2: System level

Parameters

keyname: Public key name, a case-sensitive string of 1 to 64 characters.
filename: Public key file name. For detailed information about file name, refer to File System Management in the System Volume.

Description

Use the public-key peer import sshkey command to import the public key of a peer from the public key file.

Use the undo public-key peer command to remove a configured peer public key.

After execution of this command, the system automatically transforms the public key in SSH1, SSH2.0 or OpenSSH format to PKCS format, and imports the peer public key. This requires that you get a copy of the public key file from the peer through FTP or TFTP in advance.

Related commands: display public-key peer.

Examples

# Import the peer host public key named key2 from the public key file key.pub.
<Sysname> system-view

[Sysname] public-key peer key2 import sshkey key.pub
Common Configuration Commands

display acl resource

Syntax

display acl resource [ slot slot-number ]

View

Any view

Default Level

1: Monitor level

Parameters

slot slot-number: Displays the usage of ACL resources on the specified device in the IRF. If the slot-number argument is not specified, the usage on all devices in the IRF is displayed. If no IRF is formed, the usage on the current device is displayed. The range for the slot-number argument depends on the number of devices and the numbering of the devices in the IRF.

Description

Use the display acl resource command to display the usage of ACL resources on a switch.

Examples

# Display the ACL uses on the switch.
<Sysname> display acl resource
Interface:
   GE1/0/1 to GE1/0/28
------------------------------------------------------------------------
<table>
<thead>
<tr>
<th>Type</th>
<th>Total</th>
<th>Reserved</th>
<th>Configured</th>
<th>Remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFP ACL</td>
<td>1024</td>
<td>0</td>
<td>0</td>
<td>1024</td>
</tr>
<tr>
<td>IFP ACL</td>
<td>4096</td>
<td>0</td>
<td>60</td>
<td>4036</td>
</tr>
<tr>
<td>IFP Meter</td>
<td>2048</td>
<td>0</td>
<td>46</td>
<td>2002</td>
</tr>
<tr>
<td>IFP Counter</td>
<td>2048</td>
<td>0</td>
<td>0</td>
<td>2048</td>
</tr>
<tr>
<td>EFP ACL</td>
<td>512</td>
<td>0</td>
<td>0</td>
<td>512</td>
</tr>
<tr>
<td>EFP Meter</td>
<td>256</td>
<td>0</td>
<td>0</td>
<td>256</td>
</tr>
<tr>
<td>EFP Counter</td>
<td>512</td>
<td>0</td>
<td>0</td>
<td>512</td>
</tr>
</tbody>
</table>
# Display the ACL uses on all devices in the IRF.
<Sysname> display acl resource
Interface:
The document provides information about ACL resources in different interfaces. Here is a summary of the data:

### Interface: GE1/0/1 to GE1/0/28, XGE1/2/1

<table>
<thead>
<tr>
<th>Type</th>
<th>Total</th>
<th>Reserved</th>
<th>Configured</th>
<th>Remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFP ACL</td>
<td>1024</td>
<td>0</td>
<td>0</td>
<td>1024</td>
</tr>
<tr>
<td>IFP ACL</td>
<td>4096</td>
<td>0</td>
<td>86</td>
<td>4010</td>
</tr>
<tr>
<td>IFP Meter</td>
<td>2048</td>
<td>0</td>
<td>35</td>
<td>2013</td>
</tr>
<tr>
<td>IFP Counter</td>
<td>2048</td>
<td>0</td>
<td>35</td>
<td>2013</td>
</tr>
<tr>
<td>EFP ACL</td>
<td>512</td>
<td>0</td>
<td>0</td>
<td>512</td>
</tr>
<tr>
<td>EFP Meter</td>
<td>256</td>
<td>0</td>
<td>0</td>
<td>256</td>
</tr>
<tr>
<td>EFP Counter</td>
<td>512</td>
<td>0</td>
<td>0</td>
<td>512</td>
</tr>
</tbody>
</table>

### Interface: GE2/0/1 to GE2/0/32, GE2/0/1

<table>
<thead>
<tr>
<th>Type</th>
<th>Total</th>
<th>Reserved</th>
<th>Configured</th>
<th>Remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFP ACL</td>
<td>1024</td>
<td>0</td>
<td>0</td>
<td>1024</td>
</tr>
<tr>
<td>IFP ACL</td>
<td>4096</td>
<td>0</td>
<td>86</td>
<td>4010</td>
</tr>
<tr>
<td>IFP Meter</td>
<td>2048</td>
<td>0</td>
<td>35</td>
<td>2013</td>
</tr>
<tr>
<td>IFP Counter</td>
<td>2048</td>
<td>0</td>
<td>35</td>
<td>2013</td>
</tr>
<tr>
<td>EFP ACL</td>
<td>512</td>
<td>0</td>
<td>0</td>
<td>512</td>
</tr>
</tbody>
</table>

### Table 14-1 display acl resource command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Resource indicated by its type and number</td>
</tr>
</tbody>
</table>

- **Type**
  - Resource type:
    - ACL indicates ACL rule resources,
    - Meter indicates traffic policing resources,
    - Counter indicates traffic statistics resources,
    - VFP indicates the count of resources that are before Layer 2 forwarding and applied in QinQ,
    - IFP indicates the count of resources in the inbound direction,
    - EFP indicates the count of resources in the outbound direction.

- **Total**
  - Total number of ACLs supported

- **Reserved**
  - Number of reserved ACLs

- **Configured**
  - Number of configured ACLs

- **Remaining**
  - Number of remaining ACLs

### display time-range

**Syntax**

`display time-range { time-range-name | all }`
View

Any view

Default Level

1: Monitor level

Parameters

time-range-name: Time range name, a case insensitive string of 1 to 32 characters. It must start with an English letter and cannot be the English word of all to avoid confusion.

all: Specifies all existing time ranges.

Description

Use the display time-range command to display the configuration and status of a specified time range or all time ranges.

A time range is active if the system time falls into its range.

Examples

# Display the configuration and status of time range trname.

<Sysname> display time-range trname
Current time is 22:20:18 1/5/2006 Thursday
Time-range : trname (Inactive)
from 15:00 1/28/2006 to 15:00 1/28/2008

Table 14-2 display time-range command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current time</td>
<td>Current system time</td>
</tr>
<tr>
<td>Time-range</td>
<td>Configuration and status of the time range, including the name of the time range, its status (active or inactive), and its start time and end time.</td>
</tr>
</tbody>
</table>

time-range

Syntax

    time-range time-range-name { start-time to end-time days [ from time1 date1 ] [ to time2 date2 ] | from time1 date1 [ to time2 date2 ] | to time2 date2 }

    undo time-range time-range-name [ start-time to end-time days [ from time1 date1 ] [ to time2 date2 ] | from time1 date1 [ to time2 date2 ] | to time2 date2 ]

View

System view

Default Level

2: System level
Parameters

**time-range-name**: Time range name, a case insensitive string of 1 to 32 characters. It must start with an English letter and cannot be the English word of all to avoid confusion.

**start-time**: Start time of a periodic time range, in `hh:mm` format (24-hour clock), where `hh` is hours and `mm` is minutes. Its value ranges from 00:00 to 23:59.

**end-time**: End time of the periodic time range, in `hh:mm` format (24-hour clock), where `hh` is hours and `mm` is minutes. Its value ranges from 00:00 to 24:00. The end time must be greater than the start time.

**days**: Indicates on which day or days of the week the periodic time range is valid. You may specify multiple values, in words or in digits, separated by spaces, but make sure that they do not overlap. These values can take one of the following forms:

- A digit in the range 0 to 6, respectively for Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, and Saturday.
- Week in words, that is, Mon, Tue, Wed, Thu, Fri, Sat, or Sun.
- working-day for Monday through Friday.
- off-day for Saturday and Sunday.
- daily for seven days of a week.

**from** `time1 date1`: Indicates the start time and date of an absolute time range. The `time1` argument specifies the time of the day in `hh:mm` format (24-hour clock), where `hh` is hours and `mm` is minutes. Its value ranges from 00:00 to 23:59. The `date1` argument specifies a date in `MM/DD/YYYY` or `YYYY/MM/DD` format, where `MM` is the month of the year in the range 1 to 12, `DD` is the day of the month in the range 1 to 31, and `YYYY` is the year in the usual Gregorian calendar in the range 1970 to 2100. If not specified, the start time is the earliest time available in the system, namely, 01/01/1970 00:00:00 AM.

**to** `time2 date2`: Indicates the end time and date of the absolute time range. The format of the `time2` argument is the same as that of the `time1` argument, but its value ranges from 00:00 to 24:00. The end time must be greater than the start time. If not specified, the end time is the maximum time available in the system, namely, 12/31/2100 24:00:00 PM. The format and value range of the `date2` argument are the same as those of the `date1` argument.

Description

Use the `time-range` command to create a time range.

Use the `undo time-range` command to remove a time range.

You may create a maximum of 256 time ranges.

A time range can be one of the following:

- Periodic time range created using the `time-range time-range-name start-time to end-time days` command. A time range thus created recurs periodically on the day or days of the week.

  **Absolute time range created using the `time-range time-range-name { from time1 date1 [ to time2 date2 ] } to time2 date2 }` command. Unlike a periodic time range, a time range thus created does not recur. For example, to create an absolute time range that is active between January 1, 2004 00:00 and December 31, 2004 23:59, you may use the `time-range test from 00:00 01/01/2004 to 23:59 12/31/2004` command.**

- Compound time range created using the `time-range time-range-name start-time to end-time days { from time1 date1 [ to time2 date2 ] } to time2 date2 }` command. A time range thus created recurs on the day or days of the week only within the specified period. For example, to create a time range that is active from 12:00 to 14:00 on Wednesdays between January 1, 2004 00:00 and
December 31, 2004 23:59, you may use the time-range test 12:00 to 14:00 wednesday from 00:00 01/01/2004 to 23:59 12/31/2004 command.

You may create individual time ranges identified with the same name. They are regarded as one time range whose active period is the result of ORing periodic ones, ORing absolute ones, and ANDing periodic and absolute ones.

Examples

# Create an absolute time range named test, setting it to become active from 00:00 on January 1, 2008.
<Sysname> system-view
[Sysname] time-range test from 0:0 2008/1/1

# Create a periodic time range named test, setting it to be active between 8:00 to 18:00 during working days.
<Sysname> system-view
[Sysname] time-range test 8:00 to 18:00 working-day

# Create a periodic time range named test, setting it to be active between 14:00 and 18:00 on Saturday and Sunday.
<Sysname> system-view
[Sysname] time-range test 14:00 to 18:00 off-day

IPv4 ACL Configuration Commands

acl

Syntax

  acl number acl-number [ name acl-name ] [ match-order { auto | config } ]
  undo acl { all | name acl-name | number acl-number }

View

System view

Default Level

2: System level

Parameters

number acl-number: Specifies the number of the IPv4 ACL, which must be in the following ranges:
- 2000 to 2999 for basic IPv4 ACLs
- 3000 to 3999 for advanced IPv4 ACLs
- 4000 to 4999 for Ethernet frame header ACLs

name acl-name: Specifies the name of the ACL, which is a case insensitive string of 1 to 32 characters. It must start with an English letter and cannot be the English word of all to avoid confusion.

match-order: Specifies the order in which ACL rules are matched.
- auto: Performs depth-first match.
- config: Performs matching against rules in the order in which they are configured.

all: Specifies all IPv4 ACLs.
Description

Use the `acl` command to enter IPv4 ACL view. If the ACL does not exist, it is created first. Use the `undo acl` command to remove a specified IPv4 ACL or all IPv4 ACLs.

By default, the match order is `config`.

Note that:

- You can specify a name for an IPv4 ACL only when you create the ACL. After creating an ACL, you cannot specify a name for it, nor can you change or remove its name.
- The name of an IPv4 ACL must be unique among IPv4 ACLs. However, an IPv4 ACL and an IPv6 ACL can share the same name.
- If you specify both an ACL number and an ACL name in one command to enter the view of an existing ACL, be sure that the ACL number and ACL name identify the same ACL.
- You can also use this command to modify the match order of an existing ACL but only when the ACL does not contain any rules.

Examples

# Create IPv4 ACL 2000.

```
<Sysname> system-view
[Sysname] acl number 2000
[Sysname-acl-basic-2000]
```

# Create IPv4 ACL 2002, naming it `flow`.

```
<Sysname> system-view
[Sysname] acl number 2002 name flow
[Sysname-acl-basic-2002-flow]
```

# Enter the view of an unnamed IPv4 ACL by specifying its number.

```
<Sysname> system-view
[Sysname] acl number 2000
[Sysname-acl-basic-2000]
```

# Enter the view of a named IPv4 ACL by specifying its number.

```
<Sysname> system-view
[Sysname] acl number 2002
[Sysname-acl-basic-2002-flow]
```

# Delete the IPv4 ACL numbered 2000.

```
<Sysname> system-view
[Sysname] undo acl number 2000
```

# Delete the IPv4 ACL named `flow`.

```
<Sysname> system-view
[Sysname] undo acl name flow
```

**acl copy**

Syntax

```
acl copy { source-acl-number | name source-acl-name } to { dest-acl-number | name dest-acl-name }
```
View

System view

Default Level

2: System level

Parameters

source-acl-number: Number of an existing IPv4 ACL, which must be in the following ranges:
- 2000 to 2999 for basic IPv4 ACLs
- 3000 to 3999 for advanced IPv4 ACLs
- 4000 to 4999 for Ethernet frame header ACLs

name source-acl-name: Name of an existing IPv4 ACL, a case insensitive string of 1 to 32 characters. It must start with an English letter and cannot be the English word of all to avoid confusion.

dest-acl-number: Number of a non-existent IPv4 ACL, which must be of the same ACL type as the source ACL and in the following ranges:
- 2000 to 2999 for basic IPv4 ACLs
- 3000 to 3999 for advanced IPv4 ACLs
- 4000 to 4999 for Ethernet frame header ACLs

name dest-acl-name: Name of a non-existent IPv4 ACL, a case insensitive string of 1 to 32 characters. It must start with an English letter and cannot be the English word of all to avoid confusion. The system will automatically assign the new ACL a number which is the smallest among the available numbers of the same ACL type.

Description

Use the acl copy command to create an IPv4 ACL by copying an existing IPv4 ACL. The new ACL is of the same ACL type and has the same match order, rules, rule numbering step and descriptions.

Note that:
- The source IPv4 ACL and the destination IPv4 ACL must be of the same type.
- The new ACL does not take the name of the source IPv4 ACL.

Examples

# Copy ACL 2008 to generate ACL 2009.
<Sysname> system-view
[Sysname] acl copy 2008 to 2009

acl name

Syntax

acl name acl-name

View

System view

Default Level

2: System level
Parameters

acl-name: Name of the IPv4 ACL, a case insensitive string of 1 to 32 characters. It must start with an English letter and cannot be the English word of all to avoid confusion.

Description

Use the acl name command to enter the view of an existing IPv4 ACL by specifying its name.

Examples

# Enter the view of the IPv4 ACL named flow.
<Sysname> system-view
[Sysname] acl name flow
[Sysname-acl-basic-2002-flow]

description (for IPv4)

Syntax

description text
undo description

View

Basic IPv4 ACL view, advanced IPv4 ACL view, Ethernet frame header ACL view

Default Level

2: System level

Parameters

text: ACL description, a case-sensitive string of 1 to 127 characters.

Description

Use the description command to configure a description for an IPv4 ACL to, for example, describe the purpose of the ACL.

Use the undo description command to remove the ACL description.

By default, an IPv4 ACL has no ACL description.

Examples

# Configure a description for IPv4 ACL 2000.
<Sysname> system-view
[Sysname] acl number 2000
[Sysname-acl-basic-2000] description This acl is used in geth 1/0/1

# Configure a description for IPv4 ACL 3000.
<Sysname> system-view
[Sysname] acl number 3000
[Sysname-acl-adv-3000] description This acl is used in geth 1/0/1

# Configure a description for ACL 4000.
<Sysname> system-view
display acl

Syntax

display acl { acl-number | all | name acl-name }

View

Any view

Default Level

1: Monitor level

Parameters

acl-number: IPv4 ACL number, which must be in the following ranges:

- 2000 to 2999 for basic IPv4 ACLs
- 3000 to 3999 for advanced IPv4 ACLs
- 4000 to 4999 for Ethernet frame header ACLs

all: Specifies all IPv4 ACLs.

ame acl-name: Specifies the name of the ACL, which is a case insensitive string of 1 to 32 characters. It must start with an English letter and cannot be the English word of all to avoid confusion.

Description

Use the display acl command to display information about a specified IPv4 ACL or all IPv4 ACLs. Note that this command displays ACL rules in the match order.

Examples

<Sysname> display acl 2001
Basic ACL 2001, named flow, 1 rule,
ACL's step is 5
rule 5 permit source 1.1.1.1 0 (5 times matched)
rule 5 comment This rule is used in geth 1/0/1

Table 14-3 display acl command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic ACL 2001</td>
<td>The displayed information is about basic IPv4 ACL 2001.</td>
</tr>
<tr>
<td>named flow</td>
<td>The name of the ACL is flow.</td>
</tr>
<tr>
<td>1 rule</td>
<td>The ACL contains one rule.</td>
</tr>
<tr>
<td>ACL's step is 5</td>
<td>The rule numbering step is 5.</td>
</tr>
<tr>
<td>5 times matched</td>
<td>There have been five matches for the rule. Only ACL matches performed by software are counted. This field is not displayed when no match is found.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>rule 5 comment This rule is used in geth 1/0/1</td>
<td>The description of ACL rule 5 is “This rule is used in geth 1/0/1.”</td>
</tr>
</tbody>
</table>

**reset acl counter**

**Syntax**

```
reset acl counter { acl-number | all | name acl-name }
```

**View**

User view

**Default Level**

2: System level

**Parameters**

- **acl-number**: IPv4 ACL number, which must be in the following ranges:
  - 2000 to 2999 for basic IPv4 ACLs
  - 3000 to 3999 for advanced IPv4 ACLs
  - 4000 to 4999 for Ethernet frame header ACLs
- **all**: Specifies all IPv4 ACLs except for user-defined ACLs.
- **name acl-name**: Specifies the name of the ACL, which is a case insensitive string of 1 to 32 characters. It must start with an English letter and cannot be the English word of all to avoid confusion.

**Description**

Use the `reset acl counter` command to clear statistics on a specified IPv4 ACL or all IPv4 ACLs that are referenced by upper layer software.

**Examples**

```
<Sysname> reset acl counter 2001

Clear statistics on IPv4 ACL flow.
<Sysname> reset acl counter name flow
```

**rule (basic IPv4 ACL view)**

**Syntax**

```
rule [rule-id] { deny | permit } [fragment | logging | source { sour-addr sour-wildcard | any } | time-range time-range-name | vpn-instance vpn-instance-name] *
undo rule rule-id [fragment | logging | source | time-range | vpn-instance] *
```

**View**

Basic IPv4 ACL view
Default Level

2: System level

Parameters

rule-id: Basic IPv4 ACL rule number, in the range 0 to 65534.

deny: Drops matched packets.

permit: Allows matched packets to pass.

fragment: Indicates that the rule applies to only non-first fragments. A rule without this keyword applies to all fragments and non-fragments.

logging: Generates log entries for matched packets. This function requires that the module using the ACL support logging.

source { sour-addr sour-wildcard | any }: Specifies a source address. The sour-addr sour-wildcard argument combination specifies a source IP address in dotted decimal notation. A wildcard of zero indicates a host address. The any keyword indicates any source IP address.

time-range time-range-name: Specifies the time range in which the rule takes effect. The time-range-name argument is a case insensitive string of 1 to 32 characters. It must start with an English letter and cannot be the English word of all to avoid confusion.

vpn-instance vpn-instance-name: Specifies a VPN instance. The vpn-instance-name argument is a case-sensitive string of 1 to 31 characters. Without this combination, the rule applies to only non-VPN packets.

Description

Use the rule command to create a basic IPv4 ACL rule or modify an existing basic IPv4 ACL rule.

Use the undo rule command to remove a basic IPv4 ACL rule or remove some criteria from the rule.

If you specify no optional keywords, the undo rule command removes the entire ACL rule; otherwise, the command removes only the specified criteria. Before performing the undo rule command, you may use the display acl command to view the ID of the rule.

When defining ACL rules, you do not need to assign them IDs; the system can automatically assign rule IDs starting with 0 and increasing in certain rule numbering steps. A rule ID thus assigned is the smallest multiple of the step that is bigger than the current biggest number. For example, if the rule numbering step is 5 and the current highest rule ID is 28, the next rule will be numbered 30.

You cannot create a rule with, or modify a rule to have, the same permit/deny statement as an existing rule in the ACL.

You can only modify the existing rules of an ACL that uses the match order of config. When modifying a rule of such an ACL, you may choose to change just some of the settings, in which case the other settings remain the same.

When the ACL match order is auto, a newly created rule will be inserted among the existing rules in the depth-first match order. Note that the IDs of the rules still remain the same.
For a basic IPv4 ACL rule to be referenced by a QoS policy for traffic classification, the `logging` keyword is not supported.

Related commands: `display acl`.

**Examples**

```bash
Create a rule to deny packets with the source IP address 1.1.1.1.
<Sysname> system-view
[Sysname] acl number 2000
[Sysname-acl-basic-2000] rule deny source 1.1.1.1 0
```

### rule (advanced IPv4 ACL view)

**Syntax**

```bash
rule [rule-id] { deny | permit } protocol { { established | { ack ack-value | fin fin-value | psh psh-value | rst rst-value | syn syn-value | urg urg-value } * } | destination { dest-addr dest-wildcard | any } | destination-port operator port1 [port2] | dscp dscp | fragment | icmp-type { icmp-type icmp-code | icmp-message } | logging | precedence precedence | reflective | source { sour-addr sour-wildcard | any } | source-port operator port1 [port2] | time-range time-range-name | tos tos | vpn-instance vpn-instance-name } *
undo rule rule-id [{ established | { ack | fin | psh | rst | syn | urg } * } | destination | destination-port | dscp | fragment | icmp-type | logging | precedence | reflective | source | source-port | time-range | tos | vpn-instance] *
```

**View**

Advanced IPv4 ACL view

**Default Level**

2: System level

**Parameters**

- `rule-id`: Advanced IPv4 ACL rule number, in the range 0 to 65534.
- `deny`: Drops matched packets.
- `permit`: Allows matched packets to pass.
- `protocol`: Protocol carried by IP. It can be a number in the range 0 to 255, or in words, `gre` (47), `icmp` (1), `igmp` (2), `ip`, `ipinip` (4), `ospf` (89), `tcp` (6), or `udp` (17). Table 14-4 shows the parameters that can be specified after the `protocol` argument.
Table 14-4 Match criteria and other rule information for advanced IPv4 ACL rules

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>source { sour-addr sour-wildcard</td>
<td>any }</td>
<td>Specifies a source address.</td>
</tr>
<tr>
<td>destination { dest-addr dest-wildcard</td>
<td>any }</td>
<td>Specifies a destination address.</td>
</tr>
<tr>
<td>precedence precedence</td>
<td></td>
<td>Specifies an IP precedence value.</td>
</tr>
<tr>
<td>tos tos</td>
<td></td>
<td>Specifies a ToS preference.</td>
</tr>
<tr>
<td>dscp dscp</td>
<td></td>
<td>Specifies a DSCP priority.</td>
</tr>
<tr>
<td>logging</td>
<td></td>
<td>Specifies to log matched packets.</td>
</tr>
<tr>
<td>reflective</td>
<td></td>
<td>Specifies that the rule be reflective.</td>
</tr>
<tr>
<td>vpn-instance vpn-instance-name</td>
<td></td>
<td>Specifies a VPN instance.</td>
</tr>
<tr>
<td>fragment</td>
<td></td>
<td>Indicates that the rule applies to only non-first fragments.</td>
</tr>
<tr>
<td>time-range time-range-name</td>
<td></td>
<td>Specifies the time range in which the rule takes effect.</td>
</tr>
</tbody>
</table>

The `sour-addr sour-wildcard` argument combination specifies a source IP address in dotted decimal notation. A wildcard of zero indicates a host address. The `any` keyword indicates any source IP address.

The `dest-addr dest-wildcard` argument combination specifies a destination IP address in dotted decimal notation. A wildcard of zero indicates a host address. The `any` keyword indicates any destination IP address.

The `precedence` argument can be a number in the range 0 to 7, or in words, `routine` (0), `priority` (1), `immediate` (2), `flash` (3), `flash-override` (4), `critical` (5), `internet` (6), or `network` (7).

The `tos` argument can be a number in the range 0 to 15, or in words, `max-reliability` (2), `max-throughput` (4), `min-delay` (8), `min-monetary-cost` (1), or `normal` (0).

The `dscp` argument can be a number in the range 0 to 63, or in words, `af11` (10), `af12` (12), `af13` (14), `af21` (18), `af22` (20), `af23` (22), `af31` (26), `af32` (28), `af33` (30), `af41` (34), `af42` (36), `af43` (38), `cs1` (8), `cs2` (16), `cs3` (24), `cs4` (32), `cs5` (40), `cs6` (48), `cs7` (56), `default` (0), or `ef` (46).

A rule with the `reflective` keyword can be defined only for TCP, UDP, or ICMP packets and can only be a permit statement.

The `vpn-instance-name` argument is a case-sensitive string of 1 to 31 characters. Without this combination, the rule applies to only non-VPN packets.

Without this keyword, the rule applies to all fragments and non-fragments.

The `time-range-name` argument is a case insensitive string of 1 to 32 characters. It must start with an English letter and cannot be the English word of all to avoid confusion.

Setting the `protocol` argument to `tcp` or `udp`, you may define the parameters shown in Table 14-5.
Table 14-5 TCP/UDP-specific parameters for advanced IPv4 ACL rules

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>source-port</strong></td>
<td><strong>operator</strong></td>
<td>Specifies one or more UDP or TCP source ports.</td>
</tr>
<tr>
<td><strong>port1 [ port2 ]</strong></td>
<td></td>
<td>The <em>operator</em> argument can be <em>lt</em> (lower than), <em>gt</em> (greater than), <em>eq</em> (equal to), <em>neq</em> (not equal to), or <em>range</em> (inclusive range).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The <em>port1</em> and <em>port2</em> arguments are TCP or UDP port numbers in the range 0 to 65535. <em>port2</em> is needed only when the <em>operator</em> argument is</td>
</tr>
<tr>
<td></td>
<td></td>
<td><em>range</em>.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TCP port numbers can be represented in these words: chargen (19), bgp (179), cmd (514), daytime (13), discard (9), domain (53), echo (7), exec (512), finger (79), ftp (21), ftp-data (20), gopher (70), hostname (101),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>irc (194), klogin (543), kshell (544), login (513), ldap (515), nntp (119), pop2 (109), pop3 (110), smtp (25), sunrpc (111), tacacs (49), talk (517), telnet (23), time (37), uucp (540), whois (43), and www (80).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UDP port numbers can be represented in these words: biff (512), bootpc (68), bootps (67), discard (9), dns (53), dnsix (90), echo (7), mobilip-ag (434), mobilip-mn (435), nameserver (42), netbios-dgm (138),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>netbios-ns (137), netbios-ssn (139), ntp (123), rip (520), snmp (161), snmptrap (162), sunrpc (111), syslog (514), tacacs-ds (65), talk (517), tftp (69), time (37), who (513), and xdmcp (177).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With the <em>range</em> operator, the value of <em>port2</em> does not need to be greater than that of <em>port1</em> because the switch can automatically judge the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>value range. If the two values are the same, the switch will convert the operator <em>range</em> to <em>eq</em>.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note that if you specify a combination of <em>lt</em> 1 or <em>gt</em> 65534, the switch will convert it to <em>eq</em> 0 or <em>eq</em> 65535.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>**{ ack ack-value</td>
<td>fin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parameters specific to TCP.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The value for each argument can be 0 or 1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If multiple TCP flags are specified in the rule, they are in the AND relation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>established</strong></td>
<td>Specifies TCP flags ACK and RST</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With the keyword, the rule applies to packets with the value of the ACK or RST flag being 1.</td>
</tr>
</tbody>
</table>

Setting the *protocol* argument to *icmp*, you may define the parameters shown in Table 14-6.
Table 14-6 ICMP-specific parameters for advanced IPv4 ACL rules

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmp-type { icmp-type</td>
<td>Specifies the ICMP message type and code.</td>
<td></td>
</tr>
<tr>
<td>icmp-code</td>
<td></td>
<td>The <code>icmp-type</code> argument ranges from 0 to 255. The <code>icmp-code</code> argument ranges from 0 to 255. The <code>icmp-message</code> argument specifies a message name. Supported ICMP message names and their corresponding type and code values are listed in Table 14-7.</td>
</tr>
<tr>
<td>icmp-message }</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 14-7 ICMP message names supported in advanced IPv4 ACL rules

<table>
<thead>
<tr>
<th>ICMP message name</th>
<th>Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>echo</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>echo-reply</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>fragmentneed-DFset</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>host-redirect</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>host-tos-redirect</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>host-unreachable</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>information-reply</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>information-request</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>net-redirect</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>net-tos-redirect</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>net-unreachable</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>parameter-problem</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>port-unreachable</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>protocol-unreachable</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>reassembly-timeout</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>source-quench</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>source-route-failed</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>timestamp-reply</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>timestamp-request</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>ttl-exceeded</td>
<td>11</td>
<td>0</td>
</tr>
</tbody>
</table>

**Description**

Use the `rule` command to create an advanced IPv4 ACL rule or modify an existing advanced IPv4 ACL rule.

Use the `undo rule` command to remove an advanced IPv4 ACL rule or remove some criteria from the rule.
If you specify no optional keywords, the undo rule command removes the entire ACL rule; otherwise, the command removes only the specified criteria. Before performing the undo rule command, you may use the display acl command to view the ID of the rule.

When defining ACL rules, you do not need to assign them IDs; the system can automatically assign rule IDs starting with 0 and increasing in certain rule numbering steps. A rule ID thus assigned is the smallest multiple of the step that is bigger than the current biggest number. For example, if the rule numbering step is 5 and the current highest rule ID is 28, the next rule will be numbered 30.

You cannot create a rule with, or modify a rule to have, the same permit/deny statement as an existing rule in the ACL.

You can only modify the existing rules of an ACL that uses the match order of config. When modifying a rule of such an ACL, you may choose to change just some of the settings, in which case the other settings remain the same.

When the ACL match order is auto, a newly created rule will be inserted among the existing rules in the depth-first match order. Note that the IDs of the rules still remain the same.

If the ACL match order is auto, rules are displayed in the depth-first match order rather than by rule number.

---

**Note**

For an advanced IPv4 ACL to be referenced by a QoS policy for traffic classification:
- The logging and reflective keywords are not supported.
- The operator cannot be neq if the ACL is for the inbound traffic.
- The operator cannot be gt, lt, neq, or range if the ACL is for the outbound traffic.

---

Related commands: display acl.

**Examples**

```
Define a rule to permit TCP packets with the destination port of 80 from 129.9.0.0 to 202.38.160.0.
<Sysname> system-view
<Sysname> acl number 3101
<Sysname-acl-adv-3101> rule permit tcp source 129.9.0.0 0.0.255.255 destination 202.38.160.0 0.0.0.255 destination-port eq 80
```

**rule (Ethernet frame header ACL view)**

**Syntax**

```
rule [rule-id] { deny | permit } [cos vlan-pri | dest-mac dest-addr dest-mask | lsap lsap-code lsap-wildcard | source-mac sour-addr source-mask | time-range time-range-name | type type-code type-wildcard] *
undo rule rule-id
```

**View**

Ethernet frame header ACL view
Default Level

2: System level

Parameters

rule-id: Ethernet frame header ACL rule number, in the range 0 to 65534.

deny: Drops matched packets.

permit: Allows matched packets to pass.

cos vlan-pri: Defines an 802.1p priority. The vlan-pri argument can be a number in the range 0 to 7 or in words, best-effort (0), background (1), spare (2), excellent-effort (3), controlled-load (4), video (5), voice (6), or network-management (7).

dest-mac dest-addr dest-mask: Specifies a destination MAC address range. The dest-addr and dest-mask arguments indicate a destination MAC address and mask in xxxx-xxxx-xxxx format.

lsap lsap-code lsap-wildcard: Defines the DSAP and SSAP fields in the LLC encapsulation. The lsap-code argument is a 16-bit hexadecimal number indicating the frame encapsulation. The lsap-wildcard argument is a 16-bit hexadecimal number indicating the wildcard of the LSAP code. Support for this keyword and argument combination depends on the device model.

source-mac sour-addr source-mask: Specifies a source MAC address range. The sour-addr and sour-mask arguments indicate a source MAC address and mask in xxxx-xxxx-xxxx format.

time-range time-range-name: Specifies the time range in which the rule takes effect. The time-range-name argument is a case insensitive string of 1 to 32 characters. It must start with an English letter and cannot be the English word of all to avoid confusion.

type type-code type-wildcard: Defines a link layer protocol. The type-code argument is a 16-bit hexadecimal number indicating the frame type. It corresponds to the type-code field in Ethernet_II and Ethernet_SNAP frames. The type-wildcard argument is a 16-bit hexadecimal number indicating the wildcard. Support for this keyword and argument combination depends on the device model.

Description

Use the rule command to create an Ethernet frame header ACL rule or modify an existing Ethernet frame header ACL rule.

Use the undo rule command to remove an Ethernet frame header ACL rule.

When defining ACL rules, you do not need to assign them IDs; the system can automatically assign rule IDs starting with 0 and increasing in certain rule numbering steps. A rule ID thus assigned is the smallest multiple of the step that is bigger than the current biggest number. For example, if the rule numbering step is 5 and the current highest rule ID is 28, the next rule will be numbered 30.

Before performing the undo rule command to remove an Ethernet frame header ACL rule, you may use the display acl command to view the ID of the rule.

You cannot create a rule with, or modify a rule to have, the same permit/deny statement as an existing rule in the ACL.

You can only modify the existing rules of an ACL that uses the match order of config. When modifying a rule of such an ACL, you may choose to change just some of the settings, in which case the other settings remain the same.

When the ACL match order is auto, a newly created rule will be inserted among the existing rules in the depth-first match order. Note that the IDs of the rules still remain the same.
If the ACL match order is **auto**, rules are displayed in the depth-first match order rather than by rule number.

---

**Note**

For an Ethernet frame header ACL to be referenced by a QoS policy for traffic classification, the `lsap` keyword is not supported.

---

Related commands: **display acl**.

**Examples**

```bash
Create a rule to deny packets with the 802.1p priority of 3.
<Sysname> system-view
[Sysname] acl number 4000
[Sysname-acl-ethernetframe-4000] rule deny cos 3
```

**rule comment (for IPv4)**

**Syntax**

```bash
rule rule-id comment text
undo rule rule-id comment
```

**View**

Basic IPv4 ACL view, advanced IPv4 ACL view, Ethernet frame header ACL view

**Default Level**

2: System level

**Parameters**

- `rule-id`: IPv4 ACL rule number, in the range 0 to 65534.
- `text`: IPv4 ACL rule description, a case-sensitive string of 1 to 127 characters.

**Description**

Use the `rule comment` command to configure a description for an existing IPv4 ACL rule or modify the description of an IPv4 ACL rule. You may use the rule description to, for example, describe the purpose of the ACL rule or the parameters it contains.

Use the `undo rule comment` command to remove the ACL rule description.

By default, an IPv4 ACL rule has no rule description.

**Examples**

```bash
Create a rule in ACL 2000 and define the rule description.
<Sysname> system-view
[Sysname] acl number 2000
[Sysname-acl-basic-2000] rule 0 deny source 1.1.1.1 0
```
[Sysname-acl-basic-2000] rule 0 comment This rule is used in geth 1/0/1

# Create a rule in ACL 3000 and define the rule description.
<Sysname> system-view
[Sysname] acl number 3000
[Sysname-acl-adv-3000] rule 0 permit ip source 1.1.1.1 0
[Sysname-acl-adv-3000] rule 0 comment This rule is used in geth 1/0/1

# Create a rule in ACL 4000 and define the rule description.
<Sysname> system-view
[Sysname] acl number 4000
[Sysname-acl-ethernetframe-4000] rule 0 deny cos 3
[Sysname-acl-ethernetframe-4000] rule 0 comment This rule is used in geth 1/0/1

step (for IPv4)

Syntax

    step step-value
    undo step

View

Basic IPv4 ACL view, advanced IPv4 ACL view, Ethernet frame header ACL view

Default Level

2: System level

Parameters

    step-value: IPv4 ACL rule numbering step, in the range 1 to 20.

Description

Use the step command to set a rule numbering step for an ACL.
Use the undo step command to restore the default.
By default, the rule numbering step is five.

Examples

# Set the rule numbering step to 2 for ACL 2000.
<Sysname> system-view
[Sysname] acl number 2000
[Sysname-acl-basic-2000] step 2

# Set the rule numbering step to 2 for ACL 3000.
<Sysname> system-view
[Sysname] acl number 3000
[Sysname-acl-adv-3000] step 2

# Set the rule numbering step to 2 for ACL 4000.
<Sysname> system-view
[Sysname] acl number 4000
[Sysname-acl-ethernetframe-4000] step 2
IPv6 ACL Configuration Commands

**acl ipv6**

Syntax

```
 acl ipv6 number acl6-number [name acl6-name] [match-order { auto | config }]
 undo acl ipv6 { all | name acl6-name | number acl6-number }
```

**View**

System view

**Default Level**

2: System level

**Parameters**

- **number acl6-number**: Specifies the number of the IPv6 ACL, which must be in the following ranges:
  - 2000 to 2999 for basic IPv6 ACLs
  - 3000 to 3999 for advanced IPv6 ACLs
- **name acl6-name**: Specifies the name of the ACL, which is a case insensitive string of 1 to 32 characters. It must start with an English letter and cannot be the English word of all to avoid confusion.
- **match-order**: Specifies the order in which ACL rules are matched.
  - **auto**: Performs depth-first match.
  - **config**: Performs matching against rules in the order in which they are configured.
  - **all**: Specifies all IPv6 ACLs.

**Description**

Use the `acl ipv6` command to enter IPv6 ACL view. If the ACL does not exist, it is created first.

Use the `undo acl ipv6` command to remove a specified IPv6 ACL or all IPv6 ACLs.

By default, the match order is **config**.

Note that:

- You can specify a name for an IPv6 ACL only when you create the ACL. After creating an ACL, you cannot specify a name for it, nor can you change or remove its name.
- The name of an IPv6 ACL must be unique among IPv6 ACLs. However, an IPv4 ACL and an IPv6 ACL can share the same name.
- If you specify both an ACL number and an ACL name in one command to enter the view of an existing ACL, be sure that the ACL number and ACL name identify the same ACL.
- You can also use this command to modify the match order of an existing IPv6 ACL, but only when the ACL does not contain any rules.

**Examples**

```
Create IPv6 ACL 2000.
<Sysname> system-view
[Sysname] acl ipv6 number 2000
[Sysname-acl6-basic-2000]
```
# Create IPv6 ACL 2002, giving the ACL a name of flow.
<Sysname> system-view
[Sysname] acl ipv6 number 2002 name flow
[Sysname-acl6-basic-2002-flow]

# Enter the view of an IPv6 ACL that has no name by specifying its number.
<Sysname> system-view
[Sysname] acl ipv6 number 2000
[Sysname-acl6-basic-2000]

# Enter the view of an IPv6 ACL that has a name by specifying its number.
<Sysname> system-view
[Sysname] acl ipv6 number 2002
[Sysname-acl6-basic-2002-flow]

# Delete the IPv6 ACL with the number of 2000.
<Sysname> system-view
[Sysname] undo acl ipv6 number 2000

# Delete the IPv6 ACL named flow.
<Sysname> system-view
[Sysname] undo acl ipv6 name flow

**acl ipv6 copy**

**Syntax**

```
 acl ipv6 copy { source-acl6-number | name source-acl6-name } to { dest-acl6-number | name dest-acl6-name }
```

**View**

System view

**Default Level**

2: System level

**Parameters**

*source-acl6-number*: Number of an existing IPv6 ACL, which must be in the following ranges:
- 2000 to 2999 for basic IPv6 ACLs,
- 3000 to 3999 for advanced IPv6 ACLs.

*name source-acl6-name*: Name of an existing IPv6 ACL, a case insensitive string of 1 to 32 characters. It must start with an English letter and cannot be the English word of all to avoid confusion.

*dest-acl6-number*: Number of a non-existent IPv6 ACL, which must be in the following ranges:
- 2000 to 2999 for basic IPv6 ACLs
- 3000 to 3999 for advanced IPv6 ACLs

*name dest-acl6-name*: Name for the new IPv6 ACL, a case insensitive string of 1 to 32 characters. It must start with an English letter and cannot be the English word of all to avoid confusion. The system will automatically assign the new ACL a number which is the smallest one among the available numbers of the same ACL type.
Description

Use the `acl ipv6 copy` command to create an IPv6 ACL by copying an existing IPv6 ACL. The new ACL is of the same ACL type and has the same match order, rules, rule numbering step and descriptions.

Note that:
- The source IPv6 ACL and the destination IPv6 ACL must be of the same type.
- The new ACL does not take the name of the source IPv6 ACL.

Examples

# Copy ACL 2008 to generate ACL 2009.

```bash
< Sysname > system-view
[Sysname] acl ipv6 copy 2008 to 2009
```

**acl ipv6 name**

**Syntax**

```bash
acl ipv6 name acl6-name
```

**View**

System view

**Default Level**

2: System level

**Parameters**

`acl6-name`: Name of the IPv6 ACL, a case insensitive string of 1 to 32 characters. It must start with an English letter and cannot be the English word of all to avoid confusion.

**Description**

Use the `acl ipv6 name` command to enter the view of an existing IPv6 ACL by specifying its name.

**Examples**

# Enter the view of the IPv6 ACL named flow.

```bash
< Sysname > system-view
[Sysname] acl ipv6 name flow
[Sysname-acl6-basic-2002-flow]
```

**description (for IPv6)**

**Syntax**

```bash
description text
undo description
```

**View**

Basic IPv6 ACL view, advanced IPv6 ACL view
Default Level

2: System level

Parameters

text: ACL description, a case-sensitive string of 1 to 127 characters.

Description

Use the `description` command to configure a description for an IPv6 ACL to, for example, describe the purpose of the ACL.
Use the `undo description` command to remove the IPv6 ACL description.
By default, an IPv6 ACL has no ACL description.

Examples

```
Configure a description for IPv6 ACL 2000.
<Sysname> system-view
<Sysname-acl6-basic-2000> acl ipv6 number 2000
description This acl is used in geth 1/0/1

Configure a description for IPv6 ACL 3000.
<Sysname> system-view
<Sysname-acl6-adv-3000> acl ipv6 number 3000
description This acl is used in geth 1/0/1
```

display acl ipv6

Syntax

```
display acl ipv6 { acl6-number | all | name acl6-name }
```

View

Any view

Default Level

1: Monitor level

Parameters

`acl6-number`: IPv6 ACL number, which must be in the following ranges:

- 2000 to 2999 for basic IPv6 ACLs
- 3000 to 3999 for advanced IPv6 ACLs

`all`: Specifies all IPv6 ACLs.

`name acl6-name`: Specifies the name of the ACL, which is a case insensitive string of 1 to 32 characters. It must start with an English letter and cannot be the English word of all to avoid confusion.

Description

Use the `display acl ipv6` command to display information about a specified IPv6 ACL or all IPv6 ACLs.
Note that this command displays ACL rules in the match order.
Examples

# Display information about IPv6 ACL 2001.
<Sysname> display acl ipv6 2001
Basic IPv6 ACL 2001, named flow, 1 rule,
ACL's step is 5
rule 0 permit source 1::2/128 (5 times matched)
rule 0 comment This rule is used in geth 1/0/1

Table 14-8 display acl ipv6 command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic IPv6 ACL 2001</td>
<td>The displayed information is about basic IPv6 ACL 2001.</td>
</tr>
<tr>
<td>named flow</td>
<td>The name of the ACL is flow.</td>
</tr>
<tr>
<td>1 rule</td>
<td>The ACL contains one rule.</td>
</tr>
<tr>
<td>ACL's step is 5</td>
<td>The rules in this ACL are numbered in steps of 5.</td>
</tr>
<tr>
<td>5 times matched</td>
<td>There have been five matches for the rule. Only ACL matches performed by software are counted. This field is not displayed when no match is found.</td>
</tr>
<tr>
<td>rule 0 comment</td>
<td>The description of ACL rule 0 is “This rule is used in geth 1/0/1.”</td>
</tr>
</tbody>
</table>

reset acl ipv6 counter

Syntax

reset acl ipv6 counter { acl6-number | all | name acl6-name }

View

User view

Default Level

2: System level

Parameters

acl6-number: IPv6 ACL number, which must be in the following ranges:
- 2000 to 2999 for basic IPv6 ACLs,
- 3000 to 3999 for advanced IPv6 ACLs.

all: Specifies all basic and advanced IPv6 ACLs.

ame acl6-name: Specifies the name of the ACL, which is a case insensitive string of 1 to 32 characters. It must start with an English letter and cannot be the English word of all to avoid confusion.
Description

Use the `reset acl ipv6 counter` command to clear statistics on a specified IPv6 ACL or all basic and advanced IPv6 ACLs.

Examples

```plaintext
Clear the statistics on IPv6 ACL 2001, which is referenced by upper layer software.
<Sysname> reset acl ipv6 counter 2001

Clear the statistics on IPv6 ACL flow, which is referenced by upper layer software.
<Sysname> reset acl ipv6 counter name flow
```

rule (basic IPv6 ACL view)

Syntax

```plaintext
rule [rule-id] { deny | permit } [fragment | logging | source { ipv6-address prefix-length | ipv6-address/prefix-length | any } | time-range time-range-name] *
undo rule rule-id [fragment | logging | source | time-range] *
```

View

Basic IPv6 ACL view

Default Level

2: System level

Parameters

- **rule-id**: IPv6 ACL rule number, in the range 0 to 65534.
- **deny**: Drops matched packets.
- **permit**: Allows matched packets to pass.
- **fragment**: Indicates that the rule applies to only non-first fragments. A rule without this keyword applies to all fragments and non-fragments.
- **logging**: Logs matched packets. This function requires that the module using the ACL support logging.
- **source { ipv6-address prefix-length | ipv6-address/prefix-length | any }**: Specifies a source address. The `ipv6-address` and `prefix-length` arguments specify a source IPv6 address and its address prefix length in the range 1 to 128. The `any` keyword indicates any IPv6 source address.
- **time-range time-range-name**: Specifies the time range in which the rule takes effect. The `time-range-name` argument is a case insensitive string of 1 to 32 characters. It must start with an English letter and cannot be the English word of all to avoid confusion.

Description

Use the `rule` command to create a basic IPv6 ACL rule or modify an existing basic IPv6 ACL rule.

Use the `undo rule` command to remove a basic IPv6 ACL rule or remove some criteria from the rule.

If you specify no optional keywords, the `undo rule` command removes the entire ACL rule; otherwise, the command removes only the specified criteria. Before performing the `undo rule` command, you may need to use the `display acl ipv6` command to view the ID of the rule.
When defining ACL rules, you do not need to assign them IDs; the system can automatically assign rule IDs starting with 0 and increasing in certain rule numbering steps. A rule ID thus assigned is the smallest multiple of the step that is bigger than the current biggest number. For example, if the rule numbering step is 5 and the current highest rule ID is 28, the next rule will be numbered 30.

You cannot create a rule with, or modify a rule to have, the same permit/deny statement as an existing rule in the ACL.

You can only modify the existing rules of an ACL that uses the match order of `config`. When modifying a rule of such an ACL, you may choose to change just some of the settings, in which case the other settings remain the same.

When the ACL match order is `auto`, a newly created rule will be inserted among the existing rules in the depth-first match order. Note that the IDs of the rules still remain the same.

---

**Note**

For a basic IPv6 ACL to be referenced by a QoS policy for traffic classification, the `logging` and `fragment` keywords are not supported.

---

Related commands: `display acl ipv6`.

### Examples

# Create IPv6 ACL 2000 and add two rules.

```bash
<Sysname> system-view
[Sysname] acl ipv6 number 2000
[Sysname-acl6-basic-2000] rule permit source 2030:5060::9050/64
[Sysname-acl6-basic-2000] rule 8 deny source fe80:5060::8050/96
```

**rule (advanced IPv6 ACL view)**

**Syntax**

```
rule [rule-id] { deny | permit } protocol [{ established | { ack ack-value | fin fin-value | psh psh-value
| rst rst-value | syn syn-value | urg urg-value } * }] destination { dest dest-prefix | dest/dest-prefix | any } | destination-port operator port1 [port2] | dscp dscp | fragment | icmp6-type { icmp6-type icmp6-code | icmp6-message } | logging | source { source source-prefix | source/source-prefix | any } | source-port operator port1 [port2] | time-range time-range-name |
undo rule rule-id [{ established | { ack | fin | psh | rst | syn | urg } * }] destination | destination-port | dscp | fragment | icmpv6-type | logging | source | source-port | time-range |
```

**View**

Advanced IPv6 ACL view

**Default Level**

2: System level
Parameters

rule-id: IPv6 ACL rule number, in the range 0 to 65534.

deny: Drops matched packets.

permit: Allows matched packets.

protocol: Protocol carried over IPv6. It can be a number in the range 0 to 255, or in words, gre (47), icmpv6 (58), ipv6, ipv6-ah (51), ipv6-esp (50), ospf (89), tcp (6), or udp (17). Table 14-9 shows the parameters that can be specified after the protocol argument.

Table 14-9 Match criteria and other rule information for advanced IPv6 ACL rules

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>source { source</td>
<td>Specifies a source IPv6 address.</td>
<td>The source and source-prefix arguments specify an IPv6 source address and</td>
</tr>
<tr>
<td>source-prefix</td>
<td></td>
<td>its prefix length in the range 1 to 128.</td>
</tr>
<tr>
<td>source/source-prefix</td>
<td></td>
<td></td>
</tr>
<tr>
<td>any }</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

destination { dest	Specifies a destination IPv6 address.	The dest and dest-prefix arguments specify a destination IPv6 address, and	
dest-prefix		its prefix length in the range 1 to 128.	The any keyword indicates any IPv6 destination address.
dest/dest-prefix			
any }			

| dscp dscp       | Specifies a DSCP preference                   | The dscp argument can be a number in the range 0 to 63, or in words, af11 (10), af12 (12), af13 (14), af21 (18), af22 (20), af23 (22), af31 (26), af32 (28), af33 (30), af41 (34), af42 (36), af43 (38), cs1 (8), cs2 (16), cs3 (24), cs4 (32), cs5 (40), cs6 (48), cs7 (56), default (0), or ef (46). |

| logging         | Specifies to log matched packets              | This function requires that the module using the ACL support logging.      |

| fragment        | Indicates that the rule applies to only non-first fragments. | Without this keyword, the rule applies to all fragments and non-fragments. |

| time-range      | Specifies the time range in which the rule takes effect.     | The time-range-name argument is a case insensitive string of 1 to 32 characters. It must start with an English letter and cannot be the English word of all to avoid confusion. |
| time-range-name | | |

Setting the protocol argument to tcp or udp, you may define the parameters shown in Table 14-10.
Table 14-10 TCP/UDP-specific parameters for advanced IPv6 ACL rules

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>source-port operator</strong>&lt;br&gt;<strong>port1 [ port2 ]</strong></td>
<td>Specifies one or more UDP or TCP source ports.</td>
<td>The <em>operator</em> argument can be <em>lt</em> (lower than), <em>gt</em> (greater than), <em>eq</em> (equal to), <em>neq</em> (not equal to), or <em>range</em> (inclusive range). The <em>port1</em> and <em>port2</em> arguments are TCP or UDP port numbers in the range 0 to 65535. <em>port2</em> is needed only when the <em>operator</em> argument is <em>range</em>. TCP port numbers can be represented in these words: <em>chargen</em> (19), <em>bgp</em> (179), <em>cmd</em> (514), <em>daytime</em> (13), <em>discard</em> (9), <em>domain</em> (53), <em>echo</em> (7), <em>exec</em> (512), <em>finger</em> (79), <em>ftp</em> (21), <em>ftp-data</em> (20), <em>gopher</em> (70), <em>hostname</em> (101), <em>irc</em> (194), <em>klogin</em> (543), <em>kshell</em> (544), <em>login</em> (513), <em>lpd</em> (515), <em>nttp</em> (119), <em>pop2</em> (109), <em>pop3</em> (110), <em>smtp</em> (25), <em>sunrpc</em> (111), <em>tacacs</em> (49), <em>talk</em> (517), <em>telnet</em> (23), <em>time</em> (37), <em>uccp</em> (540), <em>whois</em> (43), and <em>www</em> (80). UDP port numbers can be represented in these words: <em>biff</em> (512), <em>bootpc</em> (68), <em>bootps</em> (67), <em>discard</em> (9), <em>dns</em> (53), <em>dnsix</em> (90), <em>echo</em> (7), <em>mobilip-ag</em> (434), <em>mobilip-mn</em> (435), <em>nameserver</em> (42), <em>netbios-dgm</em> (138), <em>netbios-ns</em> (137), <em>netbios-ssn</em> (139), <em>ntp</em> (123), <em>rip</em> (520), <em>snmp</em> (161), <em>snmptrap</em> (162), <em>sunrpc</em> (111), <em>syslog</em> (514), <em>tacacs-ds</em> (65), <em>talk</em> (517), <em>tftp</em> (69), <em>time</em> (37), <em>who</em> (513), and <em>xdmcp</em> (177). With the <em>range</em> operator, the value of <em>port2</em> does not need to be greater than that of <em>port1</em> because the switch can automatically judge the value range. If the two values are the same, the switch will convert the operator <em>range</em> to <em>eq</em>. Note that if you specify a combination of <em>lt</em> 1 or <em>gt</em> 65534, the switch will convert it to <em>eq</em> 0 or <em>eq</em> 65535.</td>
</tr>
<tr>
<td><strong>destination-port operator</strong>&lt;br&gt;<strong>port1 [ port2 ]</strong></td>
<td>Specifies one or more UDP or TCP destination ports.</td>
<td></td>
</tr>
<tr>
<td>**{ ack ack-value</td>
<td>fin fin-value</td>
<td>psh psh-value</td>
</tr>
<tr>
<td><strong>established</strong></td>
<td>Specifies TCP flags ACK and RST</td>
<td>With the keyword, the rule applies to packets with the value of the ACK or RST flag being 1.</td>
</tr>
</tbody>
</table>

Setting the *protocol* argument to *icmpv6*, you may define the parameters shown in Table 14-11.
Table 14-11  ICMPv6-specific parameters for advanced IPv6 ACL rules

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>icmpv6-type</td>
<td>Specifies the ICMPv6 message type and code.</td>
<td>The <code>icmpv6-type</code> argument ranges from 0 to 255.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The <code>icmpv6-code</code> argument ranges from 0 to 255.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The <code>icmpv6-message</code> argument specifies a message name. Supported ICMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>message names and their corresponding type and code values are listed in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Table 14-12.</td>
</tr>
</tbody>
</table>

Table 14-12  ICMPv6 message names supported in advanced IPv6 ACL rules

<table>
<thead>
<tr>
<th>ICMPv6 message name</th>
<th>Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>redirect</td>
<td>137</td>
<td>0</td>
</tr>
<tr>
<td>echo-request</td>
<td>128</td>
<td>0</td>
</tr>
<tr>
<td>echo-reply</td>
<td>129</td>
<td>0</td>
</tr>
<tr>
<td>err-Header-field</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>frag-time-exceeded</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>hop-limit-exceeded</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>host-admin-prohib</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>host-unreachable</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>neighbor-advertisement</td>
<td>136</td>
<td>0</td>
</tr>
<tr>
<td>neighbor-solicitation</td>
<td>135</td>
<td>0</td>
</tr>
<tr>
<td>network-unreachable</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>packet-too-big</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>port-unreachable</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>router-advertisement</td>
<td>134</td>
<td>0</td>
</tr>
<tr>
<td>router-solicitation</td>
<td>133</td>
<td>0</td>
</tr>
<tr>
<td>unknown-ipv6-opt</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>unknown-next-hdr</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Description

Use the `rule` command to create an advanced IPv6 ACL rule or modify an existing advanced IPv6 ACL rule.

Use the `undo rule` command to remove an advanced IPv6 ACL rule or remove some criteria from the rule.

If you specify no optional keywords, the `undo rule` command removes the entire ACL rule; otherwise, the command removes only the specified criteria. Before performing the `undo rule` command, you may need to use the `display acl ipv6` command to view the ID of the rule.
When defining ACL rules, you do not need to assign them IDs; the system can automatically assign rule IDs starting with 0 and increasing in certain rule numbering steps. A rule ID thus assigned is the smallest multiple of the step that is bigger than the current biggest number. For example, if the rule numbering step is 5 and the current highest rule ID is 28, the next rule will be numbered 30.

You cannot create a rule with, or modify a rule to have, the same permit/deny statement as an existing rule in the ACL.

You can only modify the existing rules of an ACL that uses the match order of config. When modifying a rule of such an ACL, you may choose to change just some of the settings, in which case the other settings remain the same.

When the ACL match order is auto, a newly created rule will be inserted among the existing rules in the depth-first match order. Note that the IDs of the rules still remain the same.

---

**Note**

For an advanced IPv6 ACL to be referenced by a QoS policy for traffic classification,

- The logging and fragment keywords are not supported.
- The operator cannot be neq if the ACL is for the inbound traffic.
- The operator cannot be gt, lt, neq, or range if the ACL is for the outbound traffic.

---

Related commands: display acl ipv6.

**Examples**

```
Configure IPv6 ACL 3000 to permit TCP packets with the source address of 2030:5060::9050/64.
<Sysname> system-view
[Sysname] acl ipv6 number 3000
[Sysname-acl6-adv-3000] rule permit tcp source 2030:5060::9050/64
```

**rule comment (for IPv6)**

**Syntax**

```
rule rule-id comment text
undo rule rule-id comment
```

**View**

Basic IPv6 ACL view, advanced IPv6 ACL view

**Default Level**

2: System level

**Parameters**

- `rule-id`: IPv6 ACL rule number, in the range 0 to 65534.
- `text`: IPv6 ACL rule description, a case-sensitive string of 1 to 127 characters.
Description

Use the **rule comment** command to configure a description for an existing IPv6 ACL rule or modify the description of an IPv6 ACL rule. You may use the rule description to, for example, describe the purpose of the ACL rule.

Use the **undo rule comment** command to remove the IPv6 ACL rule description.

By default, an IPv6 ACL rule has no rule description.

Examples

# Define a rule in IPv6 ACL 2000 and create a description for the rule.

```bash
<Sysname> system-view
[Sysname] acl ipv6 number 2000
[Sysname-acl6-basic-2000] rule 0 permit source 2030:5060::9050/64
[Sysname-acl6-basic-2000] rule 0 comment This rule is used in geth 1/0/1
```

# Define a rule in IPv6 ACL 3000 and create a description for the rule.

```bash
<Sysname> system-view
[Sysname] acl ipv6 number 3000
[Sysname-acl6-adv-3000] rule 0 permit tcp source 2030:5060::9050/64
[Sysname-acl6-adv-3000] rule 0 comment This rule is used in geth 1/0/1
```

step (for IPv6)

Syntax

```
step step-value
undo step
```

View

Basic IPv6 ACL view, advanced IPv6 ACL view

Default Level

2: System level

Parameters

**step-value**: IPv6 ACL rule numbering step, in the range 1 to 20.

Description

Use the **step** command to set a rule numbering step for an IPv6 ACL.

Use the **undo step** command to restore the default.

By default, the rule numbering step is five.

Examples

# Set the rule numbering step to 2 for IPv6 ACL 2000.

```bash
<Sysname> system-view
[Sysname] acl ipv6 number 2000
[Sysname-acl6-basic-2000] step 2
```

# Set the rule numbering step to 2 for IPv6 ACL 3000.

```
```
ACL Application Commands

**acl logging frequency**

**Syntax**

```plaintext
acl logging frequency frequency
undo acl logging frequency
```

**View**

System view

**Default Level**

2: System level

**Parameters**

`frequency`: Interval in minutes for packet filtering statistics. It must be an integer in the range of 0 to 1440 and a multiple of five.

**Description**

Use the `acl logging frequency` command to set the interval for IPv4 packet filtering statistics. At the specified interval, the device outputs the statistics information, including the number of filtered packets, and the ACL rules used.

Use the `undo acl logging frequency` command to restore the default.

By default, the interval is 0, that is, no IPv4 packet filtering statistics is collected.

**Examples**

```plaintext
Set the interval for IPv4 packet filtering statistics to 10 minutes.
<Sysname> system-view
<Sysname> acl logging frequency 10
```

**acl ipv6 logging frequency**

**Syntax**

```plaintext
acl ipv6 logging frequency frequency
undo acl ipv6 logging frequency
```

**View**

System view

**Default Level**

2: System
Parameters

frequence: Interval in minutes for packet filtering statistics. It must be an integer in the range of 0 to 1440 and a multiple of five.

Description

Use the acl ipv6 logging frequence command to set the interval for IPv6 packet filtering statistics. At the specified interval, the device outputs the statistics information, including the number of filtered packets, and the ACL rules used.

Use the undo ipv6 acl logging frequence command to restore the default.

By default, the interval is 0, that is, no IPv6 packet filtering statistics is collected.

Example

# Set the interval for IPv6 packet filtering statistics to 15 minutes.
<Sysname> system-view
[Sysname] acl ipv6 logging frequence 15

packet-filter

Syntax

packet-filter { acl-number | name acl-name } { inbound | outbound }
undo packet-filter { acl-number | name acl-name } { inbound | outbound }

View

Ethernet interface view, VLAN interface view

Default Level

2: System level

Parameters

acl-number: Specifies the number of an ACL, which must be in the following ranges:

- 2000 to 2999 for basic IPv4 ACLs
- 3000 to 3999 for advanced IPv4 ACLs
- 4000 to 4999 for Ethernet frame header ACLs

name acl-name: Specifies the name of the ACL, which is a case insensitive string of 1 to 32 characters. It must start with an English letter and cannot be the English word of all to avoid confusion.

inbound: Specifies to filter the packets received by the interface.

outbound: Specifies to filter the packets that are to be sent out of the interface.

Description

Use the packet-filter command to apply an ACL to an interface to filter IPv4 packets or Ethernet frames.

Use the undo packet-filter command to restore the default.

By default, an interface does not filter packets and Ethernet frames.
Note that you can apply only one IPv4 ACL or one Ethernet frame header ACL on an interface. To modify the ACL configured on an interface, you need to remove the previous configuration first and then configure a new ACL.

Examples

# Apply basic IPv4 ACL 2001 to the inbound direction of interface GigabitEthernet 1/0/1.
<sysname> system-view
[sysname] interface gigabitethernet 1/0/1
[sysname-GigabitEthernet1/0/1] ethernet-frame-filter 2001 inbound

# Apply advanced IPv4 ACL 3001 to the inbound direction of VLAN interface 10.
<sysname> system-view
[sysname] interface Vlan-interface 10
[sysname-Vlan-interface10] ethernet-frame-filter 3001 inbound

packet-filter ipv6

Syntax

packet-filter ipv6 { acl6-number | name acl6-name } { inbound | outbound }
undo packet-filter ipv6 { inbound | outbound }

View

Interface view

Default Level

2: System level

Parameters

acl6-number: Specifies the number of a basic or advanced IPv6 ACL, which must be in the range of 2000 to 3999.
name acl6-name: Specifies the name of the basic or advanced IPv6 ACL, which is a case insensitive string of 1 to 32 characters. It must start with an English letter and cannot be the English word of all to avoid confusion.
inbound: Specifies to filter the IPv6 packets received by the interface
outbound: Specifies to filter the IPv6 packets that are to be sent out of the interface

Description

Use the packet-filter ipv6 command to apply a basic or advanced IPv6 ACL to an interface to filter IPv6 packets.
Use the undo packet-filter ipv6 command to restore the default.
By default, an interface does not filter IPv6 packets.
Note that you can apply only one IPv6 ACL on an interface. To modify the ACL configured on an interface, you need to remove the previous configuration first and then configure a new ACL.

Examples

# Apply basic IPv6 ACL 2500 to the outbound direction of interface GigabitEthernet 1/0/1.
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] packet-filter ipv6 2500 outbound

# Apply advanced IPv6 ACL 3000 to the outbound direction of interface VLAN interface 20

<Sysname> system-view
[Sysname] interface Vlan-interface 20
[Sysname-Vlan-interface20] packet-filter ipv6 3000 outbound
# Table of Contents

1 Smart Link Configuration Commands

- Smart Link Configuration Commands
  - display smart-link flush
  - display smart-link group
  - flush enable
  - port
  - port smart-link group
  - preemption delay
  - preemption mode
  - protected-vlan
  - reset smart-link statistics
  - smart-link flush enable
  - smart-link group

2 Monitor Link Configuration Commands

- Monitor Link Configuration Commands
  - display monitor-link group
  - monitor-link group
  - port
  - port monitor-link group

3 RRPP Configuration Commands

- RRPP Configuration Commands
  - control-vlan
  - display rpp brief
  - display rpp ring-group
  - display rpp statistics
  - display rpp verbose
  - domain ring
  - protected-vlan
  - reset rpp statistics
  - ring
  - ring enable
  - rpp domain
  - rpp enable
  - rpp ring-group
  - timer

4 DLDP Configuration Commands

- DLDP Configuration Commands
  - display dldp
  - display dldp statistics
  - dldp authentication-mode
  - dldp delaydown-timer
  - dldp enable
5 Ethernet OAM Configuration Commands ................................................................. 5-1
OAM Configuration Commands ................................................................................ 5-1
display oam ............................................................................................................. 5-1
display oam configuration ....................................................................................... 5-4
display oam critical-event ....................................................................................... 5-6
display oam link-event ............................................................................................ 5-7
oam enable ............................................................................................................. 5-9
oam errored-frame period ...................................................................................... 5-10
oam errored-frame threshold ................................................................................ 5-10
oam errored-frame-period period ......................................................................... 5-11
oam errored-frame-period threshold .................................................................. 5-12
oam errored-frame-seCONDS period .................................................................. 5-12
oam errored-frame-seCONDS threshold ............................................................... 5-13
oam errored-symbol period .................................................................................. 5-13
oam errored-symbol threshold ............................................................................. 5-14
oam loopback ........................................................................................................ 5-15
oam mode ............................................................................................................. 5-15
reset oam .............................................................................................................. 5-16

6 Connectivity Fault Detection Configuration Commands ........................................ 6-1
Connectivity Fault Detection Configuration Commands .......................................... 6-1
cfd cc enable ....................................................................................................... 6-1
cfd cc interval ..................................................................................................... 6-1
cfd enable ............................................................................................................ 6-2
cfd linktrace ....................................................................................................... 6-3
cfd linktrace auto-detection ............................................................................... 6-4
cfd loopback ........................................................................................................ 6-5
cfd ma .................................................................................................................. 6-6
cfd md .................................................................................................................. 6-7
cfd mep ................................................................................................................ 6-7
cfd mep enable ................................................................................................... 6-8
cfd mip-rule ....................................................................................................... 6-9
cfd remote-mep ................................................................................................. 6-10
cfd service-instance ............................................................................................. 6-11
display cfd linktrace-reply .................................................................................. 6-12
display cfd linktrace-reply auto-detection ............................................................ 6-13
display cfd ma ..................................................................................................... 6-14
display cfd md ..................................................................................................... 6-15
display cfd mep ................................................................................................... 6-16
display cfd mp ..................................................................................................... 6-19
display cfd remote-mep ....................................................................................... 6-20
display cfd service-instance ............................................................................... 6-21
display cfd status ............................................................................................... 6-22
7 Track Configuration Commands

Track Configuration Commands

display track

track nqa
Smart Link Configuration Commands

display smart-link flush

**Syntax**

display smart-link flush

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

None

**Description**

Use the `display smart-link flush` command to display information about the received flush messages.

**Examples**

# Display information about the received flush messages.

```plaintext
<Sysname> display smart-link flush
Received flush packets : 10
Receiving interface of the last flush packet : GigabitEthernet1/0/1
Receiving time of the last flush packet : 19:19:03 2009/06/27
Device ID of the last flush packet : 000f-e200-8500
Control VLAN of the last flush packet : 1
```

**Table 1-1 display smart-link flush command output description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Received flush packets</td>
<td>Total number of received flush messages</td>
</tr>
<tr>
<td>Receiving interface of the last flush packet</td>
<td>The port that received the last flush message</td>
</tr>
<tr>
<td>Receiving time of the last flush packet</td>
<td>Time when the last flush message was received</td>
</tr>
<tr>
<td>Device ID of the last flush packet</td>
<td>Device ID carried in the last flush message</td>
</tr>
<tr>
<td>Control VLAN of the last flush packet</td>
<td>Control VLAN ID carried in the last flush message</td>
</tr>
</tbody>
</table>
display smart-link group

Syntax

    display smart-link group { group-id | all }

View

    Any view

Default Level

    1: Monitor level

Parameters

    group-id: Smart link group ID. The minimum value is 1, while the maximum value is 26.
    all: Displays information about all smart link groups.

Description

    Use the **display smart-link group** command to display information about the specified or all smart link groups.

Examples

    # Display information about smart link group 1.
    <Sysname> display smart-link group 1
    Smart link group 1 information:
    Device ID: 000f-e200-8500
    Preemption mode: ROLE
    Preemption delay: 1(s)
    Control VLAN: 1
    Protected VLAN: Reference Instance 0 to 2, 4
    Member                    Role    State    Flush-count Last-flush-time
    -------------------------------------------------------------------------------
    GigabitEthernet1/0/1      MASTER  ACTVIE   1           16:37:20 2009/04/21
    GigabitEthernet1/0/2      SLAVE   STANDBY  2           17:45:20 2009/04/21

Table 1-2 display smart-link group command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smart link group 1 information</td>
<td>Information about smart link group 1</td>
</tr>
<tr>
<td>Preemption mode</td>
<td>Preemption mode, which can be <strong>role</strong> for preemption enabled or <strong>none</strong> for preemption disabled.</td>
</tr>
<tr>
<td>Preemption delay</td>
<td>Preemption delay time, in seconds</td>
</tr>
<tr>
<td>Control-VLAN</td>
<td>Control VLAN ID</td>
</tr>
<tr>
<td>Protected VLAN</td>
<td>Protected VLANs of the smart link group. Referenced MSTIs are displayed here. To view the VLANs mapped to the referenced MSTIs, use the <strong>display stp region-configuration</strong> command.</td>
</tr>
<tr>
<td>Member</td>
<td>Member port of the smart link group</td>
</tr>
<tr>
<td>Role</td>
<td>Port role: master or slave</td>
</tr>
</tbody>
</table>
### flush enable

**Syntax**

```
flush enable [control-vlan vlan-id]
undo flush enable
```

**View**

Smart link group view

**Default Level**

2: System level

**Parameters**

- `control-vlan vlan-id`: Specifies the control VLAN used for transmitting flush messages. The `vlan-id` argument ranges from 1 to 4094.

**Description**

Use the `flush enable` command to enable flush update.

Use the `undo flush enable` command to disable flush update.

By default, flush update is enabled for smart link groups and VLAN 1 is used for flush message transmission.

Note that, you need to configure different control VLANs for different smart link groups.

Related commands: `smart-link flush enable`.

**Examples**

```
Disable flush update for smart link group 1.
<Sysname> system-view
[Sysname] smart-link group 1
[Sysname-smlk-group1] undo flush enable
```

### port

**Syntax**

```
port interface-type interface-number { master | slave }
undo port interface-type interface-number
```

**View**

Smart link group view
Default Level

2: System level

Parameters

interface-type interface-number: Port type and port number.

master: Specifies a port as the master port.
slave: Specifies a port as the slave port.

Description

Use the port command to assign the specified port as the master or slave port of the current smart link group.

Use the undo port command to remove the specified port from the smart link group.

Note that:

- Disable STP and RRPP on the ports you want to add to the smart link group, and make sure that the ports are not member ports of any aggregation group or service loopback group. On the other hand, you cannot enable STP or RRPP on a smart link group member port or assign a smart link group member port to an aggregation group or service loopback group.
- You can assign a port to a smart link group with the port smart-link group command in Ethernet interface view or Layer-2 aggregate interface view.

Related commands: port smart-link group.

Examples

# Configure GigabitEthernet 1/0/1 as the slave port of smart link group 1.

```
<Sysname> system-view
<Sysname> interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] undo stp enable
[Sysname-GigabitEthernet1/0/1] quit
<Sysname> smart-link group 1
[Sysname-smlk-group1] protected-vlan reference-instance 0
[Sysname-smlk-group1] port gigabitethernet 1/0/1 slave
```

port smart-link group

Syntax

```
port smart-link group group-id { master | slave }
undo port smart-link group group-id
```

View

Ethernet interface view, Layer-2 aggregate interface view

Default Level

2: System level

Parameters

group-id: Smart link group ID. The minimum value is 1, while the maximum value is 26.
master: Specifies the port as the master port.
slave: Specifies the port as the slave port.

Description

Use the `port smart-link group` command to configure the current port as a member of the specified smart link group.

Use the `port smart-link group` command to remove the port from the specified smart link group.

Note that:

- Disable STP and RRPP on the ports you want to add to the smart link group, and make sure that the ports are not member ports of any aggregation group or service loopback group. On the other hand, you cannot enable STP or RRPP on a smart link group member port or assign a smart link group member port to an aggregation group or service loopback group.
- You can assign a port to a smart link group with the `port` command in smart link group view.

Related commands: `port`.

Examples

# Configure GigabitEthernet 1/0/1 as the master port of smart link group 1.

```bash
<Sysname> system-view
<Sysname> smart-link group 1
<Sysname-smlk-group1] protected-vlan reference-instance 0
<Sysname-smlk-group1] quit
<Sysname] interface gigabitethernet 1/0/1
<Sysname-GigabitEthernet1/0/1] undo stp enable
<Sysname-GigabitEthernet1/0/1] port smart-link group 1 master
```

# Configure Layer-2 aggregate interface 1 as the master port of smart link group 1.

```bash
<Sysname> system-view
<Sysname] smart-link group 1
<Sysname-smlk-group1] protected-vlan reference-instance 0
<Sysname-smlk-group1] quit
<Sysname] interface bridge-aggregation 1
<Sysname-Bridge-Aggregation1] undo stp enable
<Sysname-Bridge-Aggregation1] port smart-link group 1 master
```

preemption delay

Syntax

preemption delay `delay-time`
undo preemption delay

View

Smart link group view

Default Level

2: System level
Parameters

delay-time: Preemption delay (in seconds), in the range of 0 to 300.

Description

Use the preemption delay command to set the preemption delay. When role preemption is enabled, after the preemption delay is set, the master port waits for some time before taking over, so as to collaborate with the switchover of upstream devices.

Use the undo preemption delay command to restore the default.

By default, the preemption delay is 1 second.

Note that, the preemption delay configuration takes effect only after role preemption is enabled.

Related commands: preemption mode.

Examples

# Enable role preemption and set the preemption delay to 10 seconds.
<Sysname> system-view
[Sysname] smart-link group 1
[Sysname-smlk-group1] preemption mode role
[Sysname-smlk-group1] preemption delay 10

preemption mode

Syntax

preemption mode role
undo preemption mode

View

Smart link group view

Default Level

2: System level

Parameters

role: Configures the role preemption mode, which enables the master port to preempt the slave port in active state.

Description

Use the preemption mode command to enable role preemption.

Use the undo preemption mode command to disable role preemption.

By default, role preemption is disabled.

Examples

# Enable the role preemption mode.
<Sysname> system-view
[Sysname] smart-link group 1
protected-vlan

Syntax

protected-vlan reference-instance instance-id-list

undo protected-vlan [ reference-instance instance-id-list ]

View

Smart link group view

Default Level

2: System level

Parameters

reference-instance instance-id-list: Specifies the MSTIs to be referenced in the form of instance-id-list = { instance-id [ to instance-id ] }&<1-10>, where the range of the instance-id argument is as specified in the command configuring MSTIs and &<1-10> indicates that you can provide up to ten MSTIs or MSTI lists.

Description

Use the protected-vlan command to configure protected VLANs for a smart link group by referencing MSTIs. You can use the display stp region-configuration command to view the VLANs mapped to the referenced MSTIs.

Use the undo protected-vlan command to remove the specified protected VLANs from a smart link group by referencing the specified MSTIs. If no MSTI is specified, all the protected VLANs of the smart link group are removed.

By default, no protected VLAN is configured for a smart link group.

Note that:

● Before assigning ports to a smart link group, configure protected VLANs for the smart link group.
● You can remove all protected VLANs from a smart link group when the group is empty but not after a member port is assigned to it.
● Removing a smart link group also removes its protected VLANs.
● If the VLAN(s) mapped to a referenced MSTI changes, the protected VLAN(s) change accordingly.
● The VLANs that the member ports of a smart link group belong to must be configured as the protected VLANs of the smart link group.

Related commands: smart-link group, display stp region-configuration in MSTP Commands in the Access Volume.

Examples

# Configure the VLANs mapped to MSTIs 1 through 10 and MSTI 12 as the protected VLANs of smart link group 1.

<Sysname> system-view
reset smart-link statistics

Syntax

    reset smart-link statistics

View

    User view

Default Level

    2: System level

Parameters

    None

Description

    Use the reset smart-link statistics command to clear the statistics about flush messages.

Examples

    # Clear the statistics about flush messages.
    <Sysname> reset smart-link statistics

smart-link flush enable

Syntax

    smart-link flush enable [ control-vlan vlan-id-list ]
    undo smart-link flush enable [ control-vlan vlan-id-list ]

View

    Ethernet interface view, Layer-2 aggregate interface view

Default Level

    2: System level

Parameters

    control-vlan vlan-id-list: Specifies the control VLANs used for receiving flush messages. The vlan-id-list is expressed in the form of vlan-id-list = { vlan-id [ to vlan-id ] }<1-10>, where the vlan-id argument ranges from 1 to 4094 and &<1-10> indicates that you can provide up to ten VLAN IDs or VLAN ID lists.

Description

    Use the smart-link flush enable command to configure a VLAN for receiving flush messages, that is, a receive control VLAN, on a port in Ethernet interface view or on all ports in system view.
    Use the undo smart-link flush enable command to disable flush message processing.
    By default, flush messages are not processed.
Note that:

- If no VLAN is specified, VLAN 1 applies.
- This command cannot be used on member port of an aggregation group or service loopback group.

Related commands: **flush enable**.

**Examples**

# Enable GigabitEthernet 1/0/1 to process the flush messages received in VLAN 1.

```
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] smart-link flush enable
```

# Enable Layer-2 aggregate interface 1 to process the flush messages received in VLAN 1.

```
<Sysname> system-view
[Sysname] interface bridge-aggregation 1
[Sysname-Bridge-Aggregation1] smart-link flush enable
```

**smart-link group**

**Syntax**

```
smart-link group group-id
undo smart-link group group-id
```

**View**

System view

**Default Level**

2: System level

**Parameters**

- **group-id**: Smart link group ID. The minimum value is 1, while the maximum value is 26.

**Description**

Use the **smart-link group** command to create a smart link group and enter smart link group view.

Use the **undo link-aggregation group** command to remove a smart link group.

Note that a smart link group with member ports cannot be removed.

**Examples**

# Create smart link group 1 and enter smart link group view.

```
<Sysname> system-view
[Sysname] smart-link group 1
[Sysname-smlk-group1]
```
Monitor Link Configuration Commands

display monitor-link group

Syntax

display monitor-link group { group-id | all }

View

Any view

Default Level

1: Monitor level

Parameters

  group-id: Monitor link group ID, in the range 1 to 16.
  all: Specifies all monitor link groups.

Description

Use the display monitor-link group command to display information about the specified or all smart link groups.

Examples

# Display information about monitor link group 1.
<Sysname> display monitor-link group 1
Monitor link group 1 information:
  Group status: DOWN
  Last-up-time: 16:37:20 2009/4/21
  Member   Role  Status
  --------------------------
  GigabitEthernet1/0/1    UPLINK  DOWN
  GigabitEthernet1/0/2    DOWNLINK  DOWN

Table 2-1 display monitor-link group command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group status</td>
<td>Monitor link group state, which can be up or down</td>
</tr>
<tr>
<td>Last-up-time</td>
<td>Last time when the monitor link group was up</td>
</tr>
<tr>
<td>Last-down-time</td>
<td>Last time when the monitor link group was down</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>Member</td>
<td>Member ports of the monitor link group</td>
</tr>
<tr>
<td>Role</td>
<td>Port role, which can be uplink or downlink</td>
</tr>
<tr>
<td>Status</td>
<td>Member link state, which can be up or down</td>
</tr>
</tbody>
</table>

**monitor-link group**

**Syntax**

```
monitor-link group group-id
undo monitor-link group group-id
```

**View**

System view

**Default Level**

2: System level

**Parameters**

`group-id`: Monitor link group ID, in the range 1 to 16.

**Description**

Use the `monitor-link group` command to create a monitor link group and enter monitor link group view. If the specified monitor link group already exists, you enter monitor link group view directly.

Use the `undo monitor-link group` command to remove a monitor link group.

Related commands: `port monitor-link group`, `port`.

**Examples**

```
Create monitor link group 1.
<Sysname> system-view
[Sysname] monitor-link group 1
[Sysname-mtlk-group1]
```

**port**

**Syntax**

```
port interface-type interface-number { uplink | downlink }
undo port interface-type interface-number
```

**View**

Monitor link group view
**Default Level**

2: System level

**Parameters**

*interface-type interface-number*: Port type and port number.

- **uplink**: Specifies an uplink port.
- **downlink**: Specifies a downlink port.

**Description**

Use the `port` command to assign a port to the monitor link group.

Use the `undo port` command to remove a port from the monitor link group.

---

**Note**

- Both Ethernet ports and Layer-2 aggregate interfaces can be assigned to a monitor link group.
- A port can be assigned to only one monitor link group.
- Alternatively, you can assign a port to a monitor link group with the `port monitor-link group` command in Ethernet interface view or Layer-2 aggregate interface view.

**Related commands:** `port monitor-link group`.

**Examples**

```
Configure member ports for monitor link group 1.
<Sysname> system-view
<Sysname> monitor-link group 1
<Sysname-mtlk-group1> port gigabitethernet 1/0/1 uplink
<Sysname-mtlk-group1> port gigabitethernet 1/0/2 downlink
```

**port monitor-link group**

**Syntax**

```
port monitor-link group group-id { uplink | downlink }
undo port monitor-link group group-id
```

**View**

Ethernet interface view, Layer-2 aggregate interface view

**Default Level**

2: System level

**Parameters**

- **group-id**: Monitor link group ID, in the range 1 to 16.
- **uplink**: Specifies an uplink port.
downlink: Specifies a downlink port.

Description

Use the `port monitor-link group` command to assign the port to the specified monitor link group. Use the `undo port monitor-link group` command to remove the port from the specified monitor link group.

Note

- Both Ethernet ports and Layer-2 aggregate interfaces can be assigned to a monitor link group.
- A port can be assigned to only one monitor link group.
- Alternatively, you can assign a port to a monitor link group with the `port` command in monitor link group view.

Related commands: `port`.

Examples

# Configure GigabitEthernet 1/0/1 as an uplink port of monitor link group 1.

```
<Sysname> system-view
[Sysname] monitor-link group 1
[Sysname-mlkg组图1] quit
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] port monitor-link group 1 uplink
```
RRPP Configuration Commands

control-vlan

Syntax

    control-vlan vlan-id
    undo control-vlan

View

    RRPP domain view

Default Level

    2: System level

Parameters

    vlan-id: Specifies a VLAN as the primary control VLAN for the RRPP domain, in the range 2 to 4093. This VLAN must be one not created yet.

Description

Use the control-vlan command to specify the primary control VLAN for the current RRPP domain.

Use the undo control-vlan command to remove the control VLANs configured for the current RRPP domain.

Note that:

- When configuring control VLANs for an RRPP domain, you only need to configure the control VLAN for the primary ring, that is, the primary control VLAN. The system will automatically configure the VLAN whose VLAN ID is the primary control VLAN ID plus 1 as the secondary control VLAN for subrings. Like the primary control VLAN, the secondary control VLAN must be one not created yet. For the control VLAN configuration to be successful, you must make sure that the IDs for the two control VLANs have not been assigned yet.
- Before configuring RRPP rings for an RRPP domain, you can delete or modify the control VLANs configured for the RRPP domain. However, after configuring RRPP rings for an RRPP domain, you cannot delete or modify the control VLANs of the domain.
- You cannot use the undo vlan all command to delete a control VLAN.

Related commands: rrpp domain.

Examples

    # Configure VLAN 100 as the primary control VLAN of RRPP domain 1.
    <Sysname> system-view
    [Sysname] rrpp domain 1
display rrpp brief

Syntax

    display rrpp brief

View

    Any view

Default Level

    1: Monitor level

Parameters

    None

Description

    Use the display rrpp brief command to display the brief RRPP information.

Examples

    # Display the brief RRPP information.
    <Sysname> display rrpp brief
    Flags for Node Mode :
        M -- Master , T -- Transit , E -- Edge , A -- Assistant-Edge
    RRPP Protocol Status: Enable
    Number of RRPP Domains: 2
    Domain ID    : 1
    Control VLAN : Major 5    Sub 6
    Protected VLAN: Reference Instance 0 to 2, 4
    Hello Timer  : 1 sec Fail Timer : 3 sec
    | ID | Level | Mode  | Port             | Port             | Enable |
    |----|-------|-------|------------------|------------------|--------|
    | 1  | 1     | M     | GigabitEthernet1/0/1 | GigabitEthernet1/0/2 | Yes    |
    Domain ID    : 2
    Control VLAN : Major 10   Sub 11
    Hello Timer  : 1 sec Fail Timer : 3 sec
    Protected VLAN: Reference Instance 0 to 2, 4
    | ID | Level | Mode  | Port             | Port             | Enable |
    |----|-------|-------|------------------|------------------|--------|
    | 1  | 0     | T     | GigabitEthernet1/0/3 | GigabitEthernet1/0/4 | Yes    |
    | 2  | 1     | E     | GigabitEthernet1/0/3 | GigabitEthernet1/0/5 | Yes    |
### Table 3-1 display rrpp brief command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Flags for Node Mode</strong></td>
<td>RRPP node mode</td>
</tr>
<tr>
<td></td>
<td>- M represents master node</td>
</tr>
<tr>
<td></td>
<td>- T represents transit node</td>
</tr>
<tr>
<td></td>
<td>- E represents edge node</td>
</tr>
<tr>
<td></td>
<td>- A represents assistant edge node</td>
</tr>
<tr>
<td><strong>RRPP Protocol Status</strong></td>
<td>RRPP protocol status</td>
</tr>
<tr>
<td></td>
<td>- Enable (globally enabled)</td>
</tr>
<tr>
<td></td>
<td>- Disable (globally disabled)</td>
</tr>
<tr>
<td><strong>Number of RRPP Domains</strong></td>
<td>Number of RRPP domains configured</td>
</tr>
<tr>
<td><strong>Domain ID</strong></td>
<td>RRPP domain ID</td>
</tr>
<tr>
<td><strong>Control VLAN</strong></td>
<td>Control VLANs of the RRPP domain: Major and Sub</td>
</tr>
<tr>
<td><strong>Protected VLAN</strong></td>
<td>List of VLANs protected by the RRPP domain. MSTIs are displayed here. To get the VLANs corresponding to these MSTIs, use the display stp region-configuration command.</td>
</tr>
<tr>
<td><strong>Hello Timer</strong></td>
<td>Hello Timer value in seconds</td>
</tr>
<tr>
<td><strong>Fail Timer</strong></td>
<td>Fail Timer value in seconds</td>
</tr>
<tr>
<td><strong>Ring ID</strong></td>
<td>RRPP ring ID</td>
</tr>
<tr>
<td><strong>Ring Level</strong></td>
<td>RRPP ring level</td>
</tr>
<tr>
<td></td>
<td>- 0 representing primary ring</td>
</tr>
<tr>
<td></td>
<td>- 1 representing subring</td>
</tr>
<tr>
<td><strong>Node Mode</strong></td>
<td>Node mode</td>
</tr>
<tr>
<td><strong>Primary/Common Port</strong></td>
<td>Primary port when the node mode is master node or transit node</td>
</tr>
<tr>
<td></td>
<td>Common port when the node mode is edge node or assistant edge node</td>
</tr>
<tr>
<td></td>
<td>&quot;-&quot; appears when the port is not configured on the ring or the board to which the port belongs does not start</td>
</tr>
<tr>
<td><strong>Secondary/Edge Port</strong></td>
<td>Secondary port when the node mode is master node or transit node</td>
</tr>
<tr>
<td></td>
<td>Edge port when the node mode is edge node or assistant edge node</td>
</tr>
<tr>
<td></td>
<td>&quot;-&quot; appears when the port is not configured on the ring or the board to which the port belongs does not start</td>
</tr>
<tr>
<td><strong>Enable Status</strong></td>
<td>RRPP ring status</td>
</tr>
<tr>
<td></td>
<td>- Yes indicates enabled</td>
</tr>
<tr>
<td></td>
<td>- No indicates disabled</td>
</tr>
</tbody>
</table>

**display rrpp ring-group**

**Syntax**

```console
display rrpp ring-group [ring-group-id]
```

**View**

Any view
Default Level

1: Monitor Level

Parameters

*ring-group-id:* RRPP ring group ID, in the range 1 to 8.

Description

Use the **display rrpp ring-group** command to display the RRPP ring group configuration. If no ring group ID is specified, the configuration of all ring groups is displayed. If an RRPP ring ID is specified, the configuration of the specified RRPP ring group on the current device is displayed. For an edge node RRPP ring group, the subring sending Edge-Hello packets is also displayed.

Related commands: **domain ring**.

Examples

# Display the configuration of all RRPP ring groups.

```bash
<Sysname> display rrpp ring-group
Ring Group 1:
domain 1 ring 1 to 3, 5
domain 2 ring 1 to 3, 5
domain 1 ring 1 is the sending ring

Ring Group 2:
domain 1 ring 4, 6 to 7
domain 2 ring 4, 6 to 7
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Group 1</td>
<td>RRPP ring group 1.</td>
</tr>
<tr>
<td>domain 1 ring 1 to 3, 5</td>
<td>Subrings in the ring group, including rings 1, 2, 3, and 5 in RRPP domain 1.</td>
</tr>
<tr>
<td>domain 1 ring 1 is the sending ring</td>
<td>The sending ring of the ring group is ring 1 in RRPP domain 1.</td>
</tr>
</tbody>
</table>

**display rrpp statistics**

Syntax

```bash
display rrpp statistics domain domain-id [ring ring-id]
```

View

Any view

Default Level

1: Monitor level
Parameters

domain-id: RRPP domain ID, in the range 1 to 8.

ring-id: RRPP ring ID, in the range 1 to 64.

Description

Use the `display rrpp statistics` command to display RRPPDU statistics.

Note that:

- If an RRPP ring ID is specified, the RRPPDU statistics for the specified RRPP ring in the specified RRPP domain on the current device are displayed. If not, the RRPPDU statistics for all RRPP rings in the specified RRPP domain are displayed.
- If a certain port belongs to more than one ring, its RRPPDU statistics are collected and displayed by ring.
- When a ring transits from inactive status into active status, packet counting for the ring restarts.

Related commands: `reset rrpp statistics`.

Examples

# Display the RRPPDU statistics for ring 1 in RRPP domain 1.

```plaintext
<Sysname> display rrpp statistics domain 1 ring 1
Ring ID : 1
Ring Level : 1
Node Mode : Master
Active Status: Yes
Primary port : GigabitEthernet1/0/1
```
```
Packet Link Common Complete Edge Major Packet
Direct Hello Down Flush FDB Flush FDB Hello Fault Total
--
Send 16424 0 0 1 0 0 16425
Rcv 0 0 0 0 0 0 0
```

Secondary port: GigabitEthernet1/0/2
```
Packet Link Common Complete Edge Major Packet
Direct Hello Down Flush FDB Flush FDB Hello Fault Total
--
Send 0 0 0 0 0 0
Rcv 16378 0 0 1 0 0 16379
```

# Display the RRPPDU statistics for all rings in RRPP domain 2.

```plaintext
<Sysname> display rrpp statistics domain 2
Ring ID : 1
Ring Level : 0
Node Mode : Master
Active Status: Yes
Primary port : GigabitEthernet1/0/3
```
```
Packet Link Common Complete Edge Major Packet
Direct Hello Down Flush FDB Flush FDB Hello Fault Total
--
Send 16924 0 0 1 0 0 16925
Rcv 16378 0 0 1 0 0 16379
```
Table 3-3 display rrpp statistics command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring ID</td>
<td>RRPP ring ID</td>
</tr>
<tr>
<td>Ring Level</td>
<td>RRPP ring level:</td>
</tr>
<tr>
<td></td>
<td>• 0 for primary ring</td>
</tr>
<tr>
<td></td>
<td>• 1 for subring</td>
</tr>
<tr>
<td>Node Mode</td>
<td>Node mode:</td>
</tr>
<tr>
<td></td>
<td>• Master node</td>
</tr>
<tr>
<td></td>
<td>• Transit node</td>
</tr>
<tr>
<td></td>
<td>• Edge node</td>
</tr>
<tr>
<td></td>
<td>• Assistant edge node</td>
</tr>
<tr>
<td>Active Status</td>
<td>RRPP ring activation status:</td>
</tr>
<tr>
<td></td>
<td>• Yes for active</td>
</tr>
<tr>
<td></td>
<td>• No for inactive</td>
</tr>
<tr>
<td>Primary Port</td>
<td>The primary port field means the node mode is master node or</td>
</tr>
<tr>
<td></td>
<td>transit node. “-“ appears when the port is not configured on the ring</td>
</tr>
<tr>
<td></td>
<td>or the board to which the port belongs does not start, and in this case,</td>
</tr>
<tr>
<td></td>
<td>no corresponding statistics appears.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Secondary Port</td>
<td>The secondary port field means the node mode is master node or transit node. &quot;-&quot; appears when the port is not configured on the ring or the board to which the port belongs does not start, and in this case, no corresponding statistics appears.</td>
</tr>
<tr>
<td>Common Port</td>
<td>The common port field means the node mode is edge node or assistant edge node. &quot;-&quot; appears when the port is not configured on the ring or the board to which the port belongs does not start, and in this case, no corresponding statistics appears.</td>
</tr>
<tr>
<td>Edge Port</td>
<td>The edge port field means the node mode is edge node or assistant edge node. &quot;-&quot; appears when the port is not configured on the ring or the board to which the port belongs does not start, and in this case, no corresponding statistics appears.</td>
</tr>
<tr>
<td>Packet Direct</td>
<td>Packet transmission direction on the port: Send or Rcv</td>
</tr>
<tr>
<td>Hello</td>
<td>Hello packet statistics received/sent on the port</td>
</tr>
<tr>
<td>Link-Down</td>
<td>Link-Down packet statistics received/sent on the port</td>
</tr>
<tr>
<td>Common Flush FDB</td>
<td>Common-Flush-FDB packet statistics received/sent on the port</td>
</tr>
<tr>
<td>Complete Flush FDB</td>
<td>Complete-Flush-FDB packet statistics received/sent on the port</td>
</tr>
<tr>
<td>Edge Hello</td>
<td>Edge-Hello packet statistics received/sent on the port</td>
</tr>
<tr>
<td>Major Fault</td>
<td>Major-Fault packet statistics received/sent on the port</td>
</tr>
<tr>
<td>Packet Total</td>
<td>Total number of packets received/sent on the port. Here only Hello, Link-Down, Common-Flush-FDB, Complete-Flush-FDB, Edge-Hello, and Major-Fault packets of RRPP are counted.</td>
</tr>
</tbody>
</table>

**display rrpp verbose**

**Syntax**

```bash
display rrpp verbose domain domain-id [ring ring-id]
```

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

- `domain-id`: RRPP domain ID, in the range 1 to 8.
- `ring-id`: RRPP ring ID, in the range 1 to 64.

**Description**

Use the `display rrpp verbose` command to display detailed RRPP information.

If you have specified an RRPP ring ID in the command, the detailed information of the specified ring in the specified RRPP domain appears. Otherwise, the detailed information of all the rings in the specified RRPP domain appears.
Examples

# Display the detailed information of ring 1 in RRPP domain 1.

```bash
<Sysname> display rrpp verbose domain 1 ring 1
Domain ID : 1
Control VLAN : Major 5 Sub 6
Protected VLAN: Reference Instance 0 to 2, 4
Hello Timer : 1 sec Fail Timer : 3 sec
Ring ID : 1
Ring Level : 1
Node Mode : Master
Ring State : Complete
Enable Status : Yes Active Status: Yes
Primary port : GigabitEthernet1/0/1 Port status: UP
Secondary port: GigabitEthernet1/0/2 Port status: BLOCKED
```

# Display the detailed information of all the rings in RRPP domain 2.

```bash
<Sysname> display rrpp verbose domain 2
Domain ID : 2
Control VLAN : Major 10 Sub 11
Protected VLAN: Reference Instance 3, 5 to 7
Hello Timer : 1 sec Fail Timer : 3 sec
Ring ID : 1
Ring Level : 0
Node Mode : Master
Ring State : Complete
Enable Status : Yes Active Status: Yes
Primary port : GigabitEthernet1/0/4 Port status: UP
Secondary port: GigabitEthernet1/0/5 Port status: BLOCKED
Ring ID : 2
Ring Level : 1
Node Mode : Edge
Ring State : -
Enable Status : No Active Status: No
Common port : GigabitEthernet1/0/4 Port status: -
GigabitEthernet1/0/5 Port status: -
Edge port : GigabitEthernet1/0/3 Port status: -
```

Table 3-4 display rrpp verbose command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain ID</td>
<td>RRPP domain ID</td>
</tr>
<tr>
<td>Control VLAN</td>
<td>Control VLANs of the RRPP domain:</td>
</tr>
<tr>
<td></td>
<td>• Major: Represents the primary control VLAN</td>
</tr>
<tr>
<td></td>
<td>• Sub: Represents the secondary control VLAN</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Protected VLAN</td>
<td>List of VLANs protected by the RRPP domain. MSTIs are displayed here. To get the VLANs corresponding to these MSTIs, use the <code>display stp region-configuration</code> command.</td>
</tr>
<tr>
<td>Hello Timer</td>
<td>Hello Timer value in seconds</td>
</tr>
<tr>
<td>Fail Timer</td>
<td>Fail Timer value in seconds</td>
</tr>
<tr>
<td>Ring ID</td>
<td>RRPP ring ID</td>
</tr>
</tbody>
</table>
| Ring Level           | RRPP ring level:  
                          - 0 representing primary ring  
                          - 1 representing subring                                                                                                                                                                   |
| Node Mode            | Node mode:  
                          - Master node  
                          - Transit node  
                          - Edge node  
                          - Assistant edge node                                                                                                                                                                         |
| Ring State           | RRPP ring state. This field makes sense only when the node mode field is master node.  
                          - “Complete” appears when the ring is in health state;  
                          - “Failed” appears when the ring is in disconnect state;  
                          - “–” appears in all the other cases.                                                                                                                                                          |
| Enable Status        | RRPP ring enable status  
                          - Yes for enabled  
                          - No for disabled                                                                                                                                                                               |
| Active Status        | RRPP ring activation status. An RRPP ring can be active only when the RRPP protocol and the RRPP ring are both enabled. Therefore, you can also use this field to identify whether the RRPP protocol are enabled. Two statuses are available:  
                          - Yes for active  
                          - No for inactive                                                                                                                                                                               |
| Primary Port         | The primary port field means the node mode is master node or transit node. “–” appears when the port is not configured on the ring or the board to which the port belongs does not start. |
| Secondary Port       | The secondary port field means the node mode is master node or transit node. “–” appears when the port is not configured on the ring or the board to which the port belongs does not start. |
| Common Port          | The common port field means the node mode is edge node or assistant edge node. “–” appears when the port is not configured on the ring or the board to which the port belongs does not start. |
| Edge Port            | The edge port field means the node mode is edge node or assistant edge node. “–” appears when the port is not configured on the ring or the board to which the port belongs does not start. |
| Port status          | Port status includes down, up and blocked; “–” appears in one of the following cases:  
                          - the ring is inactive  
                          - the port is not configured on the ring  
                          - the board to which the port belongs does not start                                                                                                                                            |
domain ring

Syntax

    domain domain-id ring ring-id-list
    undo domain domain-id [ ring ring-id-list ]

View

    RRPP ring group view

Default Level

    2: System level

Parameters

    domain-id: RRPP domain ID, in the range of 1 to 8.
    ring-id-list: RRPP subring ID list expressed in the format of ring-id-list={ ring-id [ to ring-id ]}&<1-10>,
                where the ring-id argument is an RRPP subring ID in the range of 1 to 64 and &<1-10> indicates
                that you can input up to ten RRPP ring ID ranges.

Description

Use the **domain ring** command to configure subrings for an RRPP ring group.
Use the **undo domain ring** command to remove the specified subring(s) from an RRPP ring group. If
no subring ID list is specified, all subrings in the ring group are removed in the specified domain.

Note that:

- A subring can be assigned to only one ring group.
- A device must be of the same type, an edge node or an assistant-edge node, in the subrings in a
  ring group.
- The subrings in a ring group must have the same link in the primary ring. Otherwise, the ring group
  cannot function properly.
- An edge node ring group and its corresponding assistant-edge node ring group must be the same
  in configurations and activation status.

Moreover, you must follow these guidelines when configuring an RRPP ring group on the edge node
and the assistant-edge node:

- When assigning an active ring to a ring group, do that on the assistant-edge node first and then on
  the edge node.
- To remove an active ring from a ring group, do that on the edge node first and then on the
  assistant-edge node.
- To remove the whole ring group, do that on the edge node first and then on the assistant-edge
  node.
- When activating rings in a ring group, do that on the assistant-edge node first and then on the
  edge node.
- When deactivating rings in a ring group, do that on the edge node first and then on the
  assistant-edge node.

Failure to follow these guidelines may cause the failure of assistant-edge node to receive Edge-Hello
packets and thus mistakenly considering the primary ring as failed.

Related commands: **rrpp ring-group**, **display rrpp ring-group**.
Examples

# Configure subrings for RRPP ring group 1.
<Sysname> system-view
[Sysname] rrpp ring-group 1
[Sysname-rrpp-ring-group1] domain 1 ring 1 to 3 5
[Sysname-rrpp-ring-group1] domain 2 ring 1 to 3 5

protected-vlan

Syntax

protected-vlan reference-instance instance-id-list
undo protected-vlan [ reference-instance instance-id-list ]

View

RRPP domain view

Default Level

2: System level

Parameters

reference-instance instance-id-list: Specifies the MSTIs to be referenced. The range of the instance-id-list argument is as specified in the command configuring MSTIs.

Description

Use the protected-vlan command to configure the protected VLANs for the RRPP domain. The protected VLANs are specified by the MSTIs.

Use the undo protected-vlan command to remove the specified protected VLANs of the RRPP domain. If no MSTI is specified, all protected VLANs of the RRPP domain are removed.

By default, no protected VLAN is specified for an RRPP domain.

Note that:

- To be compatible with old-version RRPP, which does not support protected VLAN configuration, an RRPP domain protects all VLANs on a device started with an old-version configuration file.
- You can use the display stp region-configuration command to check the VLANs corresponding to the specified MSTIs.
- Before configuring rings for an RRPP domain, you can delete or modify the protected VLANs configured for the RRPP domain; after configuring rings for an RRPP domain, you can delete or modify the protected VLANs configured for the RRPP domain, however, you cannot delete all the protected VLANs configured for the domain.
- When the VLAN-to-MSTI mappings change, the protected VLANs of an RRPP domain also changes according to the MSTIs configured for the domain.

Related commands: rrpp domain, display stp region-configuration in MSTP Configuration Commands in the Access Volume.

Examples

# Configure VLANs mapped to MSTI 2 and MSTI 3 as the protected VLANs of RRPP domain 1.
reset rrpp statistics

Syntax

reset rrpp statistics domain domain-id [ ring ring-id ]

View

User view

Default Level

1: Monitor level

Parameters

  domain-id: RRPP domain ID, in the range 1 to 8.
  ring-id: RRPP ring ID, in the range 1 to 64.

Description

Use the reset rrpp statistics command to clear RRPPDU statistics.

If you have specified an RRPP ring ID in the command, RRPPDU statistics of the specified RRPP ring in the specified RRPP domain on the current device are cleared. Otherwise, RRPPDU statistics of all RRPP rings in the specified RRPP domain are cleared.

Related commands: display rrpp statistics.

Examples

  # Clear the RRPPDU statistics of ring 10 in RRPP domain 10.
  <Sysname> reset rrpp statistics domain 1 ring 10

ring

Syntax

ring ring-id node-mode { { master | transit } [ primary-port interface-type interface-number ]
[ secondary-port interface-type interface-number ] level level-value | { edge | assistant-edge } [ edge-port interface-type interface-number ]}
undo ring ring-id

View

RRPP domain view

Default Level

2: System level
Parameters

- **ring-id**: RRPP ring ID, in the range 1 to 64.
- **master**: Specifies the device as the master node of the RRPP ring.
- **transit**: Specifies the device as the transit node of the RRPP ring.
- **primary-port**: Specifies the port as a primary port.
- **interface-type interface-number**: Specifies a port by its type and number. The port can be a Layer-2 GE port, Layer-2 XGE port, or Layer-2 aggregate port, and cannot be member ports of any aggregation group, or smart link group.
- **secondary-port**: Specifies the port as a secondary port.
- **level-value**: RRPP ring level, with 0 representing primary ring and 1 representing subring.
- **edge**: Specifies the device as the edge node of the RRPP ring.
- **assistant-edge**: Specifies the device as the assistant edge node of the RRPP ring.
- **edge-port**: Specifies the edge port for the node.

Description

Use the **ring** command to configure the node mode of the device, the role of the specified RRPP port, and the level of the RRPP ring.

Use the **undo ring** command to remove the configuration.

Note that:

- Before configuring rings for an RRPP domain, configure the control VLANs and protected VLANs for the RRPP domain first.
- The ID of an RRPP ring in a domain must be unique.
- The maximum number of rings that can be configured on a device in all RRPP domains is 16.
- If a device resides on multiple RRPP rings in an RRPP domain, only one primary ring exists within these rings. The device plays a role of either edge node or assistant edge node on other subrings.
- When an RRPP is enabled, you cannot configure its RRPP ports.
- When configuring the edge node and the assistant-edge node, you must first configure the primary ring, and then the subrings.
- The node mode, RRPP port role, and ring level settings of an RRPP ring cannot be modified once they are configured. To modify the settings, you must first remove the present settings.
- You must remove all subring configurations before deleting the primary ring configuration of the edge node or the assistant-edge node. However, an active RRPP ring cannot be deleted.

Related command: **ring enable**.

Examples

```
Specify the device as the master node of primary ring 10 in RRPP domain 1, GigabitEthernet 1/0/1 as the primary port and GigabitEthernet 1/0/2 as the secondary port.

<Sysname> system-view
[Sysname] rrpp domain 1
[Sysname-rrpp-domain1] control-vlan 100
[Sysname-rrpp-domain1] protect-vlan reference-instance 0 1 2
[Sysname-rrpp-domain1] ring 10 node-mode master primary-port gigabitethernet 1/0/1 secondary-port gigabitethernet 1/0/2 level 0
```
# Specify the device as the transit node of primary ring 10 in RRPP domain 1, GigabitEthernet 1/0/1 as the primary port and GigabitEthernet 1/0/2 as the secondary port.

```plaintext
<Sysname> system-view
[Sysname] rrpp domain 1
[Sysname-rrpp-domain1] control-vlan 100
[Sysname-rrpp-domain1] protect-vlan reference-instance 0 1 2
[Sysname-rrpp-domain1] ring 10 node-mode transit primary-port gigabitethernet 1/0/1
secondary-port gigabitethernet 1/0/2 level 0
```

# Specify the device as the master node of subring 20 in RRPP domain 1, GigabitEthernet 1/0/1 as the primary port and GigabitEthernet 1/0/2 as the secondary port.

```plaintext
<Sysname> system-view
[Sysname] rrpp domain 1
[Sysname-rrpp-domain1] control-vlan 100
[Sysname-rrpp-domain1] protect-vlan reference-instance 0 1 2
[Sysname-rrpp-domain1] ring 20 node-mode master primary-port gigabitethernet 1/0/1
secondary-port gigabitethernet 1/0/2 level 1
```

# Specify the device as the transit node of primary ring 20 in RRPP domain 1, GigabitEthernet 1/0/1 as the primary port and GigabitEthernet 1/0/2 as the secondary port.

```plaintext
<Sysname> system-view
[Sysname] rrpp domain 1
[Sysname-rrpp-domain1] control-vlan 100
[Sysname-rrpp-domain1] protect-vlan reference-instance 0 1 2
[Sysname-rrpp-domain1] ring 20 node-mode transit primary-port gigabitethernet 1/0/1
secondary-port gigabitethernet 1/0/2 level 1
```

# Specify the device as the transit node of primary ring 10 in RRPP domain 1, GigabitEthernet 1/0/1 as the primary port and GigabitEthernet 1/0/2 as the secondary port. Then, specify the device as the edge node of subring 20 in RRPP domain 1, GigabitEthernet 1/0/3 as the edge port.

```plaintext
<Sysname> system-view
[Sysname] rrpp domain 1
[Sysname-rrpp-domain1] control-vlan 100
[Sysname-rrpp-domain1] protect-vlan reference-instance 0 1 2
[Sysname-rrpp-domain1] ring 10 node-mode transit primary-port gigabitethernet 1/0/1
secondary-port gigabitethernet 1/0/2 level 0
[Sysname-rrpp-domain1] ring 20 node-mode edge edge-port gigabitethernet 1/0/3
```

# Specify the device as the transit node of primary ring 10 in RRPP domain 1, GigabitEthernet 1/0/1 as the primary port and GigabitEthernet 1/0/2 as the secondary port. Then, specify the device as the assistant edge node of subring 20 in RRPP domain 1, GigabitEthernet 1/0/3 as the edge port.

```plaintext
<Sysname> system-view
[Sysname] rrpp domain 1
[Sysname-rrpp-domain1] control-vlan 100
[Sysname-rrpp-domain1] protect-vlan reference-instance 0 1 2
[Sysname-rrpp-domain1] ring 10 node-mode transit primary-port gigabitethernet 1/0/1
secondary-port gigabitethernet 1/0/2 level 0
[Sysname-rrpp-domain1] ring 20 node-mode assistant-edge edge-port gigabitethernet 1/0/3
```
ring enable

Syntax

    ring ring-id enable
    undo ring ring-id enable

View

    RRPP domain view

Default Level

    2: System level

Parameters

    ring-id: RRPP ring ID, in the range 1 to 64.

Description

Use the **ring enable** command to enable the RRPP ring.

Use the **undo ring enable** command to disable the RRPP ring.

By default, the RRPP ring is disabled.

Note that:

- To enable subrings, you must first enable the primary ring before enabling subrings.
- You must first disable all the subrings in the RRPP domain and then disable the primary ring.
- To activate the RRPP domain, enable the RRPP protocol and the RRPP rings for the RRPP domain.

Related commands: **rrpp enable**.

Examples

```
Enable RRPP ring 10 in RRPP domain 1.
<Sysname> system-view
>Sysname] rrpp domain 1
>Sysname-rrpp-domain1] control-vlan 100
>Sysname-rrpp-domain1] protect-vlan reference-instance 0 1 2
>Sysname-rrpp-domain1] ring 10 node-mode master primary-port gigabitethernet 1/0/1 secondary-port gigabitethernet 1/0/2 level 0
>Sysname-rrpp-domain1] ring 10 enable
```

rrpp domain

Syntax

    rrpp domain domain-id
    undo rrpp domain domain-id

View

    System view
Default Level

2: System level

Parameters

domain-id: RRPP domain ID, in the range 1 to 8.

Description

Use the rrpp domain command to create an RRPP domain and enter its view.
Use the undo rrpp domain command to remove an RRPP domain.

Note that:
- When you delete an RRPP domain, the control VLANs and protected VLANs of it are deleted at the same time.
- To delete an RRPP domain successfully, be sure that it has no RRPP rings.

Related commands: control-vlan, protected-vlan.

Examples

# Create RRPP domain 1, and enter RRPP domain 1 view.
<Sysname> system-view
.Sysname> rrpp domain 1
.Sysname-rrpp-domain1>

rrpp enable

Syntax

rrpp enable
undo rrpp enable

View

System view

Default Level

2: System level

Parameters

None

Description

Use the rrpp enable command to enable RRPP protocol.
Use the undo rrpp enable command to disable RRPP protocol.
By default, RRPP protocol is disabled.
To activate the RRPP domain, enable the RRPP protocol and the RRPP rings for the RRPP domain.
Related commands: ring enable.
Examples

# Enable the RRPP protocol.
<Sysname> system-view
[Sysname] rrpp enable

rrpp ring-group

Syntax

    rrpp ring-group ring-group-id
    undo rrpp ring-group ring-group-id

View

    System view

Default Level

    2: System level

Parameters

    ring-group-id: RRPP ring group ID, in the range 1 to 8.

Description

Use the `rrpp ring-group` command to create an RRPP ring group and enter RRPP ring group view.
Use the `undo rrpp ring-group` command to delete an RRPP ring group.

Note that:

- RRPP configured with ring groups cannot interoperate with RRPP that does not support ring group configuration.
- When removing a ring group, do that on the edge node first and then on the assistant-edge node. If you fail to follow the order, the assistant-edge node may fail to receive Edge-Hello packets and thus mistakenly considers that the primary ring has failed.
- After a ring group is removed, all subrings in the ring group do not belong to any ring group.

Related commands: `domain ring`, `display rrpp ring-group`.

Examples

# Create RRPP ring group 1 and enter its view.
<Sysname> system-view
[Sysname] rrpp ring-group 1
[Sysname-rrpp-ring-group1]

timer

Syntax

    timer hello-timer hello-value fail-timer fail-value
    undo timer
View

RRPP domain view

Default Level

2: System level

Parameters

hello-value: Hello timer value, in the range 1 to 10 seconds.
fail-value: Fail timer value, in the range 3 to 30 seconds.

Description

Use the timer command to configure the Hello timer value and the Fail timer value for the RRPP domain.

Use the undo timer command to restore it to the default value.

By default, the Hello timer value is 1 second and the Fail timer value is 3 seconds.

Note that the Fail timer value must be greater than or equal to three times of the Hello timer value.

Examples

# Set the Hello timer value to 2 seconds and the Fail timer value to 7 seconds.
<Sysname> system-view
[Sysname] rrpp domain 1
[Sysname-rrpp-domain1] timer hello-timer 2 fail-timer 7
4 DLDP Configuration Commands

DLDP Configuration Commands

display dldp

Syntax

display dldp [ interface-type interface-number ]

View

Any view

Default Level

1: Monitor level

Parameters

interface-type interface-number: Port type and port number.

Description

Use the display dldp command to display the DLDP configuration of a port.

If you do not provide the interface-type or interface-number arguments, this command displays the DLDP configuration of all the DLDP-enabled ports.

Examples

# Display the DLDP configuration of all the DLDP-enabled ports.

<Sysname> display dldp
DLDP global status : enable
DLDP interval : 5s
DLDP work-mode : enhance
DLDP authentication-mode : simple, password is 123
DLDP unidirectional-shutdown : auto
DLDP delaydown-timer : 2s
The number of enabled ports is 2.

Interface GigabitEthernet1/0/50
DLDP port state : advertisement
DLDP link state : up
The neighbor number of the port is 1.
    Neighbor mac address : 0000-0000-0100
    Neighbor port index : 79
    Neighbor state : two way
    Neighbor aged time : 13
Interface GigabitEthernet1/0/51
DLDP port state : advertisement
DLDP link state : up
The neighbor number of the port is 1.
   Neighbor mac address : 0000-0000-1100
   Neighbor port index : 81
   Neighbor state : two way
   Neighbor aged time : 12

# Display the DLDP configuration of GigabitEthernet 1/0/50.
<Sysname> display dldp gigabitethernet 1/0/50
Interface GigabitEthernet1/0/50
DLDP port state : advertisement
DLDP link state : up
The neighbor number of the port is 1.
   Neighbor mac address : 0000-0000-0100
   Neighbor port index : 79
   Neighbor state : two way
   Neighbor aged time : 13

Table 4-1 display dldp command output description
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLDP global status</td>
<td>Global DLDP state (enable or disable)</td>
</tr>
<tr>
<td>DLDP interval</td>
<td>Interval for sending Advertisement packets (in seconds)</td>
</tr>
<tr>
<td>DLDP work-mode</td>
<td>DLDP mode (enhance or normal)</td>
</tr>
<tr>
<td>DLDP authentication-mode</td>
<td>DLDP authentication mode (none, simple, or md5)</td>
</tr>
<tr>
<td>password</td>
<td>Password for DLDP authentication</td>
</tr>
<tr>
<td>DLDP unidirectional-shutdown</td>
<td>Port shutdown mode (auto or manual)</td>
</tr>
<tr>
<td>DLDP delaydown-timer</td>
<td>Setting of the DelayDown timer</td>
</tr>
<tr>
<td>The number of enabled ports</td>
<td>Number of the DLDP-enabled ports</td>
</tr>
<tr>
<td>Interface</td>
<td>Index of a DLDP-enabled port</td>
</tr>
<tr>
<td>DLDP port state</td>
<td>DLDP state on a port (initial, inactive, active, advertisement, probe, disable, or delaydown)</td>
</tr>
<tr>
<td>DLDP link state</td>
<td>Port state (up or down)</td>
</tr>
<tr>
<td>The neighbor number of the port</td>
<td>Number of the neighbors of a port</td>
</tr>
<tr>
<td>Neighbor mac address</td>
<td>MAC address of a neighbor</td>
</tr>
<tr>
<td>Neighbor port index</td>
<td>Neighbor port index</td>
</tr>
<tr>
<td>Neighbor state</td>
<td>Neighbor state (unknown, one way, or two way)</td>
</tr>
<tr>
<td>Neighbor aged time</td>
<td>Neighbor aging time</td>
</tr>
</tbody>
</table>
display dldp statistics

Syntax

    display dldp statistics [ interface-type interface-number ]

View

Any view

Default Level

1: Monitor level

Parameters

    interface-type interface-number: Port type and port number.

Description

Use the display dldp statistics command to display the statistics on the DLDP packets passing through a port.

If you do not provide the interface-type or interface-number argument, this command displays the statistics on the DLDP packets passing through all the DLDP-enabled ports.

Examples

# Display the statistics on the DLDP packets passing through all the DLDP-enabled ports.

<Sysname> display dldp statistics
Interface GigabitEthernet1/0/50
    Packets sent : 6
    Packets received : 5
    Invalid packets received : 2
    Loop packets received : 0
    Authentication failed packets received : 0
    Valid packets received : 3

Interface GigabitEthernet1/0/51
    Packets sent : 7
    Packets received : 7
    Invalid packets received : 3
    Loop packets received : 0
    Authentication failed packets received : 0
    Valid packets received : 4

# Display the statistics on the DLDP packets passing through GigabitEthernet 1/0/50.

<Sysname> display dldp statistics gigabitethernet 1/0/50
Interface GigabitEthernet1/0/50
    Packets sent : 6
    Packets received : 5
    Invalid packets received : 2
    Loop packets received : 0
    Authentication failed packets received : 0
    Valid packets received : 0
Valid packets received: 3

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Port index</td>
</tr>
<tr>
<td>Packets sent</td>
<td>Total number of DLDP packets sent</td>
</tr>
<tr>
<td>Packets received</td>
<td>Total number of DLDP packets received</td>
</tr>
<tr>
<td>Invalid packets received</td>
<td>Number of the invalid packets received</td>
</tr>
<tr>
<td>Loop packets received</td>
<td>Number of the loopback packets received</td>
</tr>
<tr>
<td>Authentication failed packets received</td>
<td>Number of the received packets that failed to pass the authentication</td>
</tr>
<tr>
<td>Valid packets received</td>
<td>Number of the valid packets received</td>
</tr>
</tbody>
</table>

**dldp authentication-mode**

**Syntax**

```
dldp authentication-mode { md5 md5-password | none | simple simple-password }
undo dldp authentication-mode
```

**View**

System view

**Default Level**

2: System level

**Parameters**

- **md5 md5-password**: Specifies to perform MD5 authentication and sets the password. The `md5-password` argument is the password, a string of 1 to 16 characters or a 24-bit string. The former indicates a plain text password and the latter indicates a cipher text password. Note that this argument is case-sensitive.

- **None**: Specifies not to perform authentication.

- **simple simple-password**: Specifies to perform plain text authentication and sets the password. The `simple-password` argument is the password, a case-sensitive string of 1 to 16 characters.

**Description**

Use the `dldp authentication-mode` command to configure DLDP authentication.

Use the `undo dldp authentication-mode` command to restore the default.

By default, DLDP authentication is not performed.

To enable DLDP to operate properly, make sure the DLDP authentication modes and the passwords of the both sides of a link are the same.
Examples

# Configure to perform plain text authentication, setting the password as abc (assuming that Device A and Device B are connected by the DLDP link).

- Configuration on Device A
  <DeviceA> system-view
  [DeviceA] dldp authentication-mode simple abc
- Configuration on Device B
  <DeviceB> system-view
  [DeviceB] dldp authentication-mode simple abc

dldp delaydown-timer

Syntax

    dldp delaydown-timer time
    undo dldp delaydown-timer

View

System view

Default Level

2: System level

Parameters

    Time: Setting of the DelayDown timer, in the range 1 to 5 (in seconds).

Description

Use the dldp delaydown-timer command to set the DelayDown timer.
Use the undo dldp delaydown-timer command to restore the default.
By default, the setting of the DelayDown timer is 1 second.
Note that the DelayDown timer configured using this command applies to all DLDP-enabled ports.

Examples

# Set the DelayDown timer to 2 seconds.
  <Sysname> system-view
  [Sysname] dldp delaydown-timer 2

dlldp enable

Syntax

    dlldp enable
    undo dlldp enable

View

System view, Ethernet port view, port group view
Default Level

2: System level

Parameters

None

Description

Use the `dldp enable` command to enable DLDP.

Use the `undo dldp enable` command to disable DLDP.

By default, DLDP is disabled both globally and on each port.

Note that:

- When executed in system view, these two commands enables/disables DLDP globally; when executed in Ethernet port view, these two commands enables/disables DLDP on the current port; when executed in port group view, these two commands enables/disables DLDP on all the ports in the port group.
- These two commands are applicable to Layer 2 Ethernet ports, including optical ports and electrical ports.
- DLDP can take effect only when it is enabled both globally and on a port.

Examples

# Enable DLDP globally, and then enable DLDP on GigabitEthernet 1/0/50.

```plaintext
<Sysname> system-view
<Sysname> dldp enable
<Sysname> interface gigabitethernet 1/0/50
<Sysname-GigabitEthernet1/0/50> dldp enable
```

# Enable DLDP globally, and then enable DLDP for all the ports in port group 1.

```plaintext
<Sysname> system-view
<Sysname> dldp enable
<Sysname> port-group manual 1
<Sysname-port-group-manual-1> group-member gigabitethernet 1/0/50 to gigabitethernet 1/0/52
<Sysname-port-group-manual-1> dldp enable
```

dldp interval

Syntax

```
dldp interval time
undo dldp interval
```

View

System view

Default Level

2: System level
Parameters

*time*: Interval for sending Advertisement packets, in the range 1 to 100 (in seconds).

Description

Use the `dldp interval` command to set the interval for sending Advertisement packets.

Use the `undo dldp interval` command to restore the default.

By default, the interval for sending Advertisement packets is 5 seconds.

Note that:
- These two commands apply to all DLDP-enabled ports.
- Set the interval for sending Advertisement packets to a value not longer than one-third of the STP convergence time. If the interval is too long, STP loops may occur before unidirectional links are torn down; if the interval is too short, network traffic may increase in vain due to excessive Advertisement packets. You are recommended to use the default value.

Examples

# Set the interval for sending Advertisement packets to 20 seconds.

```
<Sysname> system-view
[Sysname] dldp interval 20
```

dldp reset

Syntax

```
dldp reset
```

View

System view, Ethernet port view, port group view

Default Level

2: System level

Parameters

None

Description

Use the `dldp reset` command to reset DLDP state for ports shut down by DLDP to enable them to perform unidirectional link detect.

When executed in system view, this command applies to all the ports shut down by DLDP; when executed in Ethernet port view, this command applies to the current port; when executed in port group view, this command applies to all the ports in the port group shut down by DLDP.

Related commands: `dldp enable`, `dldp unidirectional-shutdown`.

Examples

# Reset DLDP state for all the ports shut down by DLDP.

```
<Sysname> system-view
[Sysname] dldp reset
```
# Reset DLDP state for GigabitEthernet 1/0/50 (assuming that GigabitEthernet 1/0/50 is shut down by DLDP).

<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/50
[Sysname-GigabitEthernet1/0/50] dldp reset

# Reset DLDP state for all the ports in port group 1 shut down by DLDP.

<Sysname> system-view
[Sysname] port-group manual 1
[Sysname-port-group-manual-1] group-member gigabitethernet 1/0/50 to gigabitethernet 1/0/52
[Sysname-port-group-manual-1] dldp reset

dldp unidirectional-shutdown

Syntax

dldp unidirectional-shutdown { auto | manual }
undo dldp unidirectional-shutdown

View

System view

Default Level

2: System level

Parameters

auto: Sets the port shutdown mode as auto mode, where, when a unidirectional link is detected, the port involved is shut down by DLDP.
manual: Sets the port shutdown mode as manual mode, where, when a unidirectional link is detected, DLDP prompts you to shut down the involved port instead of doing so automatically.

Description

Use the dldp unidirectional-shutdown command to set the port shutdown mode.
Use the undo dldp unidirectional-shutdown command to restore the default.
By default, the port shutdown mode is auto mode.
Related commands: dldp work-mode.

Examples

# Set the port shutdown mode as auto mode.
<Sysname> system-view
[Sysname] dldp unidirectional-shutdown auto

dldp work-mode

Syntax

dldp work-mode { enhance | normal }
undo dldp work-mode
View

System view

Default Level

2: System level

Parameters

enhance: Specifies the enhanced DLDP mode.

normal: Specifies the normal DLDP mode.

Description

Use the `dldp work-mode` command to set the DLDP mode.

Use the `undo dldp work-mode` command to restore the default DLDP mode.

By default, a device operates in normal DLDP mode.

Examples

# Configure the device to operate in enhanced DLDP mode.

```
<Sysname> system-view
[Sysname] dldp work-mode enhance
```

reset dldp statistics

Syntax

```reset dldp statistics [ interface-type interface-number ]```

View

User view

Default Level

1: Monitor level

Parameters

interface-type interface-number: Port type and port number.

Description

Use the `reset dldp statistics` command to clear the statistics on DLDP packets passing through a port.

If you do not provide the `interface-type` or `interface-number` argument, this command clears the statistics on the DLDP packets passing through all the DLDP-enabled ports.

Examples

Clear the statistics on the DLDP packets passing through all the DLDP-enabled ports.

```
<Sysname> reset dldp statistics
```
5 Ethernet OAM Configuration Commands

OAM Configuration Commands

display oam

Syntax

```plaintext
display oam { local | remote } [ interface interface-type interface-number ]
```

View

Any view

Default Level

2: System level

Parameters

- **local**: Displays the Ethernet OAM connection information of the local end.
- **remote**: Displays the Ethernet OAM connection information of the remote end.
- **interface interface-type interface-number**: Specify a port by its type and number.

Description

Use the `display oam` command to display the information about an Ethernet OAM connection, including connection status, information contained in Ethernet OAM packet header, and Ethernet OAM packet statistics.

If you do not specify the `interface` keyword, this command displays the information about all the Ethernet OAM connections.

Related commands: `reset oam`.

Examples

```
# Display the information about the Ethernet OAM connection established on the local port GigabitEthernet 1/0/1.
<Sysname> display oam local interface gigabitethernet 1/0/1
Port : GigabitEthernet1/0/1
Link Status : Up
EnableStatus  : Enable
Local_oam_mode  : Active  Local_pdu    : ANY
Local_mux_action : FWD    Local_par_action : FWD

OAMLocalFlagsField :
--------------------------------------------------------------------------
Link Fault       : 0    Dying Gasp    : 0
Critical Event   : 0    Local Evaluating : COMPLETE
```

5-1
Remote Evaluating : COMPLETE

Packets statistic:

<table>
<thead>
<tr>
<th>Packets</th>
<th>Send</th>
<th>Receive</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAMPDU</td>
<td>645</td>
<td>648</td>
</tr>
<tr>
<td>OAMInformation</td>
<td>645</td>
<td>648</td>
</tr>
<tr>
<td>OAMEventNotification</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>OAMUniqueEventNotification</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>OAMDuplicateEventNotification</td>
<td>--</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 5-1 display oam local command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>Port index</td>
</tr>
<tr>
<td>Link Status</td>
<td>Link status</td>
</tr>
<tr>
<td>EnableStatus</td>
<td>Ethernet OAM state (enabled or disabled)</td>
</tr>
<tr>
<td>Local_oam_mode</td>
<td>Local Ethernet OAM mode, which can be:</td>
</tr>
<tr>
<td></td>
<td>• Active, indicating the port operates in the active Ethernet OAM mode</td>
</tr>
<tr>
<td></td>
<td>• Passive, indicating the port operates in the passive Ethernet OAM mode</td>
</tr>
<tr>
<td>Local_pdu</td>
<td>The way in which the local end processes Ethernet OAMPDUs:</td>
</tr>
<tr>
<td></td>
<td>• RX_INFO, indicating the port only receives Information OAMPDUs and does not send any Ethernet OAMPDUs.</td>
</tr>
<tr>
<td></td>
<td>• LF_INFO, indicating the port only sends the Information OAMPDUs without Information TLV triplets and with their link error flag bits being set.</td>
</tr>
<tr>
<td></td>
<td>• INFO, indicating the port sends and receives only Information OAMPDUs.</td>
</tr>
<tr>
<td></td>
<td>• ANY, indicating the port sends and receives Ethernet OAMPDUs of any type.</td>
</tr>
<tr>
<td>Local_mux_action</td>
<td>Working mode of the local transmitter, which can be:</td>
</tr>
<tr>
<td></td>
<td>• FWD, indicating the port can send any packets.</td>
</tr>
<tr>
<td></td>
<td>• DISCARD, indicating the port only sends Ethernet OAMPDUs.</td>
</tr>
<tr>
<td>Local_par_action</td>
<td>Working mode of the local receiver, which can be:</td>
</tr>
<tr>
<td></td>
<td>• FWD, indicating the port can receive any packets.</td>
</tr>
<tr>
<td></td>
<td>• DISCARD, indicating the port only receives Ethernet OAMPDUs.</td>
</tr>
<tr>
<td></td>
<td>• LB, indicating Ethernet OAM loopback testing is enabled on the port. In this case, all the packets other than Ethernet OAMPDUs received are returned to their sources along the ways they come.</td>
</tr>
<tr>
<td>OAMLLocalFlagsField</td>
<td>Local flags inserted in the local flag fields of the Ethernet OAMPDUs sent.</td>
</tr>
<tr>
<td>Link Fault</td>
<td>Indicates whether an Ethernet OAM link error is present: 0 for no and 1 for yes.</td>
</tr>
<tr>
<td>Dying Gasp</td>
<td>Indicates whether a fatal error is present: 0 for no and 1 for yes.</td>
</tr>
<tr>
<td>Critical Event</td>
<td>Indicates whether a critical error is present: 0 for no and 1 for yes.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Local Evaluating</td>
<td>Indicates whether the local-to-remote configuration negotiation is complete:</td>
</tr>
<tr>
<td></td>
<td>• COMPLETE for completed</td>
</tr>
<tr>
<td></td>
<td>• REVERSED for uncompleted</td>
</tr>
<tr>
<td>Remote Evaluating</td>
<td>Indicates whether the remote-to-local configuration negotiation is complete:</td>
</tr>
<tr>
<td></td>
<td>• COMPLETE for completed</td>
</tr>
<tr>
<td></td>
<td>• REVERSED for uncompleted</td>
</tr>
<tr>
<td>Packets statistic</td>
<td>Statistics about Ethernet OAMPDUs sent and received</td>
</tr>
<tr>
<td>OAMPDU</td>
<td>Total number of the Ethernet OAMPDUs sent and received</td>
</tr>
<tr>
<td>OAMInformation</td>
<td>Number of the Information OAMPDUs sent and received</td>
</tr>
<tr>
<td>OAMEventNotification</td>
<td>Number of the Event notification OAMPDUs sent and received</td>
</tr>
<tr>
<td>OAMUniqueEventNotification</td>
<td>Number of the unduplicated Event notification OAMPDUs sent or received uniquely.</td>
</tr>
<tr>
<td>OAMDuplicateEventNotification</td>
<td>Number of the duplicate Event notification OAMPDUs sent or received.</td>
</tr>
</tbody>
</table>

Display the Ethernet OAM information of the peer port GigabitEthernet 1/0/1.

```plaintext
<Sysname> display oam remote interface gigabitethernet 1/0/1
Port      : GigabitEthernet1/0/1
Link Status : Up
Information of the latest received OAM packet:
OAMRemoteMACAddress : 00e0-fd73-6502
OAMRemotePDUConfiguration : 1500

OAMRemoteState :
--------------------------------------------------------------------------
Remote_mux_action          : FWD       Remote_par_action       : FWD
--------------------------------------------------------------------------
OAMRemoteConfiguration :
--------------------------------------------------------------------------
OAM Mode                  : Active       Unidirectional Support : YES
Loopback Support          : YES        Link Events             : YES
Variable Retrieval        : NO
--------------------------------------------------------------------------
OAMRemoteFlagsField :
--------------------------------------------------------------------------
Link Fault                : 0           Dying Gasp               : 0
Critical Event            : 0           Local Evaluating        : COMPLETE
Remote Evaluating         : COMPLETE   
--------------------------------------------------------------------------
```
Table 5-2 display oam remote port command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>Port index</td>
</tr>
<tr>
<td>Link Status</td>
<td>Link status</td>
</tr>
<tr>
<td>Information of the latest received OAM packet</td>
<td>Information about the latest received Ethernet OAMPDU</td>
</tr>
<tr>
<td>OAMRemoteMACAddress</td>
<td>MAC address of the Ethernet OAM peer</td>
</tr>
<tr>
<td>OAMRemotePDUConfiguration</td>
<td>Maximum Ethernet OAMPDU size allowed</td>
</tr>
<tr>
<td>OAMRemoteState</td>
<td>State of the Ethernet OAM peer</td>
</tr>
<tr>
<td>Remote_mux_action</td>
<td>Peer sending mode. Refer to Table 5-1 for more.</td>
</tr>
<tr>
<td>Remote_par_action</td>
<td>Peer receiving mode. Refer to Table 5-1 for more.</td>
</tr>
<tr>
<td>OAMRemoteConfiguration</td>
<td>Configuration of the peer Ethernet OAM entity</td>
</tr>
<tr>
<td>OAM Mode</td>
<td>Ethernet OAM mode</td>
</tr>
<tr>
<td>Unidirectional Support</td>
<td>Indicates whether unidirectional transmission is supported (YES or NO)</td>
</tr>
<tr>
<td>Loopback Support</td>
<td>Indicates whether Ethernet OAM loopback testing is supported (YES or NO)</td>
</tr>
<tr>
<td>Link Events</td>
<td>Indicates whether Ethernet OAM link error events are supported (YES or NO)</td>
</tr>
<tr>
<td>Variable Retrieval</td>
<td>Indicates whether MIB variable retrieval is supported (YES or NO)</td>
</tr>
<tr>
<td>OAMRemoteFlagsField</td>
<td>Values of the peer Ethernet OAM flag fields in OAM packets</td>
</tr>
<tr>
<td>Link Fault</td>
<td>Indicates whether a link fault is present: 0 for no and 1 for yes.</td>
</tr>
<tr>
<td>Dying Gasp</td>
<td>Indicate whether a fatal fault is present: 0 for no and 1 for yes.</td>
</tr>
<tr>
<td>Critical Event</td>
<td>Indicate whether a critical fault is present: 0 for no and 1 for yes.</td>
</tr>
<tr>
<td>Local Evaluating</td>
<td>Indicates whether the local-to-remote configuration negotiation is complete:</td>
</tr>
<tr>
<td></td>
<td>• COMPLETE for completed</td>
</tr>
<tr>
<td></td>
<td>• REVERSED for uncompleted</td>
</tr>
<tr>
<td>Remote Evaluating</td>
<td>Indicates whether the remote-to-local configuration negotiation is complete:</td>
</tr>
<tr>
<td></td>
<td>• COMPLETE for completed</td>
</tr>
<tr>
<td></td>
<td>• REVERSED for uncompleted</td>
</tr>
</tbody>
</table>

display oam configuration

Syntax

`display oam configuration`

View

Any view
Default Level

2: System level

Parameters

None

Description

Use the display oam configuration command to display global Ethernet OAM configuration, including the periods and thresholds for Ethernet OAM link error event detection.

Related commands: oam errored-symbol period, oam errored-symbol threshold, oam errored-frame period, oam errored-frame threshold, oam errored-frame-period period, oam errored-frame-period threshold, oam errored-frame-seconds period, oam errored-frame-seconds threshold.

Examples

Display global Ethernet OAM configuration.

<Sysname> display oam configuration

Configuration of the link event window/threshold :

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration of the link event window/threshold</td>
<td>Detection intervals and triggering thresholds configured for link events</td>
</tr>
<tr>
<td>Errored-symbol Event period (in seconds)</td>
<td>Errored symbol detection interval, which defaults to one second.</td>
</tr>
<tr>
<td>Errored-symbol Event threshold</td>
<td>Errored symbol event triggering threshold, which defaults to 1.</td>
</tr>
<tr>
<td>Errored-frame Event period (in seconds)</td>
<td>Errored frame detection interval, which defaults to one second.</td>
</tr>
<tr>
<td>Errored-frame Event threshold</td>
<td>Errored frame event triggering threshold, which defaults to 1.</td>
</tr>
<tr>
<td>Errored-frame-period Event period (in ms)</td>
<td>Errored frame period detection interval, which defaults to 1000 milliseconds.</td>
</tr>
<tr>
<td>Errored-frame-period Event threshold</td>
<td>Errored frame period event triggering threshold, which defaults to 1.</td>
</tr>
<tr>
<td>Errored-frame-seconds Event period (in seconds)</td>
<td>Errored frame seconds detection interval, which defaults to 60 seconds.</td>
</tr>
</tbody>
</table>
display oam critical-event

Syntax

```
display oam critical-event [ interface interface-type interface-number]
```

View

Any view

Default Level

2: System level

Parameters

- `interface interface-type interface-number`: Specify a port by its type and number.

Description

Use the `display oam critical-event` command to display the statistics on critical Ethernet OAM link events occurred on a port.

If you do not specify the `interface` keyword, this command displays the statistics on the critical Ethernet OAM link events occurred on all the ports of the switch.

Examples

```bash
# Display the statistics on critical Ethernet OAM link events occurred on all the ports.
<Sysname> display oam critical-event
Port : GigabitEthernet1/0/1
Link Status : Up
Event statistic :

Link Fault : 0  Dying Gasp : 0  Critical Event : 0
```

Table 5-4 display oam critical-event command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>Port index</td>
</tr>
<tr>
<td>Link Status</td>
<td>Link status</td>
</tr>
<tr>
<td>Event statistic</td>
<td>Statistics on critical Ethernet OAM link events</td>
</tr>
<tr>
<td>Link Fault</td>
<td>Indicates whether a link fault is present: 0 for no and 1 for yes.</td>
</tr>
<tr>
<td>Dying Gasp</td>
<td>Indicates whether a fatal fault is present: 0 for no and 1 for yes.</td>
</tr>
<tr>
<td>Critical Event</td>
<td>Indicates whether a critical fault is present: 0 for no and 1 for yes.</td>
</tr>
</tbody>
</table>
display oam link-event

Syntax

```
display oam link-event { local | remote } [ interface interface-type interface-number ]
```

View

Any view

Default Level

2: System level

Parameters

- **local**: Displays the statistics on the local Ethernet OAM link error events.
- **remote**: Displays the statistics on the peer Ethernet OAM link error events.
- **interface interface-type interface-number**: Specify a port by its type and number.

Description

Use the `display oam link-event` command to display the statistics on Ethernet OAM link error events occurred on a local port or a peer port. Ethernet OAM link error events include errored symbol events, errored frame events, errored frame period events, and errored frame seconds events.

If you do not specify the `interface` keyword, this command displays the statistics on the Ethernet OAM link error events occurred on all the local/peer ports.

Related commands: `display oam configuration`, `reset oam`.

Examples

```
# Display the statistics on Ethernet OAM link error events occurred on all the local ports.
<Sysname> display oam link-event local
Port      : GigabitEthernet1/0/1
Link Status : Up

OAMLocalErrFrameEvent : (ms = milliseconds)
-------------------------------------------------------------------------
Event Time Stamp   : 3539   Errored Frame Window : 10(100ms)
Errored Frame Threshold : 5   Errored Frame : 1488111
Error Running Total : 260908758   Event Running Total : 307

OAMLocalErrFramePeriodEvent :
-------------------------------------------------------------------------
Event Time Stamp   : 3539   Errored Frame Window : 976500
Errored Frame Threshold : 1   Errored Frame : 1042054
Error Running Total : 260909151   Event Running Total : 471

OAMLocalErrFrameSecsSummaryEvent : (ms = milliseconds)
-------------------------------------------------------------------------
Event Time Stamp : 3389
Errored Frame Second Summary Window : 600(100ms)
```
Table 5-5 display oam link-event local command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>Port index</td>
</tr>
<tr>
<td>Link Status</td>
<td>Link status</td>
</tr>
</tbody>
</table>

OAMLocalErrFrameEvent: Information about local errored frame events:
- Event Time Stamp: time when an errored frame event occurred (in 100 milliseconds).
- Errored Frame Window: Error frame detection interval (in 100 milliseconds).
- Errored Frame Threshold: error threshold that triggers an errored frame event.
- Errored Frame: the number of detected error frames over the specific detection interval.
- Error Running Total: the total number of error frames.
- Event Running Total: the total number of errored frame events that have occurred.

OAMLocalErrFramePeriodEvent: Information about local errored frame period events:
- Event Time Stamp: time when an errored frame event occurred (in 100 milliseconds).
- Errored Frame Window: maximum number of 64-byte frames that can be transmitted through an Ethernet port over the configured error frame period detection interval. See `oam errored-frame-period period` command for more information.
- Errored Frame Threshold: error threshold that triggers an errored frame period event.
- Errored Frame: the number of detected error frames over a detection interval.
- Error Running Total: the total number of error frames that have detected.
- Event Running Total: the total number of errored frame period events.

OAMLocalErrFrameSecsSummaryEvent: Information about local errored frame seconds events:
- Event Time Stamp: time when an errored frame seconds event occurred (in terms of 100 milliseconds).
- Errored Frame Second Summary Window: error frame second detection interval (in 100 milliseconds).
- Errored Frame Second Summary Threshold: error threshold that triggers an errored frame seconds event.
- Errored Frame Second Summary: the number of detected error frame seconds over a detection interval.
- Error Running Total: the total number of error frame seconds.
- Event Running Total: the total number of errored frame seconds events that have occurred.

Display Ethernet OAM link event statistics of the remote ends of all the ports.

```bash
<Sysname> display oam link-event remote
Port : GigabitEthernet1/0/1
Link Status :Up
OAMRemoteErrFrameEvent : (ms = milliseconds)
```
Table 5-6 display oam link-event remote command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>Port index</td>
</tr>
<tr>
<td>Link Status</td>
<td>Link status</td>
</tr>
<tr>
<td>OAMLocalErrFrameEvent</td>
<td>Information about remote errored frame events.</td>
</tr>
<tr>
<td></td>
<td>- Event Time Stamp: Time when an errored frame event occurred (in 100 milliseconds).</td>
</tr>
<tr>
<td></td>
<td>- Errored Frame Window: Error frame detection interval (in 100 milliseconds).</td>
</tr>
<tr>
<td></td>
<td>- Errored Frame Threshold: Error threshold that triggers an errored frame event.</td>
</tr>
<tr>
<td></td>
<td>- Errored Frame: The number of detected error frames over the specific detection interval.</td>
</tr>
<tr>
<td></td>
<td>- Error Running Total: The total number of error frames.</td>
</tr>
<tr>
<td></td>
<td>- Event Running Total: The total number of errored frame events that have occurred.</td>
</tr>
</tbody>
</table>

oam enable

Syntax

```
oam enable
undo oam enable
```

View

Ethernet port view

Default Level

2: System level

Parameters

None

Description

Use the **oam enable** command to enable Ethernet OAM on the Ethernet port.

Use the **undo oam enable** command to disable Ethernet OAM on the Ethernet port.

By default, Ethernet OAM is disabled on all Ethernet ports.

Examples

```plaintext
# Enable OAM on port GigabitEthernet 1/0/1.
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] oam enable
```
oam errored-frame period

Syntax

 oam errored-frame period period-value
 undo oam errored-frame period

View

 System view

Default Level

 2: System level

Parameters

 period-value: Errored frame detection interval, ranging from 1 to 60 (in seconds).

Description

 Use the oam errored-frame period command to set the errored frame detection interval.
 Use the undo oam errored-frame period command to restore the default.
 By default, the errored frame detection interval is one second.
 Related commands: oam errored-frame threshold, display oam link-event, display oam configuration.

Examples

 # Set the errored frame detection interval to 10 seconds.
 <Sysname> system-view
 [Sysname] oam errored-frame period 10

oam errored-frame threshold

Syntax

 oam errored-frame threshold threshold-value
 undo oam errored-frame threshold

View

 System view

Default Level

 2: System level

Parameters

 threshold-value: Errored frame event triggering threshold, ranging from 0 to 4294967295.

Description

 Use the oam errored-frame threshold command to set the errored frame event triggering threshold.
 Use the undo oam errored-frame threshold command to restore the default.
By default, the errored frame event triggering threshold is 1.
Related commands: oam errored-frame period, display oam link-event, display oam configuration.

Examples

Set the errored frame event triggering threshold to 100.
 SYSNAME> system-view
 [Sysname] oam errored-frame threshold 100

oam errored-frame-period period

Syntax

oam errored-frame-period period period-value
undo oam errored-frame-period period

View

System view

Default Level

2: System level

Parameters

period-value: Errored frame period detection interval, ranging from 100 to 60000 (in milliseconds).

Description

Use the oam errored-frame-period period command to set the errored frame period detection interval.
Use the undo oam errored-frame-period period command to restore the default.
By default, the errored frame period detection interval is 1000 milliseconds.
As for errored frame period event detection, the system first uses the following expression to convert the errored frame period detection interval to the maximum number of 64-byte frames that can be transmitted through an Ethernet port in the period:

\[
\text{bandwidth} \times \text{period} / (64 \times 8 \times 1000),
\]

where bandwidth is the port bandwidth (in bps) and “period” is the configured period (in milliseconds).
Related commands: oam errored-frame-period threshold, display oam link-event, display oam configuration.

Examples

Set the errored frame period detection interval to 10 seconds, that is, 10000 milliseconds.
 SYSNAME> system-view
 [Sysname] oam errored-frame-period period 10000
oam errored-frame-period threshold

Syntax

 oam errored-frame-period threshold threshold-value
 undo oam errored-frame-period threshold

View

 System view

Default Level

 2: System level

Parameters

 threshold-value: Errored frame period event triggering threshold, ranging from 0 to 4294967295.

Description

 Use the oam errored-frame-period threshold command to set the errored frame period event triggering threshold.
 Use the undo oam errored-frame-period threshold command to restore the default.
 By default, the errored frame period event triggering threshold is 1.
 Related commands: oam errored-frame-period period, display oam link-event, display oam configuration.

Examples

 # Set the errored frame period event triggering threshold to 100.
 <Sysname> system-view
 [Sysname] oam errored-frame-period threshold 100

oam errored-frame-seconds period

Syntax

 oam errored-frame-seconds period period-value
 undo oam errored-frame-seconds period

View

 System view

Default Level

 2: System level

Parameters

 period-value: Errored frame seconds detection interval, ranging from 10 to 900 (in seconds).

Description

 Use the oam errored-frame-seconds period command to set the errored frame seconds detection interval.
Use the undo oam errored-frame-seconds period command to restore the default. By default, the errored frame seconds detection interval is 60 seconds.

Related commands: oam errored-frame-seconds threshold, display oam link-event, display oam configuration.

Examples

Set the errored frame seconds detection interval to 100 seconds.
<Sysname> system-view
[Sysname] oam errored-frame-seconds period 100

oam errored-frame-seconds threshold

Syntax

```
oam errored-frame-seconds threshold threshold-value
undo oam errored-frame-seconds threshold
```

View

System view

Default Level

2: System level

Parameters

threshold-value: Errored frame seconds event triggering threshold, ranging from 0 to 900.

Description

Use the oam errored-frame-seconds threshold command to set the errored frame seconds event triggering threshold.

Use the undo oam errored-frame-seconds threshold command to restore the default.

By default, the errored frame seconds event triggering threshold is 1.

Related commands: oam errored-frame-seconds period, display oam link-event, display oam configuration.

Examples

Set the errored frame seconds event triggering threshold to 100.
<Sysname> system-view
[Sysname] oam errored-frame-seconds threshold 100

oam errored-symbol period

Syntax

```
oam errored-symbol period period-value
undo oam errored-symbol period
```

5-13
View

System view

Default Level

2: System level

Parameters

period-value: Errored symbol detection interval, ranging from 1 to 60 (in seconds).

Description

Use the oam errored-symbol period command to set the errored symbol detection interval.
Use the undo oam errored-symbol period command to restore the default.
By default, the errored symbol detection interval is one second.
Related commands: oam errored-symbol threshold, display oam link-event, display oam configuration.

Examples

Set the errored symbol detection interval to 10 seconds.
<Sysname> system-view
<Sysname> oam errored-symbol period 10

oam errored-symbol threshold

Syntax

oam errored-symbol threshold threshold-value
undo oam errored-symbol threshold

View

System view

Default Level

2: System level

Parameters

threshold-value: Errored symbol event triggering threshold, ranging from 0 to 4,294,967,295.

Description

Use the oam errored-symbol threshold command to set the errored symbol event triggering threshold.
Use the undo oam errored-symbol threshold command to restore the default.
By default, the errored symbol event triggering threshold is 1.
Related commands: oam errored-symbol period, display oam link-event, display oam configuration.
Examples

Set the errored symbol event triggering threshold to 100.
<Sysname> system-view
[Sysname] oam errored-symbol threshold 100

oam loopback

Syntax

 oam loopback
 undo oam loopback

View

 Ethernet port view

Default Level

 2: System level

Parameters

 None

Description

Use the oam loopback command to enable Ethernet OAM loopback testing on an Ethernet port.
Use the undo loopback command to disable Ethernet OAM remote loopback.
By default, Ethernet OAM loopback testing is disabled.
Ethernet OAM remote loopback is available only after the Ethernet OAM connection is established and can be performed only by the Ethernet OAM entities operating in active Ethernet OAM mode.

Related commands: oam enable, oam mode.

Examples

Configure the active Ethernet OAM mode, enable Ethernet OAM, and enable Ethernet OAM remote loopback on GigabitEthernet1/0/1.
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] oam mode active
[Sysname-GigabitEthernet1/0/1] oam enable
[Sysname-GigabitEthernet1/0/1] oam loopback

oam mode

Syntax

 oam mode { active | passive }

View

 Ethernet port view
Default Level

2: System level

Parameters

active: Specifies the active Ethernet OAM mode.

passive: Specifies the passive Ethernet OAM mode.

Description

Use the oam mode command to set the Ethernet OAM operating mode for an Ethernet port.

By default, an Ethernet OAM-enabled Ethernet port operates in the active Ethernet OAM mode.

Note that, to change the Ethernet OAM operating mode of an Ethernet OAM-enabled Ethernet port, you need to disable Ethernet OAM on the port first.

Related commands: oam enable.

Examples

Disable Ethernet OAM on Gigabitethernet 1/0/1, and then configure Gigabitethernet 1/0/1 to operate in passive Ethernet OAM mode.

<Sysname> system-view
<Sysname> interface gigabitethernet 1/0/1
<Sysname-GigabitEthernet1/0/1> undo oam enable
<Sysname-GigabitEthernet1/0/1> oam mode active

reset oam

Syntax

reset oam [interface interface-type interface-number]

View

User view

Default Level

2: System level

Parameters

interface interface-type interface-number: Specify a port by its type and number.

Description

Use the reset oam command to clear the statistics on Ethernet OAM packets and Ethernet OAM link error events of an Ethernet port.

If you do not specify the interface keyword, this command clears the statistics on Ethernet OAM packets and Ethernet OAM link error events of all the ports.

Related commands: display oam, display oam link-event.

Examples

Clear the statistics on Ethernet OAM packets and Ethernet OAM link error events of all the ports.
Connectivity Fault Detection Configuration Commands

cfd cc enable

Syntax

```
cfd cc service-instance instance-id mep mep-id enable
undo cfd cc service-instance instance-id mep mep-id enable
```

View

- Ethernet port view

Default level

- 2: System level

Parameters

- `service-instance instance-id`: Specifies the service instance ID, ranging from 1 to 32767.
- `mep mep-id`: Specifies the ID of an MEP, ranging from 1 to 8191.

Description

Use the `cfd cc enable` command to enable CCM sending on a specified MEP.
Use the `undo cfd cc enable` command to cancel the configuration.
By default, the CCM sending function is disabled.
Related commands: `cfd cc interval`.

Examples

```
# On port GigabitEthernet 1/0/1, Enable CCM sending on service point 3.
<Sysname> system-view
<Sysname> interface gigabitethernet 1/0/1
<Sysname-GigabitEthernet1/0/1> cfd cc service-instance 5 mep 3 enable
```

cfd cc interval

Syntax

```
cfd cc interval interval-field-value service-instance instance-id
undo cfd cc interval service-instance instance-id
```

6-1
View
System view

Default level
2: System level

Parameters

interval-field-value: Value of the interval field in CCM messages, ranging from 4 to 7.

service-instance instance-id: Specifies the service instance ID, ranging from 1 to 32767.

Description

Use the cfd cc interval command to set the value of the interval field in the CCM messages.
Use the undo cfd cc interval command to restore the value to the default value.
By default, the value of this field is 4 for all CCMs sent.
The relationship between the interval field value in the CCM messages, the time interval to send CCM messages and the timeout time of the remote MEP is illustrated in Table 6-1.

Table 6-1 Relationship of interval field value, time interval for sending CCMs and timeout time of remote MEP

<table>
<thead>
<tr>
<th>Interval field value</th>
<th>Time interval for CCM</th>
<th>Timeout time of remote MEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1 second</td>
<td>3.5 seconds</td>
</tr>
<tr>
<td>5</td>
<td>10 second</td>
<td>35 seconds</td>
</tr>
<tr>
<td>6</td>
<td>60 seconds</td>
<td>210 seconds</td>
</tr>
<tr>
<td>7</td>
<td>600 seconds</td>
<td>2100 seconds</td>
</tr>
</tbody>
</table>

Related commands: cfd cc enable.

Examples

Set the value of the interval field in CCMs to 7.
<Sysname> system-view
[Sysname] cfd cc interval 7 service-instance 2

cfd enable

Syntax

cfd enable
undo cfd enable

View
System view

Default level
2: System level
Parameters

None

Description

Use the **cfd enable** command to enable CFD.

Use the **undo cfd enable** command to disable CFD.

By default, CFD is disabled.

Examples

```
# Enable CFD.
<Sysname> system-view
<Sysname> cfd enable
Note: CFD has been enabled.
```

cfd linktrace

Syntax

```
cfd linktrace service-instance instance-id mep mep-id [ target-mep target-mep-id | target-mac mac-address ] [ ttl ttl-value ] [ hw-only ]
```

View

System view

Default level

2: System level

Parameters

- **service-instance instance-id**: Specifies the service instance ID, ranging from 1 to 32767.
- **mep mep-id**: Specifies the ID of the MEP that sends LTMs, ranging from 1 to 8191.
- **target-map target-mep-id**: Specifies the ID of the MEP that receives LTM, ranging from 1 to 8191.
- **target-mac mac-address**: Specifies the destination MAC address, in the format of H-H-H.
- **ttl ttl-value**: Specifies the time to live value, ranging from 1 to 255 and defaulting to 64.
- **hw-only**: Indicates the hw-only position of the LTMs sent. When this keyword is present and the MIP that receives LTMs cannot find the destination MAC address in its forwarding table, the MIP will not forward these broadcast messages. Otherwise, the LTMs will be forwarded.

Description

Use the **cfd linktrace** command to find the path between the specified MEP and the destination MEP, which is achieved through the transmission of LTMs between the two and detection of the responding LTRs.

Related commands: **cfd linktrace auto-detection**.

Examples

```
# Send LTM messages.
<Sysname> system-view
```
[Sysname] cfd linktrace service-instance 1 mep 1101 target-mep 2001

Linktrace to MEP 2001 with the sequence number 1101-43361:

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>TTL</th>
<th>Forwarded</th>
<th>Relay Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0010-FC00-6512</td>
<td>63</td>
<td>No</td>
<td>None</td>
</tr>
</tbody>
</table>

Table 6-2 cfd linktrace command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linktrace to MEP mep-id with the sequence number sequence-number</td>
<td>Linktrace to MEP mep-id with the sequence number sequence-number</td>
</tr>
<tr>
<td>MAC Address</td>
<td>Source MAC address in the LTR messages</td>
</tr>
<tr>
<td>TTL</td>
<td>Hop count when the LTM passes the device</td>
</tr>
<tr>
<td>Forwarded</td>
<td>Yes means that the current device forwards LTMs. No means that the current device does not forward LTMs.</td>
</tr>
<tr>
<td>Relay Action</td>
<td>Indicates whether the forwarding device found the destination MAC address in its MAC address table.</td>
</tr>
<tr>
<td></td>
<td>• Found: Indicates that the forwarding device found the destination MAC address in its MAC address table.</td>
</tr>
<tr>
<td></td>
<td>• Unknown: Indicates that the forwarding device failed to find the destination MAC address in its MAC address table.</td>
</tr>
<tr>
<td></td>
<td>• None: Indicates that it is a MEP that responded to the LTM message. A MEP does not need to find the destination MAC address.</td>
</tr>
</tbody>
</table>

cfd linktrace auto-detection

Syntax

```plaintext
cfd linktrace auto-detection [ size size-value ]
undo cfd linktrace auto-detection
```

View

System view

Default level

2: System level

Parameters

`size size-value`: Specifies the size of the buffer used to store the auto-detection result, ranging from 1 to 100 (in terms of sending times).

This value defaults to 5, which means the buffer stores the results of the recent five auto-detections.

Description

Use the `cfd linktrace auto-detection` command to enable the auto sending of linktrace messages.

Use the `undo cfd linktrace auto-detection` command to disable this function.

By default, this function is disabled.
Note that:

- After LT messages automatic sending is enabled, if a MEP fails to receive the CCMs from the remote MEP, the link between the two is regarded as faulty and LTM will be sent out. (The destination of the LTM is the remote MEP, and the maximum value of TTL is 255.) Based on the LTRs that echo back, the fault source can be located.
- Once you disable LT messages automatic sending, the content stored in the buffer will be removed.

Related commands: **cfd linktrace**.

Examples

```
# Enable automatic LT messages sending.
<Sysname> system-view
[Sysname] cfd linktrace auto-detection size 100
```

cfd loopback

Syntax

```
cfd loopback service-instance instance-id mep mep-id { target-mep target-mep-id | target-mac mac-address } [ number number ]
```

View

System view

Default level

2: System level

Parameters

- **service-instance instance-id**: Specifies the service instance ID, ranging from 1 to 32767.
- **mep mep-id**: Specifies the ID of a MEP, ranging from 1 to 8191.
- **target-mep target-mep-id**: Specifies the ID of the destination MEP for LBM packets, ranging from 1 to 8191.
- **target-mac mac-address**: Specifies the destination MAC address, in the format of H-H-H.
- **number number**: Specifies the number of the LBM packets sent, ranging from 1 to 10 and defaulting to 5.

Description

Use the **cfd loopback** command to enable LB function so that LBM can be sent from the specified MEP to other MEPs in the same service instance, and LBR messages can be received.

By default, LB is not enabled.

Examples

```
# Enable LB to check link state.
<Sysname> system-view
[Sysname] cfd loopback service-instance 1 mep 1101 target-mep 2001
Loopback to 0010-FC00-6512 with the sequence number start from 1101-43404:
```
Table 6-3 cfd loopback command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loopback to mac-address with the sequence number start from sequence-number</td>
<td>Sends LBMs to mac-address with the sequence number starting with sequence-number</td>
</tr>
<tr>
<td>Reply from mac-address</td>
<td>Reply from mac-address</td>
</tr>
<tr>
<td>sequence number</td>
<td>Sequence number in the LBR messages</td>
</tr>
<tr>
<td>Send</td>
<td>Number of LBMs sent</td>
</tr>
<tr>
<td>Received</td>
<td>Number of LBR messages received</td>
</tr>
<tr>
<td>Lost</td>
<td>Number of lost LBMs</td>
</tr>
</tbody>
</table>

cfd ma

Syntax

```
cfd ma ma-name md md-name vlan vlan-id
undo cfd ma ma-name md md-name
```

View

System view

Default level

2: System level

Parameters

ma-name: Name of the MA, a string of 1 to 48 characters, composed of letters, numbers or underlines, but cannot start with an underline character.

md md-name: Specifies the name of an MD, a string of 1 to 48 characters, composed of letters, numbers or underlines, but cannot start with an underline character.

vlan vlan-id: Specifies the ID of the VLAN where MA is in service, ranging from 1 to 4094.

Description

Use the `cfd ma` command to create MA(s) in an MD.

Use the `undo cfd ma` command to delete specified MA in an MD.

By default, no MA is created.

Note that:

- Before creating an MA, you must create an MD first.
- When deleting an MA, you will also delete the configurations related to that MA.
Related commands: `cfd md`.

Examples

Create an MA named `test_ma` in an MD named `test_md`, and configure the MD to serve VLAN 100.

```
<Sysname> system-view
[Sysname] cfd md test_md level 3
[Sysname] cfd ma test_ma md test_md vlan 100
```

cfd md

Syntax

```
cfd md md-name level level-value
undo cfd md md-name
```

View

System view

Default level

2: System level

Parameters

- **md md-name**: Name of an MD, a string of 1 to 48 characters, composed of letters, numbers or underlines, but cannot start with an underline character.
- **level level-value**: Specifies an MD level, ranging from 0 to 7.

Description

Use the `cfd md` command to create an MD.

Use the `undo cfd md` command to delete an MD.

By default, no MD is created.

Note that:

- You can create only one MD with a specific level. MD cannot be created if you enter an invalid MD name or an existing MD name.
- When deleting an MD, you will also delete the configurations related to that MD.

Examples

Create an MD named `test_md`, with its level being 3.

```
<Sysname> system-view
[Sysname] cfd md test_md level 3
```

cfd mep

Syntax

```
cfd mep mep-id service-instance instance-id { inbound | outbound }
undo cfd mep mep-id service-instance instance-id
```

View

System view
View

Ethernet port view

Default level

2: System level

Parameters

- **mep mep-id**: ID of MEP, ranging from 1 to 8191.
- **service-instance instance-id**: Specifies the service instance ID, ranging from 1 to 32767.
- **inbound**: Creates an inward-facing MEP.
- **outbound**: Creates an outward-facing MEP.

Description

Use the **cfd mep** command to create a MEP on a port.

Use the **undo cfd mep** command to delete the specified MEP.

By default, no MEP is configured on a device port.

In creating a MEP, the service instance you specified defines the MD and MA that the MEP belongs to.

Examples

```
# Create inward-facing MEP 3 in service instance 5.
<Sysname> system-view
<Sysname> cfd md test_md level 3
<Sysname> cfd ma test_ma md test_md vlan 100
<Sysname> cfd service-instance 5 md test_md ma test_ma
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] cfd mep 3 service-instance 5 inbound
```

cfd mep enable

Syntax

```
cfd mep service-instance instance-id mep mep-id enable
undo cfd mep service-instance instance-id mep mep-id enable
```

View

Ethernet port view

Default level

2: System level

Parameters

- **service-instance instance-id**: Specifies the service instance ID, ranging from 1 to 32767.
- **mep mep-id**: Specifies the ID of a MEP, ranging from 1 to 8191.

Description

Use the **cfd mep enable** command to enable the MEP configured on a port.
Use the `undo cfd mep enable` command to disable the MEP.

By default, MEP is disabled on a port and cannot respond to LTM and LBM messages unless you enable it.

Related commands: `cfd mep`.

Examples

```
# Enable MEP 3 in service instance 5.
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] cfd mep service-instance 5 mep 3 enable
```

cfd mip-rule

Syntax

```
cfd mip-rule { explicit | default } service-instance instance-id
undo cfd mip-rule service-instance instance-id
```

View

System view

Default level

2: System level

Parameters

- **service-instance instance-id**: Specifies the service instance ID, ranging from 1 to 32767.
- **explicit**: This rule means that if the lower level MA is not configured with MIPs, whether the current MA will create MIPs depends on whether the lower level MA is configured with MEPs.
- **default**: This rule means that if the lower level MA is not configured with MIPs, the current MA will create MIPs.

Description

Use the `cfd mip-rule` command to configure the rule for generating MIPs.

Use the `undo cfd mip-rule` command to delete the rule for generating MIPs.

By default, no rules for generating MIPs are configured, nor are the MIPs themselves.

MIPs are generated on each port automatically according to the rules configured. If a port has no MIP, the system will check the MAs in each MD (from low to high level), and follow the rules in Table 6-4 to create or not create MIPs (within a single VLAN):
Table 6-4 Rules for generating MIPs

<table>
<thead>
<tr>
<th>MIP exists on low level MA</th>
<th>The cfd mip-rule command is configured as</th>
<th>MEP exists on low level MA</th>
<th>Create MIP or not</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>—</td>
<td>—</td>
<td>No</td>
</tr>
<tr>
<td>No</td>
<td>Explicit</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Default</td>
<td>—</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Each of the following actions or cases can cause MIPs to be created or deleted after you have configured this command:

- Enabling CFD (use the `cfd enable` command)
- Creating or deleting the MEPs on a port
- Changes occur to the VLAN attribute of a port
- The rule specified in the `cfd mip-rule` command changes

Examples

```plaintext
# Configure the rules for generating MIPs.
<Sysname> system-view
[Sysname] cfd mip-rule default service-instance 5
```

cfd remote-mep

Syntax

```plaintext
cfd remote-mep remote-mep-id service-instance instance-id mep mep-id
undo cfd remote-mep remote-mep-id service-instance instance-id mep mep-id
```

View

Ethernet port view

Default level

2: System level

Parameters

- `remote-mep-id`: ID of the remote MEP, ranging from 1 to 8191.
- `service-instance instance-id`: Specifies the service instance ID, ranging from 1 to 32767.
- `mep mep-id`: Specifies the ID of a MEP, ranging from 1 to 8191.

Description

Use the `cfd remote-mep` command to configure the remote MEP for the specified local MEP (the two must be in the same service instance) on the local port. After this, the local MEP can receive CCMs from the remote MEP.

Use the `undo cfd remote-mep` command to delete the remote MEP configured on the local port.

Note that the remote MEP ID and local MEP ID cannot be the same.
Examples

Configure a remote MEP.
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] cfd remote-mep 9 service-instance 5 mep 3

cfd service-instance

Syntax

```
cfd service-instance instance-id md md-name ma ma-name
undo cfd service-instance instance-id
```

View

System view

Default level

2: System level

Parameters

- **service-instance instance-id**: Service instance ID, ranging from 1 to 32767.
- **md md-name**: Specifies the name of an MD, a string of 1 to 48 characters, composed of letters, numbers or underlines, but cannot start with an underline character.
- **ma ma-name**: Specifies the name of an MA, a string of 1 to 48 characters, composed of letters, numbers or underlines, but cannot start with an underline character.

Description

Use the `cfd service-instance` command to create a service instance.

Use the `undo cfd service-instance` command to delete a service instance.

By default, no service instance is created.

Note that:

- You must create MD and MA prior to creating service instance.
- The service instance ID uniquely identifies an MA in an MD.
- When deleting a service instance, you are deleting the configurations related to that service instance as well.
- Deleting a service instance simply breaks up the connection between the service instance and the corresponding MA, the MA itself is not deleted.

Related commands: `cfd md`, `cfd ma`.

Examples

Create service instance 5, an MD named test_md, and an MA named test_ma.
<Sysname> system-view
[Sysname] cfd md test_md level 3
[Sysname] cfd ma test_ma md test_md vlan 100
[Sysname] cfd service-instance 5 md test_md ma test_ma
display cfd linktrace-reply

Syntax

display cfd linktrace-reply [service-instance instance-id [mep mep-id]]

View

Any view

Default level

2: System level

Parameters

service-instance instance-id: Specifies the service instance ID, ranging from 1 to 32767.

mep mep-id: Specifies the ID of a MEP, ranging from 1 to 8191.

Description

Use the display cfd linktrace-reply command to display the LTR information received by a MEP.

Note that:

- If this command is used without specifying MEP, the information of LTRs of all MEPs in the current service instance is displayed.
- If this command is used without specifying service instance, the information of LTRs of all MEPs is displayed.

Examples

Display the information of LTR message.
<Sysname> display cfd linktrace-reply
Service instance: 1 MEP ID: 1003
MAC Address TTL Forwarded Relay Action
00E0-FC27-6502 63 Yes Found
00E0-FC00-6510 62 Yes Found
00E0-FC52-BAA0 61 No None

Service instance: 2 MEP ID: 1023
MAC Address TTL Forwarded Relay Action
00E0-FC27-6502 63 No None

Table 6-5 display cfd linktrace-reply command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service instance</td>
<td>Service instance to which the MEPs that send LTM belong</td>
</tr>
<tr>
<td>MEP ID</td>
<td>ID of the MEP that sends LTM</td>
</tr>
<tr>
<td>MAC Address</td>
<td>Source MAC address in the LTR message</td>
</tr>
<tr>
<td>TTL</td>
<td>Hop count when LTM passes the device</td>
</tr>
<tr>
<td>Forwarded</td>
<td>• Yes means that the device has forwarded the LTM.</td>
</tr>
<tr>
<td></td>
<td>• No means that the device did not forward the LTM.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>Relay Action</td>
<td>Indicates whether the forwarding device found the destination MAC address</td>
</tr>
<tr>
<td></td>
<td>in its MAC address table</td>
</tr>
<tr>
<td></td>
<td>• Found: Indicates that the forwarding device found the destination MAC</td>
</tr>
<tr>
<td></td>
<td>address in its MAC address table.</td>
</tr>
<tr>
<td></td>
<td>• Unknown: Indicates that the forwarding device failed to find the</td>
</tr>
<tr>
<td></td>
<td>destination MAC address in its MAC address table.</td>
</tr>
<tr>
<td></td>
<td>• None: Indicates that it is a MEP that responded to the LTM message. A</td>
</tr>
<tr>
<td></td>
<td>MEP does not need to find the destination MAC address.</td>
</tr>
</tbody>
</table>

display cfd linktrace-reply auto-detection

Syntax

```plaintext
display cfd linktrace-reply auto-detection [ size size-value ]
```

View

Any view

Default level

2: System level

Parameters

- `size size-value`: Specifies the times of recent auto-detections, ranging from 1 to 100.

Description

Use the `display cfd linktrace-reply auto-detection` command to display the content of the LTR messages received as responses to the automatically sent LTMs.

Note that:

- These LTR messages are stored in the buffer after you executed the `cfd linktrace auto-detection` command.
- With the `size` keyword not specified, this command displays the information of all LTRs stored in the buffer.

Related commands: `cfd linktrace auto-detection`.

Examples

Display the content of the LTRs received as responses to the LTMs sent.

```plaintext
<Sysname> display cfd linktrace-reply auto-detection
Service instance: 1       MEP ID: 1003    Time: 2006/05/22 10:43:57
Target MEP ID: 2005       TTL: 64
MAC Address               TTL     Forwarded         Relay Action
00E0-FC27-6502            63      Yes               Found
00E0-FC00-6510            62      Yes               Found
00E0-FC52-BAA0            61      No                None

Service instance: 2       MEP ID: 1023    Time: 2006/05/22 10:44:06
Target MEP ID: 2025       TTL: 64
```
Table 6-6 display cfd linktrace-reply auto-detection command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service instance</td>
<td>Service instance to which the MEPs that sent LTM messages belong</td>
</tr>
<tr>
<td>MEP ID</td>
<td>ID of the MEP that sends LTM messages</td>
</tr>
<tr>
<td>Time</td>
<td>Time of the LTM automatically sent</td>
</tr>
<tr>
<td>Target MEP ID</td>
<td>ID of the target MEP</td>
</tr>
<tr>
<td>TTL</td>
<td>Initial hop count of the automatically sent LTMs</td>
</tr>
<tr>
<td>MAC Address</td>
<td>Source MAC address in the LTR messages</td>
</tr>
<tr>
<td>TTL</td>
<td>Hop count when LTM passes the device</td>
</tr>
<tr>
<td>Forwarded</td>
<td>• Yes means that the device has forwarded the LTMs.</td>
</tr>
<tr>
<td></td>
<td>• No means that the device did not forward the LTMs.</td>
</tr>
<tr>
<td>Relay Action</td>
<td>Indicates whether the forwarding device found the destination MAC address in its MAC address table.</td>
</tr>
<tr>
<td></td>
<td>• Found: Indicates that the forwarding device found the destination MAC address in its MAC address table.</td>
</tr>
<tr>
<td></td>
<td>• Unknown: Indicates that the forwarding device failed to find the destination MAC address in its MAC address table.</td>
</tr>
<tr>
<td></td>
<td>• None: Indicates that it is a MEP that responded to the LTM message. A MEP does not need to find the destination MAC address.</td>
</tr>
</tbody>
</table>

display cfd ma

Syntax

```
display cfd ma [ [ ma-name ] md md-name ]
```

View

Any view

Default level

2: System level

Parameters

- **ma-name**: Name of MA, ranging from 1 to 48 characters, composed of letters, numbers or underlines, but cannot start with an underline character.
- **md md-name**: Specifies the name of an MD, ranging from 1 to 48 characters, composed of letters, numbers or underlines, but cannot start with an underline character.

Description

Use the `display cfd ma` command to display the configuration of a specified MA.

Note that:

- If MD is not specified, this command will display the MA configurations of all MDs on the device.
- If both MD and MA are specified, this command will display the specified MA configuration.
If only MD is specified, this command will display the configurations of all MAs in that MD.

Examples

Display the MA configuration information.
<Sysname> display cfd ma
3 maintenance domain(s) configured.
Maintenance domain: mdtest_5
1 maintenance association(s) belong(s) to maintenance domain mdtest_5:
Maintenance association: matest_5
Service instance: 5 VLAN: 5 Level: 5

Maintenance domain: mdtest_6
1 maintenance association(s) belong(s) to maintenance domain mdtest_6:
Maintenance association: matest_6
Service instance: 6 VLAN: 6 Level: 6

Maintenance association: matest_16
Service instance: 0 VLAN: 100 Level: 6

Maintenance domain: mdtest_7
1 maintenance association(s) belong(s) to maintenance domain mdtest_7:
Maintenance association: matest_7
Service instance: 7 VLAN: 7 Level: 7

Table 6-7 display cfd ma command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 maintenance domain(s) configured.</td>
<td>Number of MDs configured</td>
</tr>
<tr>
<td>Maintenance domain</td>
<td>Name of the MD</td>
</tr>
<tr>
<td>1 maintenance association(s) belong(s) to maintenance domain mdtest_5</td>
<td>Number of MAs configured in the MD</td>
</tr>
<tr>
<td>Maintenance association</td>
<td>Name of the MA</td>
</tr>
<tr>
<td>Service instance</td>
<td>Service instance of the MA</td>
</tr>
<tr>
<td>VLAN</td>
<td>VLAN to which the service instance belongs</td>
</tr>
<tr>
<td>Level</td>
<td>Level of the MD to which the MA belongs</td>
</tr>
</tbody>
</table>

display cfd md

Syntax
display cfd md

View

Any view
Default level
2: System level

Parameters
None

Description
Use the `display cfd md` command to display the MD configuration information.

Examples

```
# Display the MD configuration information.
<Sysname> display cfd md
CFD is enabled.
8 maintenance domain(s) configured:
  Level: 0     Maintenance domain: mdtest_0
  Level: 1     Maintenance domain: mdtest_1
  Level: 2     Maintenance domain: mdtest_2
  Level: 3     Maintenance domain: mdtest_3
  Level: 4     Maintenance domain: mdtest_4
  Level: 5     Maintenance domain: mdtest_5
  Level: 6     Maintenance domain: mdtest_6
  Level: 7     Maintenance domain: mdtest_7
```

Table 6-8 display cfd md command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 maintenance domain(s) configured</td>
<td>Number of MDs configured</td>
</tr>
<tr>
<td>Level</td>
<td>Level of MD, each level allows only one MD.</td>
</tr>
<tr>
<td>Maintenance domain</td>
<td>Name of MD</td>
</tr>
</tbody>
</table>

display cfd mep

Syntax

`display cfd mep mep-id service-instance instance-id`

View

Any view

Default level
2: System level

Parameters

- `mep-id`: MEP ID, ranging from 1 to 8191.
- `service-instance instance-id`: Specifies the service instance ID, ranging from 1 to 32767.
Description

Use the `display cfd mep` command to display the attribute and operating information of MEP(s).

Examples

Display the attribute and operating information of MEP 50 in service instance 1.

```bash
<Sysname> display cfd mep 50 service-instance 1
Interface: GigabitEthernet1/0/2
Maintenance domain: mdtest_1
Maintenance association: matest_1
Level: 1    VLAN: 1    Direction: Outbound
Administrative state: Active    CCM send: Enable
FNG state: FNG_DEFECT_REPORTED

CCM:
Current state: CCI_WAITING
Interval: 1s    SendCCM: 12018

Loopback:
NextSeqNumber: 8877
SendLBR: 0    ReceiveInOrderLBR: 0    ReceiveOutOrderLBR: 0

Linktrace:
NextSeqNumber: 8877
SendLTR: 0    ReceiveLTM: 0

No CCM from some remote MEPs is received.

One or more streams of error CCMs is received. The last-received CCM:
Maintenance domain:mdtest1
Maintenance association:matest1
MEP:5    Sequence Number:0x50A
MAC Address: 000F-E25D-F31B
Received Time: 2008/04/26 12:51:31

One or more streams of cross-connect CCMs is received. The last-received CCM:
Maintenance domain:mdtest1
Maintenance association:matest1
MEP:6    Sequence Number:0x63A
MAC Address: 000F-E25D-578C
Received Time: 2008/04/26 12:51:33

Some other MEPs are transmitting the RDI bit.
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Interface that an MD belongs to</td>
</tr>
</tbody>
</table>

Table 6-9 display cfd mep command output description
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance domain</td>
<td>MD that a MEP belongs to</td>
</tr>
<tr>
<td>Maintenance association</td>
<td>MA that a MEP belongs to</td>
</tr>
<tr>
<td>Level</td>
<td>Level of the MD</td>
</tr>
<tr>
<td>VLAN</td>
<td>VLAN that the MA belongs to</td>
</tr>
<tr>
<td>Direction</td>
<td>Direction of the MEPs</td>
</tr>
<tr>
<td>Administrative state</td>
<td>State of MEP, either Active or Inactive</td>
</tr>
<tr>
<td>CCM send</td>
<td>Whether the MEP sends CCM</td>
</tr>
<tr>
<td>FNG state</td>
<td>State of FNG (Fault Notification Generator), which can be:</td>
</tr>
<tr>
<td></td>
<td>• FNG_RESET</td>
</tr>
<tr>
<td></td>
<td>• FNG_DEFECT</td>
</tr>
<tr>
<td></td>
<td>• FNG_REPORT_DEFECT,</td>
</tr>
<tr>
<td></td>
<td>• FNG_DEFECT_REPORTED</td>
</tr>
<tr>
<td></td>
<td>• FNG_DEFECT_CLEARING</td>
</tr>
<tr>
<td>CCM</td>
<td>Information related to CCM</td>
</tr>
<tr>
<td>Current state</td>
<td>State of CCMs sent, which can be:</td>
</tr>
<tr>
<td></td>
<td>• CCI_IDLE</td>
</tr>
<tr>
<td></td>
<td>• CCI_WAITING</td>
</tr>
<tr>
<td>Interval</td>
<td>Interval to send CCM</td>
</tr>
<tr>
<td>SendCCM</td>
<td>Number of CCMs that have been sent by the MEPs</td>
</tr>
<tr>
<td>Loopback</td>
<td>Information related to Loopback</td>
</tr>
<tr>
<td>NextSeqNumber</td>
<td>Sequence number of the next LBM to be sent</td>
</tr>
<tr>
<td>SendLBR</td>
<td>Number of LBRs that have been sent</td>
</tr>
<tr>
<td>ReceiveInOrderLBR</td>
<td>Number of LBR messages received in correct sequence</td>
</tr>
<tr>
<td>ReceiveOutOrderLBR</td>
<td>Number of LBR messages received out of order</td>
</tr>
<tr>
<td>Linktrace</td>
<td>Information related to linktrace</td>
</tr>
<tr>
<td>NextSeqNumber</td>
<td>Sequence number of the next LTM to be sent</td>
</tr>
<tr>
<td>SendLTR</td>
<td>Number of LTRs sent</td>
</tr>
<tr>
<td>ReceiveLTM</td>
<td>Number of LTMs received</td>
</tr>
<tr>
<td>No CCM from some remote</td>
<td>Failure to receive CCMs from some remote MEPs (This information is</td>
</tr>
<tr>
<td>MEPs is received.</td>
<td>displayed only when some CCMs are lost.)</td>
</tr>
<tr>
<td>One or more streams of</td>
<td>Display the content of the last CCM when one or more error CCMs are</td>
</tr>
<tr>
<td>error CCMs is received.</td>
<td>received. (This information is displayed only when error CCM(s) is/are</td>
</tr>
<tr>
<td>The last-received CCM:</td>
<td>received.)</td>
</tr>
<tr>
<td>Maintenance domain</td>
<td>MD of the last error CCM message</td>
</tr>
<tr>
<td>Maintenance association</td>
<td>MA of the last error CCM message</td>
</tr>
<tr>
<td>MEP</td>
<td>ID of the MEP that sent the last error CCM message</td>
</tr>
<tr>
<td>Sequence Number</td>
<td>Sequence number of the last error CCM</td>
</tr>
<tr>
<td>MAC Address</td>
<td>MAC address of the peer that sent the error CCM message</td>
</tr>
<tr>
<td>Received Time</td>
<td>Time when the last error CCM is received</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>One or more streams of cross-connect CCMs is received. The last-received CCM:</td>
<td>Cross-connect CCMs are received, and the content of the last cross-connect CCM is displayed. (This information is displayed only when cross-connect CCM(s) is/are received.)</td>
</tr>
<tr>
<td>Some other MEPs are transmitting the RDI bit.</td>
<td>CCMs with RDI bits misplaced are received from other MEPs. (This information is displayed only when this type of CCM(s) is/are received.)</td>
</tr>
</tbody>
</table>

display cfd mp

Syntax

```
display cfd mp [ interface interface-type interface-number ]
```

View

Any view

Default level

1: Monitor level

Parameters

`interface interface-type interface-number`: Specifies a port by its type and number.

Description

Use the `display cfd mp` command to display the MP information.

Note that:

- If no port is specified, this command displays the MP information on all ports.
- The information displayed is sorted by port name primarily in the ascending VLAN ID order within the same port, and in the order of outward-facing MEPs (from low to high level), MIPs, and inward-facing MEPs (from high to low level) within the same VLAN.

Examples

```
# Display the MP information on all ports.
<Sysname> display cfd mp
Interface GigabitEthernet1/0/1 VLAN 100
MEP ID: 100 Level: 0 Service instance: 100 Direction: Outbound
Maintenance domain: mdtest0
Maintenance association: mainmd0

MEP ID: 105 Level: 5 Service instance: 105 Direction: Outbound
Maintenance domain: mdtest5
Maintenance association: mainmd5

MIP Level: 6 Service instance: 106
Maintenance domain: mdtest6
Maintenance association: mainmd6
```
MEP ID: 104 Level: 4 Service instance: 104 Direction: Inbound
Maintenance domain: mdtest4
Maintenance association: mainmd4

MEP ID: 102 Level: 2 Service instance: 102 Direction: Inbound
Maintenance domain: mdtest2
Maintenance association: mainmd2

Interface GigabitEthernet1/0/4 VLAN 1
MEP ID: 9 Level: 6 Service instance: 6 Direction: Outbound
Maintenance domain: mdtest6
Maintenance association: matest6

Table 6-10 display cfd mp command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface GigabitEthernet1/0/1 VLAN 100</td>
<td>MP configuration of the specified VLAN on the specified port</td>
</tr>
<tr>
<td>MEP ID</td>
<td>ID of the MEP</td>
</tr>
<tr>
<td>MIP</td>
<td>A MIP in the MP</td>
</tr>
<tr>
<td>Level</td>
<td>MD level that an MP belongs to</td>
</tr>
<tr>
<td>Service instance</td>
<td>Service instance to which the MP belongs</td>
</tr>
<tr>
<td>Direction</td>
<td>Direction of the MP</td>
</tr>
<tr>
<td>Maintenance domain</td>
<td>MD to which an MP belongs</td>
</tr>
<tr>
<td>Maintenance association</td>
<td>MA to which an MP belongs</td>
</tr>
</tbody>
</table>

display cfd remote-mep

Syntax

display cfd remote-mep service-instance instance-id mep mep-id

View

Any view

Default level

2: System level

Parameters

service-instance instance-id: Specifies the service instance ID, ranging from 1 to 32767.

mep mep-id: Specifies the ID of a MEP, ranging from 1 to 8191.

Description

Use the display cfd remote-mep command to display the information of the remote MEP.
Examples

Display the information of remote MEP 10 in service instance 4.

```bash
<Sysname> display cfd remote-mep service-instance 4 mep 10
```

<table>
<thead>
<tr>
<th>MEP ID</th>
<th>MAC Address</th>
<th>State</th>
<th>Time</th>
<th>MAC Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>00E0-FC00-6565</td>
<td>OK</td>
<td>2006/03/06 02:36:38</td>
<td>UP</td>
</tr>
<tr>
<td>30</td>
<td>00E0-FC27-6502</td>
<td>OK</td>
<td>2006/03/06 02:36:38</td>
<td>DOWN</td>
</tr>
<tr>
<td>40</td>
<td>00E0-FC00-6510</td>
<td>FAILED</td>
<td>2006/03/06 02:36:39</td>
<td>DOWN</td>
</tr>
<tr>
<td>50</td>
<td>00E0-FC52-BAA0</td>
<td>OK</td>
<td>2006/03/06 02:36:44</td>
<td>DOWN</td>
</tr>
<tr>
<td>60</td>
<td>0010-FC00-6502</td>
<td>OK</td>
<td>2006/03/06 02:36:42</td>
<td>DOWN</td>
</tr>
</tbody>
</table>

Table 6-11 display cfd remote-mep command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEP ID</td>
<td>ID of the remote MED</td>
</tr>
<tr>
<td>MAC Address</td>
<td>MAC address of the remote MEP device</td>
</tr>
<tr>
<td>State</td>
<td>Running state of MEP, either OK or FAILED</td>
</tr>
<tr>
<td>Time</td>
<td>Recent time of the remote MEP when it is FAILED or OK.</td>
</tr>
<tr>
<td>MAC Status</td>
<td>State of the port indicated by the last CCM received from the remote MEP, either UP or DOWN</td>
</tr>
</tbody>
</table>

display cfd service-instance

Syntax

```bash
display cfd service-instance [ instance-id ]
```

View

Any view

Default level

2: System level

Parameters

- `instance-id`: Service instance, ranging from 1 to 32767.

Description

Use the `display cfd service-instance` command to display the configuration information of service instance.

Without specifying the service instance ID, the command will display the configuration information of all service instances. With service instance ID specified, this command will display the configuration information of the specified service instance.

Examples

Display the service instance configuration information.

```bash
<Sysname> display cfd service-instance
default service instance(s) configured:
```
Service instance 5:
Maintenance domain: mdtest_5
Maintenance association: matest_5
Level: 5 VLAN: 5 MIP rule: None CCM interval: 1s

Service instance 6:
Maintenance domain: mdtest_6
Maintenance association: matest_6
Level: 6 VLAN: 6 MIP rule: None CCM interval: 1s

<Service> display cfd service-instance 7
Service instance 7:
Maintenance domain: mdtest_7
Maintenance association: matest_7
Level: 7 VLAN: 7 MIP rule: None CCM interval: 1s
MEP ID: 731 Interface: GigabitEthernet1/0/1 Direction: Inbound

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 service instance(s) are configured.</td>
<td>Number of service instance configured.</td>
</tr>
<tr>
<td>Service instance 5</td>
<td>Service instance ID</td>
</tr>
<tr>
<td>Maintenance domain</td>
<td>MD of the service instance</td>
</tr>
<tr>
<td>Maintenance association:</td>
<td>MA of the service instances</td>
</tr>
<tr>
<td>Level</td>
<td>MD level</td>
</tr>
<tr>
<td>VLAN</td>
<td>VLAN that the MA belongs to</td>
</tr>
<tr>
<td>MIP rule</td>
<td>MIP generation rules configured on service instance</td>
</tr>
<tr>
<td>CCM interval</td>
<td>Interval to send CCMs</td>
</tr>
<tr>
<td>MEP ID</td>
<td>ID of MEPs configured on the service instance</td>
</tr>
<tr>
<td>Interface</td>
<td>Interface of the MEP configured on the service instance</td>
</tr>
<tr>
<td>Direction</td>
<td>Direction of the MEPs configured on the service instance</td>
</tr>
</tbody>
</table>

display cfd status

Syntax

display cfd status

View

Any view

Default level

2: System level
Parameters

None

Description

Use the `display cfd status` command to display the status of CFD (enabled or disabled).

Examples

Display the status of CFD.

<Sysname> display cfd status

CFD is enabled.
Track Configuration Commands

display track

Syntax

display track { track-entry-number | all }

View

Any view

Default Level

1: Monitor level

Parameters

track-entry-number: Displays information about the specified Track object, in the range 1 to 1024.
all: Displays information about all the Track objects.

Description

Use the display track command to display Track object information.

Examples

Display information about all the Track objects.
<Sysname> display track all
Track ID: 1
Status: Positive
Reference Object:
 NQA Entry: admin test
 Reaction: 10

Table 7-1 display track command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track ID</td>
<td>ID of a Track object</td>
</tr>
<tr>
<td>Status</td>
<td>Status of a Track object:</td>
</tr>
<tr>
<td></td>
<td>● Positive: The Track object is normal.</td>
</tr>
<tr>
<td></td>
<td>● Invalid: The Track object is invalid.</td>
</tr>
<tr>
<td></td>
<td>● Negative: The Track object is abnormal.</td>
</tr>
<tr>
<td>Reference Object</td>
<td>The objects referenced by the Track object</td>
</tr>
</tbody>
</table>
Field | **Description**
--- | ---
NQA Entry | The NQA test group referenced by the Track object
Reaction | The Reaction entry referenced by the Track object

track nqa

Syntax

```
track track-entry-number nqa entry admin-name operation-tag reaction item-num
undo track track-entry-number
```

View

System view

Default Level

2: System level

Parameters

- `track-entry-number`: Track object ID, in the range 1 to 1024.
- `entry admin-name operation-tag`: Specifies the NQA test group to be associated with the Track object. `admin-name` is the name of the administrator creating the NQA operation, a string of 1 to 32 characters, case-insensitive. `operation-tag` is the NQA operation tag, a string of 1 to 32 characters, case-insensitive.
- `reaction item-num`: Specifies the Reaction entry to be associated with the Track object. `item-num` is the Reaction entry ID, in the range 1 to 10.

Description

Use the `track` command to create the Track object to be associated with the specified Reaction entry of the NQA test group.

Use the `undo track` command to remove the created Track object.

By default, no Track object is created.

Note that after a Track object is created, you cannot modify it using the `track` command.

Related commands: `nqa`, and `reaction` in NQA Commands in the System Volume.

Examples

```
# Create Track object 1 to associate it with Reaction entry 3 of the NQA test group (admin-test).
<Sysname> system-view
[Sysname] track 1 nqa entry admin test reaction 3
```
Table of Contents

1 Commands for Logging into an Ethernet Switch ... 1-1
 Commands for Logging into an Ethernet Switch .. 1-1
 activation-key ... 1-1
 authentication-mode ... 1-2
 auto-execute command ... 1-3
 command accounting ... 1-4
 command authorization .. 1-5
 databits ... 1-5
 display telnet client configuration ... 1-6
 display user-interface ... 1-7
 display users ... 1-8
 display web users ... 1-9
 escape-key .. 1-10
 flow-control .. 1-11
 free user-interface ... 1-12
 history-command max-size ... 1-13
 idle-timeout .. 1-13
 lock .. 1-14
 parity .. 1-15
 protocol inbound ... 1-16
 screen-length ... 1-16
 send .. 1-17
 set authentication password ... 1-18
 shell .. 1-19
 speed .. 1-20
 stopbits .. 1-20
 sysname .. 1-21
 telnet .. 1-22
 telnet ipv6 .. 1-23
 telnet client source ... 1-24
 telnet server enable ... 1-24
 terminal type .. 1-25
 user-interface ... 1-26
 user privilege level ... 1-26

2 Commands for Controlling Login Users ... 2-1
 Commands for Controlling Login Users ... 2-1
 acl .. 2-1
 free web-users ... 2-2

3 Basic System Configuration Commands ... 3-1
 Basic System Configuration Commands .. 3-1
 clock datetime .. 3-1
 clock summer-time one-off .. 3-1
 clock summer-time repeating .. 3-3
clock timezone
command-alias enable
command-alias mapping
command-privilege level
copyright-info enable
display clipboard
display clock
display command-alias
display current-configuration
display default-configuration
display diagnostic-information
display history-command
display hotkey
display this
display version
header
hotkey
quit
return
screen-length disable
super
super password
sysname
system-view

4 Device Management Commands

Device Management Commands

4-1

boot-loader file
bootrom
bootrom-update security-check enable
display boot-loader
display cpu-usage
display cpu-usage history
display device
display device manuinfo
display environment
display fan
display memory
display power
display reboot-type
display rps
display schedule job
display schedule reboot
display system-failure
display transceiver alarm
display transceiver diagnosis
display transceiver
display transceiver manuinfo
reboot
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>reset unused porttag</td>
<td>4-25</td>
</tr>
<tr>
<td>schedule job</td>
<td>4-26</td>
</tr>
<tr>
<td>schedule reboot at</td>
<td>4-27</td>
</tr>
<tr>
<td>schedule reboot delay</td>
<td>4-29</td>
</tr>
<tr>
<td>shutdown-interval</td>
<td>4-30</td>
</tr>
<tr>
<td>startup bootrom-access enable</td>
<td>4-31</td>
</tr>
<tr>
<td>system-failure</td>
<td>4-32</td>
</tr>
<tr>
<td>5 File System Management Commands</td>
<td>5-1</td>
</tr>
<tr>
<td>File System Configuration Commands</td>
<td>5-1</td>
</tr>
<tr>
<td>cd</td>
<td>5-1</td>
</tr>
<tr>
<td>copy</td>
<td>5-2</td>
</tr>
<tr>
<td>delete</td>
<td>5-3</td>
</tr>
<tr>
<td>dir</td>
<td>5-4</td>
</tr>
<tr>
<td>execute</td>
<td>5-5</td>
</tr>
<tr>
<td>file prompt</td>
<td>5-6</td>
</tr>
<tr>
<td>fixdisk</td>
<td>5-7</td>
</tr>
<tr>
<td>format</td>
<td>5-7</td>
</tr>
<tr>
<td>mkdir</td>
<td>5-8</td>
</tr>
<tr>
<td>more</td>
<td>5-9</td>
</tr>
<tr>
<td>move</td>
<td>5-10</td>
</tr>
<tr>
<td>pwd</td>
<td>5-10</td>
</tr>
<tr>
<td>rename</td>
<td>5-11</td>
</tr>
<tr>
<td>reset recycle-bin</td>
<td>5-11</td>
</tr>
<tr>
<td>rmdir</td>
<td>5-14</td>
</tr>
<tr>
<td>undelete</td>
<td>5-14</td>
</tr>
<tr>
<td>Configuration File Management Commands</td>
<td>5-15</td>
</tr>
<tr>
<td>archive configuration</td>
<td>5-15</td>
</tr>
<tr>
<td>archive configuration interval</td>
<td>5-16</td>
</tr>
<tr>
<td>archive configuration location</td>
<td>5-17</td>
</tr>
<tr>
<td>archive configuration max</td>
<td>5-18</td>
</tr>
<tr>
<td>backup startup-configuration</td>
<td>5-19</td>
</tr>
<tr>
<td>configuration replace file</td>
<td>5-20</td>
</tr>
<tr>
<td>display archive configuration</td>
<td>5-20</td>
</tr>
<tr>
<td>display saved-configuration</td>
<td>5-21</td>
</tr>
<tr>
<td>display startup</td>
<td>5-23</td>
</tr>
<tr>
<td>reset saved-configuration</td>
<td>5-24</td>
</tr>
<tr>
<td>restore startup-configuration</td>
<td>5-25</td>
</tr>
<tr>
<td>save</td>
<td>5-26</td>
</tr>
<tr>
<td>slave auto-update config</td>
<td>5-28</td>
</tr>
<tr>
<td>startup saved-configuration</td>
<td>5-29</td>
</tr>
<tr>
<td>6 FTP Configuration Commands</td>
<td>6-1</td>
</tr>
<tr>
<td>FTP Server Configuration Commands</td>
<td>6-1</td>
</tr>
<tr>
<td>display ftp-server</td>
<td>6-1</td>
</tr>
<tr>
<td>display ftp-user</td>
<td>6-2</td>
</tr>
<tr>
<td>free ftp user</td>
<td>6-3</td>
</tr>
<tr>
<td>ftp server acl</td>
<td>6-3</td>
</tr>
<tr>
<td>ftp server enable</td>
<td>6-4</td>
</tr>
</tbody>
</table>
ftp timeout ... 6-4
ftp update ... 6-5
FTP Client Configuration Commands 6-6
ascii ... 6-6
binary ... 6-7
bye ... 6-7
cd ... 6-8
cdup ... 6-8
close ... 6-9
display ftp client configuration .. 6-13
disconnect ... 6-13
display ftp client configuration .. 6-13
ftp ... 6-14
ftp client source .. 6-15
ftp ipv6 ... 6-16
get ... 6-17
lcd ... 6-18
ls ... 6-18
mkdir ... 6-20
open ... 6-20
open ipv6 ... 6-21
put ... 6-22
pwd ... 6-23
quit ... 6-24
remotehelp ... 6-24
rmdir ... 6-24
user ... 6-27
verbose ... 6-28

7 TFTP Configuration Commands ... 7-1
TFTP Client Configuration Commands 7-1
display tftp client configuration 7-1
tftp-server acl .. 7-1
tftp ... 7-2
tftp client source .. 7-4
tftp ipv6 ... 7-5

8 HTTP Configuration Commands ... 8-1
HTTP Configuration Commands ... 8-1
display ip http ... 8-1
ip http acl .. 8-2
ip http enable .. 8-2
ip http port .. 8-3

9 HTTPS Configuration Commands ... 9-1
HTTPS Configuration Commands ... 9-1
display ip https ... 9-1
ip https acl ... 9-2
ip https certificate access-control-policy .. 9-2
ip https enable ... 9-3
ip https port ... 9-4
ip https ssl-server-policy ... 9-4

10 SNMP Configuration Commands .. 10-1
SNMP Configuration Commands .. 10-1
display snmp-agent community .. 10-1
display snmp-agent group .. 10-2
display snmp-agent local-engineid .. 10-3
display snmp-agent mib-view .. 10-4
display snmp-agent statistics ... 10-5
display snmp-agent sys-info ... 10-7
display snmp-agent trap queue ... 10-8
display snmp-agent trap-list ... 10-8
display snmp-agent usm-user .. 10-9
enable snmp trap updown .. 10-10
snmp-agent ... 10-11
snmp-agent calculate-password .. 10-12
snmp-agent community .. 10-13
snmp-agent group ... 10-15
snmp-agent local-engineid .. 10-16
snmp-agent log ... 10-17
snmp-agent mib-view .. 10-17
snmp-agent packet max-size ... 10-18
snmp-agent sys-info .. 10-19
snmp-agent target-host .. 10-20
snmp-agent trap enable .. 10-22
snmp-agent trap if-mib link extended 10-23
snmp-agent trap life .. 10-23
snmp-agent trap queue-size ... 10-24
snmp-agent trap source .. 10-24
snmp-agent usm-user { v1 | v2c } .. 10-26
snmp-agent usm-user v3 .. 10-27

11 MIB Configuration Commands ... 11-1
MIB Configuration Commands .. 11-1
display mib-style ... 11-1
mib-style ... 11-1

12 RMON Configuration Commands .. 12-1
RMON Configuration Commands .. 12-1
display rmon alarm ... 12-1
display rmon event ... 12-2
display rmon eventlog .. 12-3
display rmon history .. 12-4
display rmon prialarm .. 12-7
display rmon statistics .. 12-8
rmon alarm ... 12-10
20 Cluster Management Configuration Commands

NDP Configuration Commands

display ndp ... 20-1
ndp enable ... 20-4
ndp timer aging 20-5
ndp timer hello .. 20-6
reset ndp statistics 20-6

19 NTP Configuration Commands

NTP Configuration Commands

display ntp-service sessions 19-1
display ntp-service status 19-3
display ntp-service trace 19-4
ntp-service access 19-5
ntp-service authentication enable 19-6
ntp-service authentication-keyid 19-7
ntp-service broadcast-client 19-8
ntp-service broadcast-server 19-8
ntp-service in-interface disable 19-9
ntp-service max-dynamic-sessions 19-9
ntp-service multicast-client 19-10
ntp-service multicast-server 19-11
ntp-service reliable authentication-keyid 19-12
ntp-service source-interface 19-12
ntp-service unicast-peer 19-13
ntp-service unicast-server 19-14

18 NQA Server Configuration Commands

NQA Server Configuration Commands

display ntp-service trace 19-4
display ntp-service status 19-3
timeout ntp-service unicast-server 19-13
ntp-service unicast-peer 19-12
ntp-service multicast-server 19-11
ntp-service reliable authentication-keyid 19-12
ntp-service source-interface 19-12
ntp-service unicast-peer 19-13
ntp-service unicast-server 19-14

19 NTP Configuration Commands

NTP Configuration Commands

display ntp-service sessions 19-1
display ntp-service status 19-3
display ntp-service trace 19-4
ntp-service access 19-5
ntp-service authentication enable 19-6
ntp-service authentication-keyid 19-7
ntp-service broadcast-client 19-8
ntp-service broadcast-server 19-8
ntp-service in-interface disable 19-9
ntp-service max-dynamic-sessions 19-9
ntp-service multicast-client 19-10
ntp-service multicast-server 19-11
ntp-service reliable authentication-keyid 19-12
ntp-service source-interface 19-12
ntp-service unicast-peer 19-13
ntp-service unicast-server 19-14

20 Cluster Management Configuration Commands

NDP Configuration Commands

display ndp ... 20-1
ndp enable ... 20-4
ndp timer aging 20-5
ndp timer hello .. 20-6
reset ndp statistics 20-6
NTDP Configuration Commands

display ntpd

display ntpd device-list

display ntpd single-device mac-address

ntdp enable

ntdp explore

ntdp hop

ntdp timer

ntdp timer hop-delay

ntdp timer port-delay

Cluster Configuration Commands

add-member

administrator-address

auto-build

black-list add-mac

black-list delete-mac

build

cluster

cluster enable

cluster switch-to

cluster-local-user

cluster-mac

cluster-mac syn-interval

cluster-snmp-agent community

cluster-snmp-agent group v3

cluster-snmp-agent mib-view included

cluster-snmp-agent usm-user v3

delete-member

display cluster

display cluster base-topology

display cluster black-list

display cluster candidates

display cluster current-topology

display cluster members

ftp-server

holdtime

ip-pool

logging-host

management-vlan

management-vlan synchronization enable

nm-interface vlan-interface

reboot member

snmp-host

tftp-server

timer

topology accept

topology restore-from

topology save-to
21 IRF Configuration Commands

IRF Configuration Commands

display irf ... 21-1
display irf configuration... 21-2
display irf topology.. 21-3
display switchover state.. 21-5
if auto-update enable.. 21-6
irf link-delay ... 21-7
irf mac-address persistent 21-8
irf member irf-port .. 21-8
irf member priority .. 21-10
irf member renumber ... 21-11
irf switch-to .. 21-12

22 IPC Configuration Commands

IPC Configuration Commands 22-1
display ipc channel ... 22-1
display ipc link .. 22-2
display ipc multicast-group 22-3
display ipc node ... 22-4
display ipc packet ... 22-4
display ipc performance ... 22-5
display ipc queue .. 22-7
ipc performance enable .. 22-8
reset ipc performance ... 22-9

23 PoE Configuration Commands

PoE Configuration Commands 23-1
apply poe-profile ... 23-1
apply poe-profile interface 23-2
display poe device ... 23-2
display poe interface .. 23-3
display poe interface power 23-6
display poe pse ... 23-8
display poe pse interface ... 23-9
display poe pse interface power 23-10
display poe-profile .. 23-11
display poe-profile interface 23-14
poe disconnect ... 23-15
poe enable ... 23-15
poe legacy enable .. 23-16
poe max-power .. 23-17
poe mode ... 23-17
poe pd-description .. 23-18
poe pd-policy priority .. 23-19
poe priority ... 23-19
poe update ... 23-20
poe utilization-threshold ... 23-21
poe-profile ... 23-22
Commands for Logging into an Ethernet Switch

activation-key

Syntax

activation-key character
undo activation-key

View

AUX interface view

Default Level

3: Manage level

Parameters

character: Shortcut key for starting terminal sessions, a character or its ASCII decimal equivalent in the range 0 to 127; or a string of 1 to 3 characters.

Description

Use the activation-key command to define a shortcut key for starting a terminal session.

Use the undo activation-key command to restore the default shortcut key.

You can use a single character (or its corresponding ASCII code value in the range 0 to 127) or a string of 1 to 3 characters to define a shortcut key. In the latter case, the system takes only the first character to define the shortcut key. For example, if you input an ASCII code value 97, the system will set the shortcut key to <a>; if you input the string b@c, the system will set the shortcut key to .

You may use the display current-configuration command to verify the shortcut key you have defined.

By default, pressing Enter key will start a terminal session.

Examples

Set the shortcut key for starting terminal sessions to <s>.
<Sysname> system-view
System View: return to User View with Ctrl+Z.
[Sysname] user-interface aux 0
[Sysname-ui-aux0] activation-key s

To verify the configuration, do the following:

Exit the terminal session on the aux port, and enter <s> at the prompt of “Please press ENTER”. You will see the terminal session being started.

[Sysname-ui-aux0] return
authentication-mode

Syntax

```
authentication-mode { none | password | scheme }
```

View

User interface view

Default Level

3: Manage level

Parameters

- **none**: Does not authenticate users.
- **password**: Authenticates users using the local password.
- **scheme**: Authenticates users locally or remotely using usernames and passwords.

Description

Use the `authentication-mode` command to specify the authentication mode.

- If you specify the **password** keyword to authenticate users using the local password, remember to set the local password using the `set authentication password { cipher | simple } password` command.
- If you specify the **scheme** keyword to authenticate users locally or remotely using usernames and passwords, the actual authentication mode depends on other related configuration. Refer to the AAA-RADIUS-HWTACACS module of this manual for more.

After you specify to perform local password authentication, when a user logs in through the Console port, a user can log into the switch even if the password is not configured on the switch. But for a VTY user interface, a password is needed for a user to log into the switch through it under the same condition.
By default, users logging in through the Console port are not authenticated.

⚠️ Caution

For VTY user interface, if you want to set the login authentication mode to none or password, you must first verify that the SSH protocol is not supported by the user interface. Otherwise, your configuration will fail. Refer to protocol inbound.

Examples

Configure to authenticate users using the local password.

```
<Sysname> system-view
System View: return to User View with Ctrl+Z.
<Sysname> user-interface aux 0
<Sysname-ui-aux0> authentication-mode password
```

auto-execute command

Syntax

```
auto-execute command text
undo auto-execute command
```

View

User interface view

Default Level

3: Manage level

Parameters

```
text: Command to be executed automatically.
```

Description

Use the auto-execute command command to set the command that is executed automatically after a user logs in.

Use the undo auto-execute command command to disable the specified command from being automatically executed.

Use these two commands in the VTY user interface only.

Normally, the telnet command is specified to be executed automatically to enable the user to Telnet to a specific network device automatically.

By default, no command is automatically executed.
Caution

- The **auto-execute command** command may cause you unable to perform common configuration in the user interface, so use it with caution.
- Before executing the **auto-execute command** command and save your configuration, make sure you can log into the switch in other modes and cancel the configuration.

Examples

```plaintext
# Configure the telnet 10.110.100.1 command to be executed automatically after users log into VTY 0.
<Sysname> system-view
System View: return to User View with Ctrl+Z.
<Sysname> user-interface vty 0
<Sysname-ui-vty0] auto-execute command telnet 10.110.100.1
% This action will lead to configuration failure through ui-vty0. Are you sure? [Y/N] y

After the above configuration, when a user logs onto the device through VTY 0, the device automatically executes the configured command and logs off the current user.
```

command accounting

Syntax

```
command accounting
undo command accounting
```

View

User interface view

Default Level

3: Manage level

Parameters

None

Description

Use the **command accounting** command to enable command accounting. Use the **undo command accounting** command to restore the default.

By default, command accounting is disabled, that is, the accounting server does not record the commands that the users executed.

If command accounting is enabled, every executed command will be recorded on the HWTACACS server.

If both command accounting and command authorization are enabled, only the authorized and executed commands will be recorded on the HWTACACS server.
Examples

Enable command accounting for VTY 0. Then the HWTACACS server records the commands executed by the users logging in from VTY 0.

<Sysname> system-view
[Sysname] user-interface vty 0
[Sysname-ui-vty0] command accounting

command authorization

Syntax

command authorization
undo command authorization

View

User interface view

Default Level

3: Manage level

Parameters

None

Description

Use the command authorization command to enable command authorization.

Use the undo command authorization command to restore the default.

By default, command authorization is disabled, that is, logged-in users can execute commands without authorization.

With command authorization enabled, users logging in from the current user interface can perform commands authorized by the server.

Examples

Enable command accounting for VTY 0. Then users logging in through VTY 0 can perform the commands authorized by the HWTACACS server only.

<Sysname> system-view
[Sysname] user-interface vty 0
[Sysname-ui-vty0] command authorization

databits

Syntax

databits { 5 | 6 | 7 | 8 }
undo databits

View

AUX interface view
Default Level

2: System level

Parameters

5: Five data bits.
6: Six data bits.
7: Seven data bits.
8: Eight data bits.

Description

Use the `databits` command to set the databits for the user interface.

Use the `undo databits` command to revert to the default data bits.

The default data bits is 8.

Note

3COM switch 4210G only support data bits 7 and 8. To establish the connection again, you need to modify the configuration of the termination emulation utility running on your PC accordingly.

Examples

```
# Set the data bits to 7.

<Sysname> system-view
System View: return to User View with Ctrl+Z.
<Sysname> user-interface aux 0
<Sysname-ui-aux0> databits 7
```

display telnet client configuration

Syntax

```
display telnet client configuration
```

View

Any view

Default Level

1: Monitor level

Parameter

None
Description

Use the **display telnet client configuration** command to display the source IP address or source interface configured for the current device.

Example

```bash
# Display the source IP address or source interface configured for the current device.
<Sysname> display telnet client configuration
The source IP address is 1.1.1.1.
```

display user-interface

Syntax

```
display user-interface [ type number | number ] [ summary ]
```

View

Any view

Default Level

1: Monitor level

Parameters

type: User interface type.

number: Absolute or relative index of the user interface. This argument can be an absolute user interface index (if you do not provide the **type** argument) or a relative user interface index (if you provide the **type** argument).

summary: Displays the summary information about a user interface.

Description

Use the **display user-interface** command to view information about the specified or all user interfaces.

When the **summary** keyword is absent, the command will display the type of the user interface, the absolute or relative number, the speed, the user privilege level, the authentication mode and the physical location.

When the **summary** keyword is present, the command will display all the number and type of user interfaces under use and without use.

Examples

```bash
# Display the information about user interface 0.
<Sysname> display user-interface 0
Idx Type   Tx/Rx  Modem Privi Auth Int
   F   0    AUX 0    19200      -      3      N      -
+    : Current user-interface is active.
F    : Current user-interface is active and work in async mode.
Idx  : Absolute index of user-interface.
Type : Type and relative index of user-interface.
```
Privi: The privilege of user-interface.
Auth: The authentication mode of user-interface.
Int: The physical location of UIs.
A: Authenticate use AAA.
L: Authentication use local database.
N: Current UI need not authentication.
P: Authenticate use current UI's password.

Table 1-1 Descriptions on the fields of the display user-interface command

<table>
<thead>
<tr>
<th>Filed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>The information displayed is about the current user interface.</td>
</tr>
<tr>
<td>F</td>
<td>The information displayed is about the current user interface. And the current user interface operates in asynchronous mode.</td>
</tr>
<tr>
<td>Idx</td>
<td>The absolute index of the user interface</td>
</tr>
<tr>
<td>Type</td>
<td>User interface type and the relative index</td>
</tr>
<tr>
<td>Tx/Rx</td>
<td>Transmission speed of the user interface</td>
</tr>
<tr>
<td>Modem</td>
<td>Indicates whether or not a modem is used.</td>
</tr>
<tr>
<td>Privi</td>
<td>The available command level</td>
</tr>
<tr>
<td>Auth</td>
<td>The authentication mode</td>
</tr>
<tr>
<td>Int</td>
<td>The physical position of the user interface</td>
</tr>
</tbody>
</table>

display users

Syntax

display users [all]

View

Any view

Default Level

1: Monitor level

Parameters

all: Displays the information about all user interfaces.

Description

Use the display users command to display the information about user interfaces. If you do not specify the all keyword, only the information about the current user interface is displayed.

Examples

Display the information about the current user interface.
<Sysname> display users
The user application information of the user interface(s):
Idx UI Delay Type Userlevel
Following are more details.

VTY 0:
Location: 192.168.0.123

VTY 1:
Location: 192.168.0.43

VTY 2:
Location: 192.168.0.2

VTY 3:
User name: user
Location: 192.168.0.33

+: Current operation user.

F: Current operation user work in async mode.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>The information displayed is about the current user interface.</td>
</tr>
<tr>
<td>F</td>
<td>The information is about the current user interface, and the current user interface operates in asynchronous mode.</td>
</tr>
<tr>
<td>UI</td>
<td>The numbers in the left sub-column are the absolute user interface indexes, and those in the right sub-column are the relative user interface indexes.</td>
</tr>
<tr>
<td>Delay</td>
<td>The period in seconds the user interface idles for.</td>
</tr>
<tr>
<td>Type</td>
<td>User type</td>
</tr>
<tr>
<td>Userlevel</td>
<td>The level of the commands available to the users logging into the user interface</td>
</tr>
<tr>
<td>Location</td>
<td>The IP address form which the user logs in.</td>
</tr>
<tr>
<td>User name</td>
<td>The login name of the user that logs into the user interface.</td>
</tr>
</tbody>
</table>

display web users

Syntax

```
display web users
```

View

Any view

Parameter

None

Description

Use the `display web users` command to display information about web users.
Display information about the current web users.

```bash
<Sysname> display web users
UserID Name  Language   Level  State  LinkCount LoginTime LastTime
ab820000 admin Chinese   Management Enable 0         08:41:50  08:45:59
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UserID</td>
<td>ID of a web user</td>
</tr>
<tr>
<td>Name</td>
<td>Name of the web user</td>
</tr>
<tr>
<td>Language</td>
<td>Login language used by the web user</td>
</tr>
<tr>
<td>Level</td>
<td>Level of the web user</td>
</tr>
<tr>
<td>State</td>
<td>State of the web user</td>
</tr>
<tr>
<td>LinkCount</td>
<td>Number of tasks that the web user runs</td>
</tr>
<tr>
<td>LoginTime</td>
<td>Time when the web user logged in</td>
</tr>
<tr>
<td>LastTime</td>
<td>Last time when the web user accessed the switch</td>
</tr>
</tbody>
</table>

escape-key

Syntax

```text
escape-key { default | character }
undo escape-key
```

View

User interface view

Default Level

3: Manage level

Parameters

- `default`: Restores the default escape key combination `<Ctrl + C>`.
- `character`: Specifies the shortcut key for aborting a task, a single character (or its corresponding ASCII code value in the range 0 to 127) or a string of 1 to 3 characters.

Description

Use the `escape-key` command to define a shortcut key for aborting tasks.

Use the `undo escape-key` command to restore the default shortcut key.

You can use a single character (or its corresponding ASCII code value in the range 0 to 127) or a string of 1 to 3 characters to define a shortcut key. But in fact, only the first character functions as the shortcut key. For example, if you enter an ASCII value 113, the system will use its corresponding character `<q>` as the shortcut key; if you input the string `q@c`, the system will use the first letter `<q>` as the shortcut key.
By default, you can use <Ctrl + C> to terminate a task. You can use the display current-configuration command to verify the shortcut key you have defined.

Examples

Define <Q> as the escape key.
<Sysname> system-view
System View: return to User View with Ctrl+Z.
[Sysname] user-interface aux 0
[Sysname-ui-aux0] escape-key Q

To verify the configuration, do the following:

Run the ping command to test the connection.
<Sysname> ping –c 20 125.241.23.46
PING 125.241.23.46: 56 data bytes, press Q to break
 Request time out

--- 125.241.23.46 ping statistics ---
 2 packet(s) transmitted
 0 packet(s) received
 100.00% packet loss

Enter <Q>, if the ping task is terminated and return to the current view, the configuration is correct.

<Sysname>

flow-control

Syntax

flow-control { hardware | none | software }
undo flow-control

View

AUX interface view

Default Level

2: System level

Parameters

hardware: Configures to perform hardware flow control.
none: Configures no flow control.
software: Configures to perform software flow control.

Description

Using flow-control command, you can configure the flow control mode on AUX port. Using undo flow-control command, you can restore the default flow control mode.

By default, the value is none. That is, no flow control will be performed.
Switch 4210G only support **none** keyword.

Examples

Configure software flow control on AUX port.

```
<Sysname> system-view
System View: return to User View with Ctrl+Z.
<Sysname> user-interface aux 0
<Sysname-ui-aux0> flow-control none
```

free user-interface

Syntax

```
free user-interface [ type ] number
```

View

User view

Default Level

3: Manage level

Parameters

- `type`: User interface type.
- `number`: Absolute user interface index or relative user interface index.
 - Relative user interface index: If you provide the `type` argument, `number` indicates the user interface index of the type. When the type is AUX, the `number` is 0; when the type is VTY, the `number` ranges from 0 to 4.
 - Absolute user interface index: If you do not provide the `type` argument, `number` indicates absolute user interface index, which ranges from 0 to 5.

Description

Use the `free user-interface` command to clear a specified user interface. If you execute this command, the corresponding user interface will be disconnected.

Note that the current user interface can not be cleared.

Examples

Log into user interface 0 and clear user interface 1.

```
<Sysname> free user-interface 1
Are you sure to free user-interface vty0
[Y/N]y
[OK]
```

After you execute this command, user interface 1 will be disconnected. The user in it must log in again to connect to the switch.
history-command max-size

Syntax

```
history-command max-size value
undo history-command max-size
```

View

User interface view

Default Level

2: System level

Parameters

`value`: Size of the history command buffer. This argument ranges from 0 to 256 and defaults to 10. That is, the history command buffer can store 10 commands by default.

Description

Use the `history-command max-size` command to set the size of the history command buffer.
Use the `undo history-command max-size` command to revert to the default history command buffer size.

Examples

```
# Set the size of the history command buffer to 20 to enable it to store up to 20 commands.
<Sysname> system-view
System View: return to User View with Ctrl+Z.
[Sysname] user-interface aux 0
[Sysname-ui-aux0] history-command max-size 20
```

idle-timeout

Syntax

```
idle-timeout minutes [ seconds ]
undo idle-timeout
```

View

User interface view

Default Level

2: System level

Parameters

`minutes`: Number of minutes. This argument ranges from 0 to 35,791.

`seconds`: Number of seconds. This argument ranges from 0 to 59.
Description

Use the idle-timeout command to set the timeout time. The connection to a user interface is terminated if no operation is performed in the user interface within the specified period.

Use the undo idle-timeout command to revert to the default timeout time.

You can use the idle-timeout 0 command to disable the timeout function.

The default timeout time is 10 minutes.

Examples

Set the timeout time of AUX 0 to 1 minute.
<Sysname> system-view
System View: return to User View with Ctrl+Z.
[Sysname] user-interface aux 0
[Sysname-ui-aux0] idle-timeout 1 0

lock

Syntax

lock

View

User view

Default Level

3: Manage level

Parameters

None

Description

Use the lock command to lock the current user interface to prevent unauthorized users from operating the user interface.

With the execution of this command, the system prompts to enter and confirm the password (up to 16 characters), and then locks the user interface.

To cancel the lock, press the Enter key and enter the correct password.

By default, the system will not lock the current user interface automatically.

Examples

Lock the current user interface.
<Sysname> lock
Please input password<1 to 16> to lock current user terminal interface:
Password:
Again:

locked !
parity

Syntax

parity { even | mark | none | odd | space }
undo parity

View

AUX interface view

Default Level

2: System level

Parameters

even: Performs even checks.
mark: Performs mark checks.
none: Does not check.
odd: Performs odd checks.
space: Performs space checks.

Description

Use the parity command to set the check mode of the user interface.
Use the undo parity command to revert to the default check mode.
No check is performed by default.

Note

3COM switch 4210G support the even, none, and odd check modes only. To establish the connection again, you need to modify the configuration of the termination emulation utility running on your PC accordingly.

Examples

Set to perform mark checks.
<Sysname> system-view
System View: return to User View with Ctrl+Z.
[Sysname] user-interface aux 0
[Sysname-ui-aux0] parity mark
protocol inbound

Syntax

```plaintext
protocol inbound { all | ssh | telnet }
```

View

VTY interface view

Default Level

3: Manage level

Parameters

- `all`: Supports both Telnet protocol and SSH protocol.
- `ssh`: Supports SSH protocol.
- `telnet`: Supports Telnet protocol.

Description

Use the `protocol inbound` command to configure the user interface to support specified protocols. Both Telnet and SSH protocols are supported by default.

Related command: `user-interface vty`.

Caution

If you want to configure the user interface to support SSH, to ensure a successful login, you must first configure the authentication mode to `scheme` on the user interface. If you set the authentication mode to `password` or `none`, the `protocol inbound ssh` command will fail. Refer to `authentication-mode`.

Examples

```
# Configure VTY 0 to support only SSH protocol.
<Sysname> system-view
System View: return to User View with Ctrl+Z.
<Sysname> user-interface vty 0
<Sysname-ui-vty0> protocol inbound ssh
```

screen-length

Syntax

```plaintext
screen-length screen-length
undo screen-length
```

View

User interface view
Default Level

2: System level

Parameters

`screen-length`: Number of lines the screen can contain. This argument ranges from 0 to 512 and defaults to 24.

Description

Use the `screen-length` command to set the number of lines the terminal screen can contain.

Use the `undo screen-length` command to revert to the default number of lines.

You can use the `screen-length 0` command to disable the function to display information in pages.

Examples

```
# Set the number of lines the terminal screen can contain to 20.
<Sysname> system-view
System View: return to User View with Ctrl+Z.
<Sysname> user-interface aux 0
<Sysname-ui-aux0> screen-length 20
```

send

Syntax

```
send { all | number | type number }
```

View

User view

Default Level

1: Monitor level

Parameters

`all`: Specifies to send messages to all user interfaces.

`type`: User interface type.

`number`: Absolute user interface index or relative user interface index.

- Relative user interface index: If you provide the `type` argument, the `number` argument indicates the user interface index of the type. When the type is AUX, `number` is from 0 to 3; when the type is VTY, `number` ranges from 0 to 4.
- Absolute user interface index: If you do not provide the `type` argument, the `number` argument indicates the absolute user interface index, and ranges from 0 to 13.

Description

Use the `send` command to send messages to a specified user interface or all user interfaces.

Examples

```
# Send messages to all user interfaces.
```
set authentication password

Syntax

```
set authentication password { cipher | simple } password
undo set authentication password
```

View

User interface view

Default Level

3: Manage level

Parameters

- `cipher`: Specifies to display the local password in encrypted text when you display the current configuration.
- `simple`: Specifies to display the local password in plain text when you display the current configuration.
- `password`: Password. The password must be in plain text if you specify the `simple` keyword in the `set authentication password` command. If you specify the `cipher` keyword, the password can be in either encrypted text or plain text. Whether the password is in encrypted text or plain text depends on the password string entered. Strings containing up to 16 characters (such as 123) are regarded as plain text passwords and are converted to the corresponding 24-character encrypted password (such as !TP<^EMUHL,408`W7TH!Q!!). A encrypted password must contain 24 characters and must be in ciphered text (such as !TP<^EMUHL,408`W7TH!Q!!).

Description

Use the `set authentication password` command to set the local password.

Use the `undo set authentication password` command to remove the local password.

Note that only plain text passwords are expected when users are authenticated.
By default, Telnet users need to provide their passwords to log in. If no password is set, the “Login password has not been set!” message appears on the terminal when users log in.

Examples

Set the local password of VTY 0 to “123”.

```plaintext
<Sysname> system-view
System View: return to User View with Ctrl+Z.
<Sysname> user-interface vty 0
<Sysname-ui-vty0] set authentication password simple 123
```

shell

Syntax

```
shell
undo shell
```

View

User interface view

Default Level

3: Manage level

Parameters

None

Description

Use the `shell` command to make terminal services available for the user interface.

Use the `undo shell` command to make terminal services unavailable to the user interface.

By default, terminal services are available in all user interfaces.

Note the following when using the `undo shell` command:

- This command is available in all user interfaces except the AUX user interface, because the AUX port (also the Console) is exclusively used for configuring the switch.
- This command is unavailable in the current user interface.
- This command prompts for confirmation when being executed in any valid user interface.

Examples

Log into user interface 0 and make terminal services unavailable in VTY 0 through VTY 4.

```
<Sysname> system-view
System View: return to User View with Ctrl+Z.
<Sysname> user-interface vty 0 4
<Sysname-ui-vty0-4] undo shell
```
speed

Syntax

 speed speed-value
 undo speed

View

 AUX interface view

Default Level

 2: System level

Parameters

 speed-value: Transmission speed (in bps). This argument can be 300, 600, 1200, 2400, 4800, 9600, 19,200, 38,400, 57,600, 115,200 and defaults to 19,200.

Description

 Use the **speed** command to set the transmission speed of the user interface.
 Use the **undo speed** command to revert to the default transmission speed.

Note

After you use the **speed** command to configure the transmission speed of the AUX user interface, you must change the corresponding configuration of the terminal emulation program running on the PC, to keep the configuration consistent with that on the switch.

Examples

 # Set the transmission speed of the AUX user interface to 9600 bps.
 <Sysname> system-view
 System View: return to User View with Ctrl+Z.
 [Sysname] user-interface aux 0
 [Sysname-ui-aux0] speed 9600

stopbits

Syntax

 stopbits { 1 | 1.5 | 2 }
 undo stopbits

View

 AUX interface view
Default Level

2: System level

Parameters

1: Sets the stop bits to 1.
1.5: Sets the stop bits to 1.5.
2: Sets the stop bits to 2.

Description

Use the `stopbits` command to set the stop bits of the user interface.

Use the `undo stopbits` command to revert to the default stop bits.

By default, the stop bits is 1.

Note

- The switch 4210G do not support communication with a terminal emulation program with stopbits set to 1.5.
- Changing the stop bits value of the switch to a value different from that of the terminal emulation utility does not affect the communication between them.

Examples

Set the stop bits to 2.

```plaintext
<Sysname> system-view
System View: return to User View with Ctrl+Z.
[Sysname] user-interface aux 0
[Sysname-ui-aux0] stopbits 2
```

sysname

Syntax

```
sysname string
undo sysname
```

View

System view

Default Level

2: System level

Parameters

string: System name of the switch. This argument can contain 1 to 30 characters and defaults to 4210G.
Description

Use the **sysname** command to set a system name for the switch.

Use the **undo sysname** command to revert to the default system name.

The CLI prompt reflects the system name of a switch. For example, if the system name of a switch is “4210G”, then the prompt of user view is `<4210G>`.

Examples

```
# Set the system name of the switch to ABC.
<Sysname> system-view
System View: return to User View with Ctrl+Z.
[Sysname] sysname ABC
[ABC]
```

telnet

Syntax

```
telnet remote-system [ port-number ] [ source { ip ip-address | interface interface-type interface-number } ]
```

View

User view

Default Level

0: Visit level

Parameters

- **remote-system**: IP address or host name of the remote system. The host name is a string of 1 to 20 characters, which can be specified using the **ip host** command.
- **port-number**: TCP port number assigned to Telnet service on the remote system, in the range 0 to 65535.
- **ip-address**: Source IP address of the packets sent by the Telnet client.
- **interface-type interface-number**: Type and number of the interface through which the Telnet client sends packets.

Description

Use the **telnet** command to Telnet to another switch from the current switch to manage the former remotely. You can terminate a Telnet connection by pressing `<Ctrl + K>`.

Related commands: **display tcp status**, **ip host**.

Examples

```
# Telnet to the switch with the host name of Sysname2 and IP address of 129.102.0.1 from the current switch (with the host name of Sysname1).
<Sysname1> telnet 129.102.0.1
Trying 129.102.0.1 ...
Press CTRL+K to abort
```
telnet ipv6

Syntax

telnet ipv6 remote-system [-i interface-type interface-number] [port-number]

View

User view

Default Level

0: Visit level

Parameters

remote-system: IPv6 address or host name of the remote system. An IPv6 address can be up to 46 characters; a host name is a string of 1 to 20 characters.

-i interface-type interface-number: Specifies the outbound interface by interface type and interface number. The outbound interface is required when the destination address is a local link address.

port-number: TCP port number assigned to Telnet service on the remote system, in the range 0 to 65535 and defaults to 23.

Description

Use the telnet ipv6 command to telnet to a remote device for remote management. You can terminate a Telnet connection by pressing <Ctrl + K>.

Examples

Telnet to the device with IPv6 address 3001::1.

<Sysname> telnet ipv6 3001::1
Trying 3001::1 ...
Press CTRL+K to abort
Connected to 3001::1 ...

Copyright (c) 2004-2009 3Com Corp. and its licensors. All rights reserved.
This software is protected by copyright law and international treaties.
Without the prior written permission of 3Com Corporation and its licensors,
any reproduction republication, redistribution, decompiling, reverse
engineering is strictly prohibited. Any unauthorized use of this software
or any portion of it may result in severe civil and criminal penalties, and
will be prosecuted to the maximum extent possible under the applicable law.

* Copyright (c) 2004-2009 3Com Corp. and its licensors. All rights reserved. *
* This software is protected by copyright law and international treaties. *
* Without the prior written permission of 3Com Corporation and its licensors,*
* any reproduction republication, redistribution, decompiling, reverse *
telnet client source

Syntax

```
telnet client source { ip ip-address | interface interface-type interface-number }
undo telnet client source
```

View

System view

Default Level

2: System level

Parameters

None

Description

Use the `telnet client source` command to specify the source IP address or source interface for the Telnet packets to be sent.

Use the `undo telnet client source` command to remove the source IP address or source interface configured for Telnet packets.

By default, source IP address or source interface of the Telnet packets sent is not configured.

Examples

```
# Specify the source IP address for Telnet packets.
<Sysname> system-view
<Sysname> telnet client source ip 129.102.0.2

# Remove the source IP address configured for Telnet packets.
<Sysname> undo telnet client source
```

telnet server enable

Syntax

```
telnet server enable
undo telnet server enable
```

View

System view
Default Level

3: Manage level

Parameters

None

Description

Use the **telnet server enable** command to make the switch to operate as a Telnet Server.
Use the **undo telnet server enable** command disable the switch from operating as a Telnet server.
By default, a switch does not operate as a Telnet server.

Examples

```
# Make the switch to operate as a Telnet Server.
<Sysname> system-view
[Sysname] telnet server enable
% Start Telnet server

# Disable the switch from operating as a Telnet server.
[Sysname] undo telnet server enable
% Close Telnet server
```

terminal type

Syntax

```
terminal type { ansi | vt100 }
undo terminal type
```

View

User interface view

Default Level

2: System level

Parameters

ansi: Specifies the terminal display type to ANSI.
vt100: Specifies the terminal display type to VT100.

Description

Use the **terminal type** command to configure the type of terminal display.
Use the **undo terminal type** command to restore the default.
Currently, the system support two types of terminal display: ANSI and VT100.
By default, the terminal display type is ANSI. The device must use the same display type as the terminal. If the terminal uses VT 100, the device should also use VT 100.

Examples

```
# Set the terminal display type to VTY 100.
```
<Sysname> system-view
System View: return to User View with Ctrl+Z.
[Sysname] user-interface vty 0
[Sysname-ui-vty0] terminal type vt100

user-interface

Syntax

user-interface [type] first-number [last-number]

View

System view

Default Level

2: System level

Parameters

- type: User interface type.
- first-number: User interface index, which identifies the first user interface to be configured.
- last-number: User interface index, which identifies the last user interface to be configured.

Description

Use the user-interface command to enter one or more user interface views to perform configuration.

Examples

Enter VTY 0 user interface view.
<Sysname> system-view
System View: return to User View with Ctrl+Z.
[Sysname] user-interface vty 0
[Sysname-ui-vty0]

user privilege level

Syntax

user privilege level level
undo user privilege level

View

User interface view

Default Level

3: Manage level

Parameters

- level: Command level ranging from 0 to 3.
Description

Use the **user privilege level** command to configure the command level available to the users logging into the user interface.

Use the **undo user privilege level** command to revert to the default command level.

By default, the commands of level 3 are available to the users logging into the AUX user interface. The commands of level 0 are available to the users logging into VTY user interfaces.

Commands fall into four command levels: visit, monitor, system, and manage, which are described as follows:

- **Visit level**: Commands of this level are used to diagnose network and change the language mode of user interface, such as the **ping**, **tracert**. The **Telnet** command is also of this level. Commands of this level cannot be saved in configuration files.
- **Monitor level**: Commands of this level are used to maintain the system, to debug service problems, and so on. The **display** and **debugging** command are of monitor level. Commands of this level cannot be saved in configuration files.
- **System level**: Commands of this level are used to configure services. Commands concerning routing and network layers are of system level. You can utilize network services by using these commands.
- **Manage level**: Commands of this level are for the operation of the entire system and the system supporting modules. Services are supported by these commands. Commands concerning file system, file transfer protocol (FTP), trivial file transfer protocol (TFTP), downloading using XModem, user management, and level setting are of administration level.

Examples

```
# Configure that commands of level 0 are available to the users logging into VTY 0.
<Sysname> system-view
System View: return to User View with Ctrl+Z.
<Sysname> user-interface vty 0
<Sysname-ui-vty0> user privilege level 0

# You can verify the above configuration by Telnetting to VTY 0 and displaying the available commands, as listed in the following.
<Sysname> ?
User view commands:
ping            Ping function
quit            Exit from current command view
super           Set the current user priority level
telnet          Establish one TELNET connection
tracert         Trace route function
undo            Undo a command or set to its default status
```
Commands for Controlling Login Users

acl

Syntax

 acl [ipv6] acl-number { inbound | outbound }
 undo acl [ipv6] { inbound | outbound }

View

 User interface view

Default Level

 2: System level

Parameters

 acl-number: ACL number ranging from 2000 to 4999, where:
 - 2000 to 2999 for basic IPv4 ACLs
 - 3000 to 3999 for advanced IPv4 ACLs
 - 4000 to 4999 for Layer 2 ACLs

 ipv6 acl-number: IPv6 ACL number ranging from 2000 to 3999.

 inbound: Filters the users Telnetting to the current switch.
 outbound: Filters the users Telnetting to other switches from the current switch.

Description

 Use the acl command to apply an ACL to filter Telnet users.
 Use the undo acl command to disable the switch from filtering Telnet users using the ACL.
 Note that if you use Layer 2 ACL rules, you can only choose the inbound keyword in the command here.

Examples

 # Apply ACL 2000 to filter users Telnetting to the current switch (assuming that ACL 2,000 already exists.)
 <Sysname> system-view
 System View: return to User View with Ctrl+Z.
 [Sysname] user-interface vty 0 4
 [Sysname-ui-vty0-4] acl 2000 inbound
free web-users

Syntax

 free web-users { all | user-id userid | user-name username }

View

 User view

Parameter

 userid: Web user ID.
 username: User name of the Web user. This argument can contain 1 to 80 characters.
 all: Specifies all Web users.

Description

 Use the free web-users command to disconnect a specified Web user or all Web users by force.

Example

 # Disconnect all Web users by force.
 <Sysname> free web-users all
3 Basic System Configuration Commands

Basic System Configuration Commands

clock datetime

Syntax

clock datetime time date

View

User view

Default Level

3: Manage level

Parameters

time: Current time in the format of HH:MM:SS, where HH is hours in the range 0 to 23, MM is minutes in the range 0 to 59, and SS is seconds in the range 0 to 59. The zeros in the argument can be omitted except for indicating 0 hours.
date: Current date in the format of MM/DD/YYYY or YYYY/MM/DD. MM is the month of the year in the range 1 to 12, DD is the day of the month that varies with months, and YYYY is a year in the range 2000 to 2035.

Description

Use the clock datetime command to set the current time and date of the device.
The current time and date of the device must be set in an environment that requires the acquisition of absolute time.
You may choose not to provide seconds when inputting the time parameters.
Related commands: clock summer-time one-off, clock summer-time repeating, clock timezone, display clock.

Examples

Set the current system time to 14:10:20 08/01/2005.
<Sysname> clock datetime 14:10:20 8/1/2005

Set the current system time to 00:06:00 01/01/2007.
<Sysname> clock datetime 0:6 2007/1/1

clock summer-time one-off

Syntax

clock summer-time zone-name one-off start-time start-date end-time end-date add-time
undo clock summer-time

View

System view

Default Level

3: Manage level

Parameters

zone-name: Name of the daylight saving time, a string of 1 to 32 characters. It is case sensitive.

start-time: Start time, in the format of HH:MM:SS (hours/minutes/seconds). The zeros in the argument can be omitted except for indicating 0 hours.

start-date: Start date, in the format of MM/DD/YYYY (months/days/years) or YYYY/MM/DD.

end-time: End time, in the format of HH:MM:SS (hours/minutes/seconds). The zeros in the argument can be omitted except for indicating 0 hours.

end-date: End date, in the format of MM/DD/YYYY (months/days/years) or YYYY/MM/DD.

add-time: Time added to the standard time of the device, in the format of HH:MM:SS (hours/minutes/seconds). The zeros in the argument can be omitted except for indicating 0 hours.

Description

Use the clock summer-time one-off command to adopt daylight saving time from the start-time of the start-date to the end-time of the end-date. Daylight saving time adds the add-time to the current time of the device.

Use the undo clock summer-time command to cancel the configuration of the daylight saving time.

After the configuration takes effect, you can use the display clock command to view it. Besides, the time of the log or debug information is the local time of which the time zone and daylight saving time have been adjusted.

Note that:

- The time range from start-time in start-date to end-time in end-date must be longer than one day and shorter than one year. Otherwise, the argument is considered as invalid and the configuration fails.
- If the current system time is in the time range specified with this command, the system time automatically adds “add-time” after the execution of this command.

Related commands: clock datetime, clock summer-time repeating, clock timezone, display clock.

Examples

For daylight saving time in abc1 between 06:00:00 on 08/01/2006 and 06:00:00 on 09/01/2006, set the system clock ahead one hour.

<Sysname> system-view

[Sysname] clock summer-time abc1 one-off 6 08/01/2006 6 09/01/2006 1
clock summer-time repeating

Syntax

```
clock summer-time zone-name repeating start-time start-date end-time end-date add-time
undo clock summer-time
```

View

System view

Default Level

3: Manage level

Parameters

- **zone-name**: Name of the daylight saving time, a string of 1 to 32 characters.
- **start-time**: Start time, in the format of **HH:MM:SS** (hours/minutes/seconds). The zeros in the argument can be omitted for indicating 0 hours.
- **start-date**: Start date which can be set in two ways:
 - Enter the year, month and date at one time, in the format of **MM/DD/YYYY** (months/days/years) or **YYYY/MM/DD**.
 - Enter the year, month and date one by one, separated by spaces. The year ranges from 2000 to 2035; the month can be **January**, **February**, **March**, **April**, **May**, **June**, **July**, **August**, **September**, **October**, **November** or **December**; the start week can be the **first**, **second**, **third**, **fourth**, **fifth** or **last** week of the month; the start date is **Sunday**, **Monday**, **Tuesday**, **Wednesday**, **Thursday**, **Friday**, **Saturday**.
- **end-time**: End time, in the format of **HH:MM:SS** (hours/minutes/seconds). The zeros in the argument can be omitted except for indicating 0 hours.
- **end-date**: End date which can be set in two ways:
 - Enter the year, month and date at one time, in the format of **MM/DD/YYYY** (months/days/years) or **YYYY/MM/DD**.
 - Enter the year, month and date one by one, separated by spaces. The year ranges from 2000 to 2035; the month can be **January**, **February**, **March**, **April**, **May**, **June**, **July**, **August**, **September**, **October**, **November** or **December**; the end week can be the **first**, **second**, **third**, **fourth**, **fifth** or **last** week of the month; the end date is **Sunday**, **Monday**, **Tuesday**, **Wednesday**, **Thursday**, **Friday**, **Saturday**.
- **add-time**: Time added to the current standard time of the device, in the format of **HH:MM:SS** (hours/minutes/seconds). The zeros in the argument can be omitted except for indicating 0 hours.

Description

Use the **clock summer-time repeating** command to adopt summer-time repeatedly.

Use the **undo clock summer-time** command to cancel the configuration of the daylight saving time.

For example, when **start-date** and **start-time** are set to 2007/6/6 and **00:00:00**, **end-date** and **end-time** to 2007/10/01 and **00:00:00**, and **add-time** to **01:00:00**, it specifies to adopt daylight saving time from **00:00:00** of June 6 until **00:00:00** of October 1 each year from 2007 (2007 inclusive). The daylight saving time adds one hour to the current device time.
After the configuration takes effect, use the `display clock` command to view the result. The information such as log file and debug adopts the local time modified by time-zone and daylight saving time.

Note that:

- The time range from “start-time” in “start-date” to “end-time” in “end-date” must be longer than one day and shorter than one year. Otherwise, the argument is considered as invalid and the configuration fails.
- If the current system time is in the time range specified with this command, the system time automatically adds “add-time” after the execution of this command.

Related commands: `clock datetime`, `clock summer-time one-off`, `clock timezone`, `display clock`.

Examples

For the daylight saving time in abc2 between 06:00:00 on 08/01/2007 and 06:00:00 on 09/01/2007 and from 06:00:00 08/01 to 06:00:00 on 09/01 each year after 2007, set the system clock ahead one hour.

```shell
<Sysname> system-view
[Sysname] clock summer-time abc2 repeating 06:00:00 08/01/2007 06:00:00 09/01/2007 01:00:00
```

clock timezone

Syntax

```
clock timezone zone-name { add | minus } zone-offset
undo clock timezone
```

View

System view

Default Level

3: Manage level

Parameters

- `zone-name`: Time zone name, a string of 1 to 32 characters. It is case sensitive.
- `add`: Positive offset to universal time coordinated (UTC) time.
- `minus`: Negative offset to UTC time.
- `zone-offset`: Offset to UTC time. In the format of `HH/MM/SS` (hours/minutes/seconds), where `HH` is hours in the range 0 to 23, `MM` is minutes in the range 0 to 59, and `SS` is seconds in the range 0 to 59. The zeros in the argument can be omitted except for indicating 0 hours.

Description

Use the `clock timezone` command to set the local time zone.

Use the `undo clock timezone` command to restore the local time zone to the default UTC time zone.

By default, the local time zone is UTC zone.

After the configuration takes effect, use the `display clock` command to view the result. The information such as log file and debug adopts the local time modified by time-zone and daylight saving time.

Related commands: `clock datetime`, `clock summer-time one-off`, `clock summer-time repeating`, `display clock`.
Examples

Set the name of the local time zone to Z5, five hours ahead of UTC time.
<Sysname> system-view
[Sysname] clock timezone z5 add 5

command-alias enable

Syntax

```markdown
command-alias enable
undo command-alias enable
```

View

System view

Default Level

2: System level

Parameters

None

Description

Use the **command-alias enable** command to enable the command alias function.

Use the **undo command-alias enable** command to disable the command alias function.

By default, the command alias function is disabled, that is, you cannot configure command aliases.

Examples

Enable the command alias function.
<Sysname> system-view
[Sysname] command-alias enable

Disable the command alias function.
<Sysname> system-view
[Sysname] undo command-alias enable

command-alias mapping

Syntax

```markdown
command-alias mapping cmdkey alias
undo command-alias mapping cmdkey
```

View

System view

Default Level

2: System level
Parameters

- **cmdkey**: The complete form of the first keyword of a command for which an alias will be configured.
- **alias**: Specifies the command alias, which cannot be the same with the first keyword of an existing command.

Description

Use the **command-alias mapping** command to configure command aliases.

Use the **undo command-alias mapping** command to delete command aliases.

By default, a command has no alias.

Examples

Configure command aliases by specifying *show* as the replacement of the *display* keyword.

```
<Sysname> system-view
[Sysname] command-alias mapping display show
```

After the above configuration, the *display* commands have their aliases. For example, if the original command is *display clock*, now its alias is *show clock* and you can input the alias to view the system time and date.

Delete the command aliases by canceling the replacement of the *display* keyword.

```
<Sysname> system-view
[Sysname] undo command-alias mapping display
```

command-privilege level

Syntax

```
command-privilege level level view view command
undo command-privilege view view command
```

View

- System view

Default Level

- 3: Manage level

Parameters

- **level level**: Command level, in the range 0 to 3.
- **view view**: Specifies a view. The value *shell* of the argument *view* represents user view. The specified *view* must be the view to which the command provided by the *command* argument belongs; for the corresponding view, refer to the "View" section of the specified command.
- **command**: Command to be set in the specified view.

Description

Use the **command-privilege** command to assign a level for the specified command in the specified view.

Use the **undo command-privilege view** command to restore the default.
By default, each command in a view has its specified level. For the details, refer to the related part of Basic System Configuration in this manual. Command level falls into four levels: visit, monitor, system, and manage, which are identified by 0 through 3. The administrator can assign a privilege level for a user according to his need. When the user logs on a device, the commands available depend on the user’s privilege. For example, if a user’s privilege is 3 and the command privilege of VTY 0 user interface is 1, and the user logs on the system from VTY 0, he can use all the commands with privilege smaller than three (inclusive).

Note that:

- You are recommended to use the default command level or modify the command level under the guidance of professional staff; otherwise, the change of command level may bring inconvenience to your maintenance and operation, or even potential security problem.
- When you configure the command-privilege command, the value of the command argument must be a complete form of the specified command, that is, you must enter all needed keywords and arguments of the command. The argument should be in the value range. For example, the default level of the tftp server-address { get | put | sget } source-filename [destination-filename] [source { interface interface-type interface-number | ip source-ip-address }] command is 3; after the command-privilege level 0 view shell tftp 1.1.1.1 put a.cfg command is executed, when users with the user privilege level of 0 log in to the device, they can execute the tftp server-address put source-filename command (such as the tftp 192.168.1.26 put syslog.txt command); users with the user privilege level of 0 cannot execute the command with the get, sget or source keyword, and cannot specify the destination-filename argument.
- When you configure the undo command-privilege view command, the value of the command argument can be an abbreviated form of the specified command, that is, you only need to enter the keywords at the beginning of the command. For example, after the undo command-privilege view system ftp command is executed, all commands starting with the keyword ftp (such as ftp server acl, ftp server enable, and ftp timeout) will be restored to the default level; if you have modified the command level of commands ftp server enable and ftp timeout, and you want to restore only the ftp server enable command to its default level, you should use the undo command-privilege view system ftp server command.
- If you modify the command level of a command in a specified view from the default command level to a lower level, remember to modify the command levels of the quit command and the corresponding command that is used to enter this view. For example, the default command level of commands interface and system-view is 2 (system level); if you want to make the interface command available to the users with the user privilege level of 1, you need to execute the following three commands: command-privilege level 1 view shell system-view, command-privilege level 1 view system interface gigabitethernet 1/0/1, and command-privilege level 1 view system quit, so that the login users with the user privilege level of 1 can enter system view, execute the interface gigabitethernet command, and then return to user view.

Examples

Set the command level of the system-view command in user view to 3. (By default, users with the user privilege level of 2 or 3 can use the system-view command after login; after the following configuration, only users with the user privilege level of 3 can use this command to enter system view and configure the device. Therefore, the device security is improved.)

<Sysname> system-view
[Sysname] command-privilege level 3 view shell system-view
copyright-info enable

Syntax

```
copyright-info enable
undo copyright-info enable
```

View

System view

Default Level

3: Manage level

Parameters

None

Description

Use the `copyright-info enable` command to enable the display of copyright information.

Use the `undo copyright-info enable` command to disable the display of copyright information.

By default, the display of copyright information is enabled.

Examples

Enable the display of copyright information

```bash
<Sysname> system-view
<Sysname> copyright-info enable
```

- If a user logs in to the device through Telnet, the following information is displayed:

```
**************************************************************************
* Copyright (c) 2004-2009 3Com Corp. and its licensors. All rights reserved. *
* This software is protected by copyright law and international treaties.   *
* Without the prior written permission of 3Com Corporation and its licensors,*
* any reproduction republication, redistribution, decompiling, reverse       *
* engineering is strictly prohibited. Any unauthorized use of this software *
* or any portion of it may result in severe civil and criminal penalties, and*
* will be prosecuted to the maximum extent possible under the applicable law.*
**************************************************************************
```

```
<Sysname>
```

- If a user has already logged in through the console port, and then quits user view, the following information is displayed:

```
**************************************************************************
* Copyright (c) 2004-2009 3Com Corp. and its licensors. All rights reserved. *
* This software is protected by copyright law and international treaties.   *
* Without the prior written permission of 3Com Corporation and its licensors,*
* any reproduction republication, redistribution, decompiling, reverse       *
* engineering is strictly prohibited. Any unauthorized use of this software *
* or any portion of it may result in severe civil and criminal penalties, and*
* will be prosecuted to the maximum extent possible under the applicable law.*
**************************************************************************
```
User interface aux0 is available.

Please press ENTER.

display clipboard

Syntax

display clipboard

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the display clipboard command to view the contents of the clipboard.

To copy the specified content to the clipboard:

Move the cursor to the starting position of the content and press the <Esc+Shift+,> combination ("," is an English comma).

Move the cursor to the ending position of the content and press the <Esc+Shift+.> combination ("." is an English dot) to copy the specified content to the clipboard.

Examples

View the content of the clipboard.
<Sysname> display clipboard
---------------- CLIPBOARD----------------
 display arp all

display clock

Syntax

display clock

View

Any view

Default Level

1: Monitor level
Parameters
None

Description
Use the **display clock** command to view the current system time and date.

The current system time and date are decided by the `clock datetime`, `clock summer-time one-off` (or `clock summer-time repeating`), `clock timezone`. Refer to *Configuring the system clock* in the operation manual for the detailed rules.

Related commands: `clock datetime`, `clock summer-time one-off`, `clock summer-time repeating`, `clock timezone`.

Examples

```
# Display the current time and date.
<Sysname> display clock
09:41:23 UTC Thu 12/15/2005
```

display command-alias

Syntax

```
display command-alias
```

View

Any view

Default Level

1: Monitor level

Parameters

None

Description
Use the **display configure-user** command to display defined command aliases and the corresponding commands.

Examples

```
# Display the defined command aliases and the corresponding commands.
<Sysname> display command-alias
Command alias is enabled
index alias command key
1 show display
```

display current-configuration

Syntax

```
display current-configuration [ [ configuration [ configuration ] ] | interface [ interface-type ] [ interface-number ] ] [ by-linenum ] [ { begin | exclude | include } regular-expression ]
```
View

Any view

Default Level

2: System level

Parameters

configuration [configuration]: Specifies to display non-interface configuration. If no parameter is used, all the non-interface configuration is displayed; if parameters are used, display the specified information. For example:

- **isp**: Displays the ISP configuration.
- **ospf**: Displays the ospf configuration.
- **radius-template**: Displays the Radius template configuration.
- **system**: Displays the system configuration.
- **user-interface**: Displays the user interface configuration.

interface [interface-type] [interface-number]: Displays the interface configuration, where **interface-type** represents the interface type and **interface-number** represents the interface number.

by-linenum: Specifies to display the number of each line.

|: Specifies to use regular expression to filter the configuration of display device. For the detailed description of the regular expression, refer to the **CLI Display** part of **Basic System Configuration** in the **System Volume**.

- **begin**: Displays the line that matches the regular expression and all the subsequent lines.
- **exclude**: Displays the lines that do not match the regular expression.
- **include**: Displays only the lines that match the regular expression.

regular-expression: Regular expression, a string of 1 to 256 characters. Note that this argument is case-sensitive and can have spaces included.

Description

Use the **display current-configuration** command to display the current validated configuration of a device.

You can use the **display current-configuration** command to view the currently validated configuration. A parameter is not displayed if it has the default configuration. If the validated parameter is changed, although you have configured it, the validated parameter is displayed. For example, ip address 11.11.11.11 24 has been configured on a Loopback interface. In this case, if you execute the **display current-configuration** command, ip address 11.11.11.11 255.255.255.255 is displayed, meaning the validated subnet mask is 32 bits.

Related commands: **save**, **reset saved-configuration**, **display saved-configuration**.

Examples

Display the configuration from the line containing “user-interface” to the last line in the current validated configuration (the output information depends on the current configuration).

```bash
<Sysname> display current-configuration | begin user-interface
user-interface aux 0
user-interface vty 0 4
    authentication-mode none
```
user privilege level 3
#
return

display default-configuration

Syntax

display default-configuration

View

Any view

Default Level

2: System level

Parameters

None

Description

Use the **display default-configuration** command to display the factory defaults of a device. The command displays all commands to be executed when the device boots with the factory defaults.

Related commands: **display current-configuration**, **display saved-configuration**.

Examples

Display the factory defaults of the device (The factory defaults vary with device models. The detailed displays are omitted here).

<Sysname> display default-configuration

display diagnostic-information

Syntax

display diagnostic-information

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the **display diagnostic-information** command to display or save the statistics of each module’s running status in the system.

When the system is out of order, you need to collect a lot of information to locate the problem. At this time you can use the **display diagnostic-information** command to display or save the statistics of
each module’s running status in the system. The **display diagnostic-information** command collects prompt information of the commands **display clock**, **display version**, **display device**, and **display current-configuration**.

Examples

Save the statistics of each module's running status in the system.

```bash
<Sysname> display diagnostic-information
Save or display diagnostic information (Y=save, N=display)?[Y/N]y
Please input the file name(*.diag)[flash:/default.diag]:aa.diag
Diagnostic information is outputting to flash:/aa.diag.
Please wait...
Save succeeded.
```

You can view the content of the file aa.diag by executing the **more aa.diag** command in user view, in combination of the **Page Up** and **Page Down** keys.

Display the statistics of each module's running status in the system.

```bash
<Sysname> display diagnostic-information
Save or display diagnostic information (Y=save, N=display)? [Y/N]:n
```

display history-command

Syntax

```plaintext
display history-command
```

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the **display history-command** command to display commands saved in the history buffer.

The system will save validated history commands performed last in current user view to the history buffer, which can save up to ten commands by default. You can use the **history-command max-size** command to set the size of the history buffer. Refer to the **history-command max-size** command in **Login Commands** in the **System Volume** for related configuration.

Examples

Display validated history commands in current user view (the display information varies with configuration).

```bash
<Sysname> display history-command
  display history-command
  display history-command
  system-view
  vlan 2
```
quit

display hotkey

Syntax

```
display hotkey
```

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the `display hotkey` command to display hotkey information.

Examples

```
# Display hotkey information.
<Sysname> display hotkey
----------------- HOTKEY -----------------
=Defined hotkeys=
Hotkeys Command
CTRL_G  display current-configuration
CTRL_L  display ip routing-table
CTRL_O  undo debug all

=Undefined hotkeys=
Hotkeys Command
CTRL_T  NULL
CTRL_U  NULL

=System hotkeys=
Hotkeys Function
CTRL_A  Move the cursor to the beginning of the current line.
CTRL_B  Move the cursor one character left.
CTRL_C  Stop current command function.
CTRL_D  Erase current character.
CTRL_E  Move the cursor to the end of the current line.
CTRL_F  Move the cursor one character right.
CTRL_H  Erase the character left of the cursor.
CTRL_K  Kill outgoing connection.
CTRL_N  Display the next command from the history buffer.
CTRL_P  Display the previous command from the history buffer.
CTRL_R  Redisplay the current line.
```
display this

Syntax

display this [by-linenum]

View

Any view

Default Level

1: Monitor level

Parameters

by-linenum: Specifies to display the number of each line.

Description

Use the display this command to display the validated configuration under the current view.

After finishing a set of configurations under a view, you can use the display this command to check whether the configuration takes effect.

Note that:

- A parameter is not displayed if it has the default configuration.
- A parameter is not displayed if the configuration has not taken effect.
- When you use the command in a user interface view, the command displays the valid configuration in all the user interfaces.
- When you use the command in a VLAN view, the command displays configurations of all created VLANs.

Examples

Display the valid configuration information of the current view (the output information depends on the current configuration of the device).

<Sysname> system-view
<Sysname> user-interface vty 0
<Sysname-ui-vty0> display this

3-15
display version

Syntax

display version

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the **display version** command to view system version information.

By viewing system version information, you can learn about the current software version, rack type and
the information related to the interface boards.

Examples

Display system version information (The system version information varies with devices.).

<Sysname> display version

header

Syntax

header { incoming | legal | login | motd | shell } text

undo header { incoming | legal | login | motd | shell }

View

System view

Default Level

2: System level

Parameters

incoming: Sets the banner displayed when a Modem login user enters user view. If authentication is
needed, the incoming banner is displayed after the authentication is passed.

legal: Sets the authorization banner before a user logs onto the terminal interface. The legal banner is
displayed before the user inputs the username and password.
login: Sets the login banner at authentication.

motd: Banner displayed before login. If authentication is required, the banner is displayed before authentication.

shell: Sets the banner displayed when a non Modem login user enters user view.

text: Banner message, which can be input in two formats. Refer to Basic System Configuration for the detailed information.

Description

Use the header command to create a banner.

Use the undo header command to clear a banner.

Examples

```bash
# Configure banners.<Sysname> system-view
[Sysname] header incoming %
Please input banner content, and quit with the character '%'.
Welcome to incoming(header incoming)%
[Sysname] header legal %
Please input banner content, and quit with the character '%'.
Welcome to legal (header legal)%
[Sysname] header login %
Please input banner content, and quit with the character '%'.
Welcome to login(header login)%
[Sysname] header motd %
Please input banner content, and quit with the character '%'.
Welcome to motd(header motd)%
[Sysname] header shell %
Please input banner content, and quit with the character '%'.
Welcome to shell(header shell)%
```

Note

The character % is the starting/ending character of text in this example. Entering % after the displayed text quits the header command.

As the starting and ending character, % is not a part of a banner.

Test the configuration remotely using Telnet. (only when login authentication is configured can the login banner be displayed).

**
* Copyright (c) 2004-2009 3Com Corp. and its licensors. All rights reserved. *
* This software is protected by copyright law and international treaties. *
* Without the prior written permission of 3Com Corporation and its licensors,*
* any reproduction republication, redistribution, decompiling, reverse *
* engineering is strictly prohibited. Any unauthorized use of this software *
* or any portion of it may result in severe civil and criminal penalties, and*

3-17
* will be prosecuted to the maximum extent possible under the applicable law.*

Welcome to legal(header legal)
Press Y or ENTER to continue, N to exit.
Welcome to motd(header motd)
Welcome to login(header login)

Login authentication

Password:
Welcome to shell(header shell)

<Sysname>

hotkey

Syntax

hotkey { CTRL_G | CTRL_L | CTRL_O | CTRL_T | CTRL_U } command
undo hotkey { CTRL_G | CTRL_L | CTRL_O | CTRL_T | CTRL_U }

View

System view

Default Level

2: System level

Parameters

CTRL_G: Assigns the hot key Ctrl+G to a command.
CTRL_L: Assigns the hot key Ctrl+L to a command.
CTRL_O: Assigns the hot key Ctrl+O to a command.
CTRL_T: Assigns the hot key Ctrl+T to a command.
CTRL_U: Assigns the hot key Ctrl+U to a command.

command: The command line associated with the hot key.

Description

Use the hotkey command to assign a hot key to a command line.
Use the undo hotkey command to restore the default.
By default, the system specifies corresponding commands for Ctrl+G, Ctrl+L and Ctrl+O, while the others are null.

- Ctrl+G corresponds to display current-configuration
• Ctrl+L corresponds to display ip routing-table
• Ctrl+O corresponds to undo debugging all

You can customize this scheme as needed however.

Examples

Assign the hot key Ctrl+T to the display tcp status command.

<Sysname> system-view
[Sysname] hotkey ctrl_t display tcp status

Display the configuration of hotkeys.

[Sysname] display hotkey
----------------- HOTKEY -----------------
=Defined hotkeys=
Hotkeys Command
CTRL_G display current-configuration
CTRL_L display ip routing-table
CTRL_O undo debug all
CTRL_T display tcp status
=Undefined hotkeys=
Hotkeys Command
CTRL_U NULL

=System hotkeys=
Hotkeys Function
CTRL_A Move the cursor to the beginning of the current line.
CTRL_B Move the cursor one character left.
CTRL_C Stop current command function.
CTRL_D Erase current character.
CTRL_E Move the cursor to the end of the current line.
CTRL_F Move the cursor one character right.
CTRL_H Erase the character left of the cursor.
CTRL_K Kill outgoing connection.
CTRL_N Display the next command from the history buffer.
CTRL_P Display the previous command from the history buffer.
CTRL_R Redisplay the current line.
CTRL_V Paste text from the clipboard.
CTRL_W Delete the word left of the cursor.
CTRL_X Delete all characters up to the cursor.
CTRL_Y Delete all characters after the cursor.
CTRL_Z Return to the user view.
CTRL_] Kill incoming connection or redirect connection.
ESC_B Move the cursor one word back.
ESC_D Delete remainder of word.
ESC_F Move the cursor forward one word.
ESC_N Move the cursor down a line.
ESC_P Move the cursor up a line.
ESC_< Specify the beginning of clipboard.
quit

Syntax
- quit

View
- Any view

Default Level
- 0: Visit level (in user view)
- 2: System level (in other views)

Parameters
- None

Description
Use the `quit` command to exit to a lower-level view. If the current view is user view, the `quit` command terminates the current connection and quit the system.

Examples
- # Switch from GigabitEthernet1/0/1 interface view to system view, and then to user view.
  ```
  [Sysname-GigabitEthernet1/0/1] quit
  [Sysname] quit
  <Sysname>
  ```

return

Syntax
- return

View
- Any view except user view

Default Level
- 2: System level

Parameters
- None

Description
Use the `return` command to return to user view from current view (not user view).
You can also use the hot key Ctrl+Z to return to user view from current (not user view).
Related commands: quit.
Examples

Return to user view from GigabitEthernet1/0/1 view.

[Sysname-GigabitEthernet1/0/1] return
<Sysname>

screen-length disable

Syntax

screen-length disable
undo screen-length disable

View

User view

Default Level

1: Monitor level

Parameters

None

Description

Use the `screen-length disable` command to disable the multiple-screen output function of the current user.

Use the `undo screen-length disable` command to enable the multiple-screen output function of the current user.

By default, a login user uses the settings of the `screen-length` command. The default settings of the `screen-length` command are: multiple-screen output is enabled and 24 lines are displayed on the next screen. (For the details of the `screen-length` command, refer to Login Commands in the System Volume.)

Note that this command is applicable to the current user only and when a user re-logs in, the settings restore to the system default.

Examples

Disable multiple-screen output of the current user.

<Sysname> screen-length disable

super

Syntax

super [level]

View

User view

Default Level

0: Visit level
Parameters

level: User level, in the range 0 to 3, and defaults to 3.

Description

Use the `super` command to switch from the current user privilege level to a specified user privilege level.

If you do not provide the *level* argument, the current user privilege level will be switched to 3.

Login users are classified into four levels that correspond to the four command levels. After users at different levels log in, they can only use commands at their own, or lower, levels.

Note that:

Users can switch to a lower user privilege level unconditionally. However, no password is needed only for AUX login user level switching; to switch to a higher user privilege level, and log in from VTY user interfaces, users need to enter the password needed for the security’s sake. If the entered password is incorrect or no password is configured, the switching fails. Therefore, before switching a user to a higher user privilege level, you should configure the password needed.

Related commands: **super password**.

Examples

```
# Set the user privilege level to 2 (The current user privilege level is 3.).
<Sysname> super 2
User privilege level is 2, and only those commands can be used
whose level is equal or less than this.
Privilege note: 0-VISIT, 1-MONITOR, 2-SYSTEM, 3-MANAGE

# Switch the user privilege level back to 3 (Suppose password 123 has been set; otherwise, the user
# privilege level cannot be switched to 3.).
<Sysname> super 3
Password:
User privilege level is 3, and only those commands can be used
whose level is equal or less than this.
Privilege note: 0-VISIT, 1-MONITOR, 2-SYSTEM, 3-MANAGE
```

super password

Syntax

```
super password [ level user-level ] { simple | cipher } password
undo super password [ level user-level ]
```

View

System view

Default Level

2: System level

Parameters

level user-level: User privilege level in the range 1 to 3, with the default as 3.
simple: Plain text password.
cipher: Cipher text password.

password: Password, a string of characters. It is case-sensitive.

- For simple password, it is a string of 1 to 16 characters.
- For cipher password, it is a string of 1 to 16 characters in plain text or 24 characters in cipher text.
 For example, the simple text “1234567” corresponds to the cipher text “(TT8F)\5SQR=Q`MAF4<1!!”.

Description

Use the super password command to set the password needed to switch from a lower user privilege level to a higher one.

Use the undo super password command to restore the default.

By default, no password is set to switch from a lower user privilege level to a higher one.

Note that:

- If simple is specified, the configuration file saves a simple password.
- If cipher is specified, the configuration file saves a cipher password.
- The user must always enter a simple password, no matter simple or cipher is specified.
- Cipher passwords are recommended, as simple ones are easily getting cracked.

Examples

Set the password to abc in simple form for switching user-level to 3.

```
<Sysname> system-view
[Sysname] super password level 3 simple abc
```

Display the password for switching user-level.

```
[Sysname] display current-configuration
#
super password level 3 simple abc
```

Set the password to abc in cipher form for switching user-level to 3.

```
<Sysname> system-view
[Sysname] super password level 3 cipher abc
```

Display the password for switching user-level.

```
[Sysname] display current-configuration
#
super password level 3 cipher =`*Y=F>*.%-a_SW8\YM2A!!
```

sysname

Syntax

```
sysname sysname
undo sysname
```

View

System view
Default Level

2: System level

Parameters

sysname: Name of the device, a string of 1 to 30 characters.

Description

Use the **sysname** command to set the name of the device.
Use the **undo sysname** demand to restore the device name to the default.
The default name is "4210G" by default.
Modifying device name affects the prompt of the CLI. For example, if the device name is **Sysname**, the prompt of user view is <Sysname>.

Examples

```plaintext
# Set the name of the device to Switch.
<Sysname> system-view
[Sysname] sysname Switch
[Switch]
```

system-view

Syntax

```
system-view
```

View

User view

Default Level

2: System level

Parameters

None

Description

Use the **system-view** command to enter system view from the current user view.
Related commands: **quit**, **return**.

Examples

```plaintext
# Enter system view from the current user view.
<Sysname> system-view
System View: return to User View with Ctrl+Z.
[Sysname]
```
Device Management Commands

boot-loader file

Syntax

 boot-loader file file-url slot { all | slot-number } { main | backup }

View

User view

Default Level

2: System level

Parameters

file-url: Specifies a file name, a string of 1 to 63 characters, in the format of [drive:/][path]/file-name, where

- The items in square brackets [] are optional.
- drive specifies the storage medium of the file. The value is the name of the storage medium. For
 the switch 4210G, the storage medium can only be a flash.
- path specifies the folder of the file. If you do not provide this argument, the file must be in the root
directory of the specified storage medium. If the file is saved in a subfolder, you can use this
argument multi-times, for example, test/subtest/test.bin.
- file-name specifies the filename, which is usually suffixed by .bin. Suffixes vary with devices.
- If you do not provide arguments drive and path, the file with the name file-name under the current
 path is specified. You can use the cd command to switch to another path. For details of the cd
 command, refer to File System Management Commands in the System Volume.

slot slot-number: Specifies the member ID of a device.

- all: Specifies a file as the boot file at the next boot for all member devices in a IRF system.
- slot-number: Specifies a file as the boot file at the next boot for a member device. slot-number is
 the member ID of the device. You can use the display irf command to view the member IDs of
 devices in a IRF system.

main: Specifies a file as a main boot file. A main boot file is used to boot a device.

backup: Specifies a file as a backup boot file. A backup boot file is used to boot a device only when a
main boot file is unavailable.

Description

Use the boot-loader command to specify a boot file for a member device for the next device boot.

Note the following:
To execute the **boot-loader** command successfully, you must save the file for the next device boot under the root directory of the storage media on a member device.

- If the storage medium is on the master, you can specify the storage medium by giving its name, such as `flash`; if the storage medium is on a slave, you can specify the storage medium by giving its name and the member ID of the device, that is, in the format of `slot-number#StorageMediumName` (where `slot-number` represents the member ID of the slave), such as `slot2#flash`.
- When you specify the boot file of the master, the `file-url` argument cannot contain the member ID of the device, and `slot-number` should be specified as the member ID of the master; when you specify the boot file of the slave, the `file-url` argument must contain the member ID (such as `slot2#flash:/test.bin`), and `slot-number` should be specified as the member ID of the slave.
- If you provide the keyword **all**, the `file-url` argument cannot contain a member ID, otherwise, the execution of this command will fail; you must save the specified boot file on the storage media of all member devices in the same filename, otherwise, member devices without this file will fail to be reconfigured during the reboot.
- The names of the files for the next boot of the master and slaves may be different, but the versions of the files must be the same; otherwise, a slave will reboot by using the master's boot file and join the IRF again.

Related commands: `display boot-loader`.

Examples

```
# Specify the main boot file for the master (the member ID is 1) for the next device boot as `test.bin` (Make sure that the file `test.bin` is already saved on the storage medium of the master; otherwise, the system prompts error and the execution of the command fails).
<Sysname> boot-loader file test.bin slot 1 main
This command will set the boot file of the specified board. Continue? [Y/N]:y
The specified file will be used as the main boot file at the next reboot on slot 1!

# Specify the main boot file for the slave (the member ID is 2) for the next device boot as `test.bin` (Make sure that the file `test.bin` is already saved on the storage medium of the slave; otherwise, the system prompts error and the execution of the command fails).
<Sysname> boot-loader file slot2#flash:/test.bin slot 2 main
This command will set the boot file of the specified board. Continue? [Y/N]:y
The specified file will be used as the main boot file at the next reboot on slot 2!

# Specify the main boot file for all member devices for the next device boot as `test.bin` (Make sure that the file `test.bin` is already saved on the storage medium of all the member devices; otherwise, the system prompts error and the execution of the command fails).
<Sysname> boot-loader file test.bin slot all main
This command will set the boot file of the specified board. Continue? [Y/N]:y
The specified file will be used as the main boot file at the next reboot on slot 1!
The specified file will be used as the main boot file at the next reboot on slot 2!
```

bootrom

Syntax

```
bootrom update file file-url slot slot-number-list
```
View

User view

Default Level

2: System level

Parameters

update file file-url: Upgrades Boot ROM, where file-url is a string of 1 to 63 characters and represents name of the file to be upgraded. file-url is in the format of [drive://][path/][file-name], where

- The items in square brackets [] are optional.
- drive specifies the storage medium of the file. The value is the name of the storage medium. For the switch 4210G, the storage medium can only be a flash.
- path specifies the folder of the file. If you do not provide this argument, the file must be in the root directory of the specified storage medium. If the file is saved in a subfolder, you can use this argument multi-times, for example, test/subtest/test.bin.
- file-name specifies the filename.
- If you do not provide arguments drive and path, the file with the name file-name under the current path is specified. You can use the cd command to switch to another path. For details of the cd command, refer to the File System Management Commands in the System Volume.

slot slot-number-list: Specifies a list of IDs of member devices, in the format of {slot-number[to slot-number]}&<1-7>. The slot-number argument represents the ID of a member device. You can use the display irf command to view the member IDs of IRF members.

Description

Use the bootrom command to read, restore, back up, or upgrade the Boot ROM program on a specified member device(s).

Note the following:

- To execute the bootrom command successfully, you must save the Boot ROM program under the root directory of the storage media on a member device.
- If the storage medium is on the master, you can specify the storage medium by giving its name, such as flash; If a storage medium is on a slave, you can specify the storage medium by giving its name and the member ID of the device, that is, in the format of slotslot-number#StorageMediumName (slot-number represents the member ID of the slave), such as slot2#flash.
- When you upgrade the Boot ROM program for the master, the file-url argument cannot contain the member ID of the device, and slot-number should be specified as the member ID of the master; when you upgrade the Boot ROM program for a slave, the file-url argument must contain the member ID (such as slot2#flash:/test.bin), slot-number should be specified as the member ID of the slave.

Examples

Use the a.btm file to upgrade the Boot ROM program on the master (the member ID is 1).

<Sysname> bootrom update file a.btm slot 1
This command will update bootrom file on the specified board(s), Continue? [Y/N]:y
Now upgrading bootrom, please wait...
Succeeded to update bootrom of Board 1.
Use the `a.btm` file to upgrade the Boot ROM program on the slave (the member ID is 2).

```plaintext
<Sysname> bootrom update file slot2#flash:/a.btm slot 2
This command will update bootrom file on the specified board(s), Continue? [Y/N]:y
Now updating bootrom, please wait...
Succeeded to update bootrom of Board 1
```

bootrom-update security-check enable

Syntax

```
bootrom-update security-check enable
undo bootrom-update security-check enable
```

View

- System view

Default Level

- 2: System level

Parameters

- None

Description

Use the `bootrom-update security-check enable` command to enable the validity check function.

Use the `undo bootrom-update security-check enable` command to disable the validity check function.

By default, the validity check function is enabled at the time of upgrading Boot ROM.

After the validity check function is enabled, the device will strictly check whether the Boot ROM upgrade files are valid and can match the hardware.

Examples

```
# Enable the validity check function when upgrading Boot ROM.
<Sysname> system-view
<Sysname> bootrom-update security-check enable
```

display boot-loader

Syntax

```
display boot-loader [ slot slot-number ]
```

View

- Any view

Default Level

- 2: System level
Parameters

`slot slot-number`: Displays boot file information of a member device, where `slot-number` represents the member ID of the device. If you do not provide this argument, the information of the boot files of all member devices will be displayed. You can use the `display irf` command to view the member IDs of devices in a IRF system.

Description

Use the `display boot-loader` command to display information of the boot file.

Related commands: `boot-loader`.

Examples

Display the file adopted for the current and next boot of the device.

```bash
<Sysname> display boot-loader
Slot 12
The current boot app is:  flash:/test.bin
The main boot app is:     flash:/test.bin
The backup boot app is:   flash:/test.bin
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot 1</td>
<td>The member ID of the device is 1</td>
</tr>
<tr>
<td>The current boot app is</td>
<td>Boot file used for the device for the current device boot</td>
</tr>
<tr>
<td>The main boot app is</td>
<td>Main boot file used for the device for the next device boot</td>
</tr>
<tr>
<td>The backup boot app is</td>
<td>Backup boot file used for the device for the next device boot</td>
</tr>
</tbody>
</table>

`display cpu-usage`

Syntax

```bash
display cpu-usage [ slot slot-number [ cpu cpu-number ] ]
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>slot slot-number</td>
<td>Number of entries to be displayed once, in the range 1 to 60.</td>
</tr>
<tr>
<td>cpu cpu-number</td>
<td>Offset between the serial number of the first CPU usage statistics record to be displayed and that of the last CPU usage record to be displayed, in the range 0 to 59. For example, the idx of the latest statistics record is 12, if the offset is set to 3, the system will display the statistics records from</td>
</tr>
</tbody>
</table>
the one with the idx of 9. idx represents the serial number of the period for the statistics, and its value ranges from 0 to 60 cyclically. The system makes CPU usage statistics periodically; after each period, the system records the average CPU usage during this period, and the idx value is added by 1 automatically.

verbose: Specifies to display detailed information of CPU usage statistics. If this keyword is not provided, the system displays the brief information of the CPU usage statistics; if this keyword is provided, the system displays the average CPU usage statistics for each task in the specified period.

from-device: Displays external storage media. The device currently does not support the **from-device** keyword.

slot slot-number: Indicates to display the statistics of the CPU usage of the specified member device. **slot-number** specifies the member ID of the device. You can use the **display irf** command to view the member IDs of devices in an IRF system.

cpu cpu-number: Displays the CPU usage statistics of the specified CPU. If the **cpu-number** argument is not provided, the system displays the CPU usage statistics of all CPUs of the specified board or member device.

Description

Use the **display cpu-usage** command to display the CPU usage statistics.

The system takes statistics of CPU usage at intervals (usually every 60 seconds) and saves the statistical results in the history record area. **display cpu-usage entry-number** indicates the system displays **entry-number** records from the newest (last) record. **display cpu-usage entry-number offset** indicates the system displays **entry-number** records from the last but **offset** record.

Equivalent to the **display cpu-usage 1 0 verbose** command, the **display cpu-usage** command displays detailed information of the last CPU usage statistics record.

Examples

Display information of the current CPU usage statistics.

```plaintext
<Sysname> display cpu-usage
Slot 1 CPU usage:
    6% in last 5 seconds
    10% in last 1 minute
    5% in last 5 minutes
Slot 2 CPU usage:
    5% in last 5 seconds
    8% in last 1 minute
    5% in last 5 minutes
```

Display the last fifth and sixth records of the CPU usage statistics history.

```plaintext
<Sysname> display cpu-usage 2 4
====== CPU usage info (no:  0  idx: 58) ======
CPU Usage Stat. Cycle: 60 (Second)
CPU Usage            : 3%
CPU Usage Stat. Tick : 0x1d9d(CPU Tick High) 0x3a659a70(CPU Tick Low)
Actual Stat. Cycle   : 0x0(CPU Tick High) 0x95030517(CPU Tick Low)

====== CPU usage info (no:  1  idx: 57) ======
```

4-6
CPU Usage Stat. Cycle: 60 (Second)
CPU Usage : 3%
CPU Usage Stat. Tick : 0x1d9c(CPU Tick High) 0xa50e5351(CPU Tick Low)
Actual Stat. Cycle : 0x0(CPU Tick High) 0x950906af(CPU Tick Low)

Table 4-2 display cpu-usage command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6% in last 5 seconds</td>
<td>After the device boots, the system calculates and records the average CPU usage in every five seconds. This field displays the average CPU usage in the last five seconds.</td>
</tr>
<tr>
<td>10% in last 1 minute</td>
<td>After the device boots, the system calculates and records the average CPU usage in every one minute. This field displays the average CPU usage in the last minute.</td>
</tr>
<tr>
<td>5% in last 5 minutes</td>
<td>After the device boots, the system calculates and records the average CPU usage in every five minutes. This field displays the average CPU usage in the last five minutes.</td>
</tr>
<tr>
<td>Slot 2 CPU usage</td>
<td>The CPU usage of the member device (the member ID is 2).</td>
</tr>
<tr>
<td>CPU usage info (no: idx:)</td>
<td>Information of CPU usage records (no: The (no+1)th record is currently displayed. no numbers from 0, a smaller number equals a newer record. idx: index of the current record in the history record table). If only the information of the current record is displayed, no and idx are not displayed.</td>
</tr>
<tr>
<td>CPU Usage Stat. Cycle</td>
<td>CPU usage measurement interval, in seconds. For example, if the value is 41, it indicates that the average CPU usage during the last 41 seconds is calculated. The value range of this field is 1 to 60.</td>
</tr>
<tr>
<td>CPU Usage</td>
<td>Average CPU usage in a measurement interval, in percentage</td>
</tr>
<tr>
<td>CPU Usage Stat. Time</td>
<td>CPU usage statistics time in seconds, that is, the system time when the command is executed</td>
</tr>
<tr>
<td>CPU Usage Stat. Tick</td>
<td>System runtime in ticks, represented by a 64-bit hexadecimal. CPU Tick High represents the most significant 32 bits and the CPU Tick Low the least significant 32 bits.</td>
</tr>
<tr>
<td>Actual Stat. Cycle</td>
<td>Actual CPU usage measurement interval in ticks, represented by a 64-bit hexadecimal. CPU Tick High represents the most significant 32 bits and the CPU Tick Low the least significant 32 bits. Owing to the precision of less than one second, the actual measurement periods of different CPU usage records may differ slightly.</td>
</tr>
</tbody>
</table>

display cpu-usage history

Syntax

display cpu-usage history [task task-id] [slot slot-number [cpu cpu-number]]

View

Any view
Default Level

1: Monitor level

Parameters

task task-id: Displays the history statistics of the CPU usage of the specified task, where `task-id` represents the task number. If the `task-id` argument is not provided, the system displays the history statistics of the CPU usage of the entire system (the CPU usage of the entire system is the sum of CPU usages of all tasks).

slot slot-number: Displays the history statistics of the CPU usage of the specified member device. `slot-number` specifies the member ID of a device. You can use the `display irf` command to view the member IDs of devices in a IRF system. If the `slot-number` argument is not provided, the system displays the history statistics of the CPU usage of the master.

cpu cpu-number: Displays the history statistics of the CPU usage of the specified CPU. If the `cpu-number` argument is not provided, the system displays the history statistics of the CPU usage of the main CPU.

Description

Use the `display cpu-usage history` command to display the history statistics of the CPU usage in a chart.

If no argument is provided, the system displays the CPU usage of the master.

The system takes statistics of the CPU usage at an interval and saves the statistical results in the history record area. You can use the `display cpu-usage history` command to display the CPU usage statistics records during the last 60 minutes. The statistical results are displayed through geographical coordinates. In the output information:

- Latitude indicates the CPU usage, which is displayed based on the step. For example, if the step of the CPU usage is 5%, then the actual statistics value 53% is displayed as 55%, and actual statistics value 52% is displayed as 50%.
- Longitude indicates the time.
- Consecutive pond marks (#) indicate the CPU usage at a certain moment. The value of the latitude corresponding to the # mark on the top of a moment is the CPU usage at this moment.

Examples

Display the CPU usage statistics of the whole system.

```
<Sysname> display cpu-usage history
100%|
95%|
90%|
85%|
80%|
75%|
70%|
65%|
60%|
55%|
50%|
45%|
```
The above output information indicates the CPU usage of the whole system in the last 60 minutes: 5% in the twelfth minute, 10% in the thirteenth minute, 15% in the fourteenth minute, 10% in the fifteenth minute, 5% in the sixteenth and seventeenth minute, 10% in the eighteenth minute, 5% in the nineteenth minute, and 2% or lower than 2% at other times.

Display the CPU usage statistics of task 6.

<Sysname> display cpu-usage history task 6

The above output information indicates the CPU usage of task 6 (with the task name T03M) in the last 60 minutes: 5% in the twentieth minute, and 2% or lower than 2% at other times.
display device

Syntax

display device [[shelf shelf-number] [frame frame-number] [slot slot-number [subslot subslot-number]]] [verbose]

View

Any view

Default Level

2: System level

Parameters

shelf shelf-number: Displays detailed information of the specified shelf or unit. The shelf-number argument represents a shelf number or unit number and the value is 0 for the switch 4210G.

frame frame-number: Displays detailed information of the specified frame. The frame-number argument represents a frame number and the value is 0 for the switch 4210G.

slot slot-number: Displays information of the specified member device. The slot-number argument represents the member ID of the device. You can use the display irf command to view the member IDs of devices in a IRF system.

subslot subslot-number: Displays information of the specified subboard. The subslot-number represents the subslot of a subboard.

verbose: Displays detailed information.

Description

Use the display device command to display information about the device.

Examples

Display the information of all IRF members.

<Sysname> display device

Slot 1
SubSNo PortNum PCBVer FPGAVer CPLDVer BootRomVer AddrLM Type State
0 28 REV.C NULL 002 505 IVL MAIN Normal
1 0 REV.A NULL NULL NULL IVL 2*10GE Normal

Slot 2
SubSNo PortNum PCBVer FPGAVer CPLDVer BootRomVer AddrLM Type State
0 28 REV.C NULL 002 503 IVL MAIN Normal
1 0 REV.B NULL NULL NULL IVL 2*10GE Normal

The above information indicates that the IRF contains two member devices, each of which has 28 Ethernet interfaces and is configured with two 10 GE physical IRF ports.

Table 4-3 display device command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot 1</td>
<td>Information of the device with the member ID of 1</td>
</tr>
<tr>
<td>SubSNo</td>
<td>Number of the slot in which the subboard resides</td>
</tr>
</tbody>
</table>
display device manuinfo

Syntax

```
display device manuinfo
```

View

Any view

Default Level

3: Manage level

Parameters

None

Description

Use the `display device manuinfo` command to display electrical label information about the device. Electrical label information is also called permanent configuration data or archive information, which is written to the storage medium of the device during debugging or test of device. The information includes name of the board, device serial number, and vendor name. This command displays part of the electrical label information of the device.

Examples

```
# Display electrical label information.
<Sysname> display device manuinfo
  slot 1
  DEVICE_NAME : S4210G-28C-EI
  DEVICE_SERIAL_NUMBER : 210235A2540000000001
  MAC_ADDRESS : 001C-C5BC-3111
  MANUFACTURING_DATE : 2008-05-08
  VENDOR_NAME : 3COM

  slot 2
  DEVICE_NAME : S4210G-28C-EI
  DEVICE_SERIAL_NUMBER : 210235A252A079000140
  MAC_ADDRESS : 000F-E269-46D1
  MANUFACTURING_DATE : 2007-09-26
  VENDOR_NAME : 3COM
```

Table 4-4 display device manuinfo command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVICE_NAME</td>
<td>Device name</td>
</tr>
</tbody>
</table>
display environment

Syntax

display environment

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the `display environment` command to display the temperature information, including the current temperature and temperature thresholds of boards.

Examples

Display the temperature information of the device.

```plaintext
<Sysname> display environment
System Temperature information (degree centigrade):
----------------------------------------------------
SlotNo    Temperature       Lower limit      Upper limit
1         34                0                55
2         34                0                55
```

Table 4-5 display environment command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Temperature information (degree centigrade)</td>
<td>Temperature information of system boards (degree centigrade)</td>
</tr>
<tr>
<td>SlotNO</td>
<td>Member ID of the device</td>
</tr>
<tr>
<td>Temperature</td>
<td>Current temperature</td>
</tr>
<tr>
<td>Lower limit</td>
<td>Lower limit of temperature</td>
</tr>
<tr>
<td>Upper limit</td>
<td>Upper limit of temperature</td>
</tr>
</tbody>
</table>
display fan

Syntax

 display fan [slot slot-number [fan-id]]

View

 Any view

Default Level

 1: Monitor level

Parameters

 fan-id: Displays the operating state of the specified fan, where fan-id represents the built-in fan number.
 slot slot-number: Displays the operating state of fans of the specified member device, where slot-number represents the member ID of the device. Support for slot slot-number depends on the device model. You can use the display irf command to view the member IDs of devices in a IRF system. If the slot-number argument is not provided, the system displays the operating state of fans of all member devices.

Description

 Use the display fan command to display the operating state of built-in fans.

Examples

 # Display the operating state of all fans in a device.
 <Sysname> display fan
 Slot 1
 FAN 1
 State : Normal
 Slot 2
 FAN 1
 State : Normal

display memory

Syntax

 display memory [slot slot-number [cpu cpu-number]]

View

 Any view

Default Level

 1: Monitor level
Parameters

- **slot slot-number**: Displays the memory of a CPU of the specified member device, where `slot-number` represents the member ID of the device. You can use the `display irf` command to view the member IDs of devices in a IRF system.

- **cpu cpu-number**: Displays the memory of a specified CPU, where `cpu-number` represents the ID of the CPU.

Description

Use the `display memory` command to display the usage of the memory of a device.

If the keyword **slot** is not provided, the system displays the usage of the memory of the master device; if the keyword **cpu** is not provided, the system displays the memory of the main CPU.

Examples

```plaintext
# Display the usage of the memory of a device.
<Sysname> display memory
System Total Memory(bytes): 431869088
Total Used Memory(bytes): 71963156
Used Rate: 16%
```

Table 4-6 `display memory` command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Total Memory(bytes)</td>
<td>Total size of the system memory (in bytes)</td>
</tr>
<tr>
<td>Total Used Memory(bytes)</td>
<td>Size of the memory used (in bytes)</td>
</tr>
<tr>
<td>Used Rate</td>
<td>Percentage of the memory used to the total memory</td>
</tr>
</tbody>
</table>

display power

Syntax

```plaintext
display power [ slot slot-number [ power-id ] ]
```

View

Any view

Default Level

1: Monitor level

Parameters

- **slot slot-number**: Displays the status of the power supply of the specified device in an IRF, where `slot-number` represents the member ID of the device. You can use the `display irf` command to view the member IDs of devices in a IRF system.

- **power-id**: Displays the status of the specified power supply unit (PSU), where `power-id` represents the PSU number. The value varies with devices.
Use the `display power` command to display the status of the power supply of a device.

Examples

```bash
# Display the status of the power supply of a device.
<Sysname> display power
Slot 1
  Power 1
  State : Normal
  Type  : AC

Slot 2
  Power 1
  State : Normal
  Type  : AC
```

display reboot-type

Syntax

```
display reboot-type [ slot slot-number ]
```

View

Any view

Default Level

2: System level

Parameters

`slot slot-number`: Displays reboot mode of the specified member device, where `slot-number` represents the member ID of the device. You can use the `display irf` command to view the member IDs of devices in a IRF system.

Description

Use the `display reboot-type` command to display the reboot mode of the device.

If no keyword is provided, the system displays the reboot mode of the master.

Examples

```bash
# Display the reboot mode of the device.
<Sysname> display reboot-type
  The rebooting type this time is: Cold
```

The above information indicates that the last reboot mode of the device is Cold boot (cold boot is to restart a device by powering it on). (The display of Warm represents a warm boot, which means to restart a device by using the commands like `reboot`).
display rps

Syntax

 display rps [slot slot-number [rps-id]]

View

 Any view

Default Level

 1: Monitor level

Parameters

 slot slot-number: Displays the RPS status of the specified member device, where slot-number represents the member ID of the device. You can use the display irf command to view the member IDs of devices in an IRF system. If the slot-number argument is not provided, the system displays the RPS status of all IRF members.

 rps-id: Displays the status of the specified RPS, where rps-id represents the RPS number. The value varies with devices.

Description

 Use the display rps command to display status of the RPS.

Examples

 # Display RPS status of the device.
 <Sysname> display rps
 Slot 1
 Power 2
 State : Absent
 Slot 2
 Power 2
 State : Absent

display schedule job

Syntax

 display schedule job

View

 Any view

Default Level

 1: Monitor level

Parameters

 None
Description

Use the `display schedule job` command to display the detailed configurations of the scheduled automatic execution function.

Examples

Display the detailed configurations of the current scheduled automatic execution function.
<Sysname> display schedule job
Specified command: execute 1.bat
Specified view: system view
Executed time: at 12:00 10/31/2007 (in 0 hours and 16 minutes)

If you modify the system time within 16 minutes, the configurations of scheduled automatic execution of the batch file will become invalid, and then when you execute the `display schedule job` command again, the system displays nothing.

display schedule reboot

Syntax

display schedule reboot

View

Any view

Default Level

3: Manage level

Parameters

None

Description

Use the `display schedule reboot` command to display the device reboot time set by the user.

Related commands: `schedule reboot at` and `schedule reboot delay`.

Examples

Display the reboot time of a device.
<Sysname> display schedule reboot
System will reboot at 16:00:00 03/10/2006 (in 2 hours and 5 minutes).

The above information indicates the system will reboot at 16:00:00 on March 10, 2006 (in two hours and five minutes).

display system-failure

Syntax

display system-failure

View

Any view
Default Level

3: Manage level

Parameters

None

Description

Use the display system-failure command to display the exception handling method of all member devices in a IRF system.

Related commands: system-failure.

Examples

Display the exception handling method.
<Sysname> display system-failure
System failure handling method: reboot

display transceiver alarm

Syntax

display transceiver alarm interface interface-type interface-number

View

Any view

Default Level

2: System level

Parameters

interface [interface-type interface-number]: Displays the current alarm information of the pluggable transceiver plugged in the specified interface. interface-type interface-number represents interface type and interface number. If it is not specified, the command displays the current alarm information of the pluggable transceiver in all the interfaces.

Description

Use the display transceiver alarm command to display the current alarm information of a single or all transceivers.

If no error occurs, None is displayed.

Table 4-7 shows the alarm information that may occur for the four types of commonly used transceivers.

Table 4-7 display transceiver alarm command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBIC/SFP</td>
<td></td>
</tr>
<tr>
<td>RX loss of signal</td>
<td>Incoming (RX) signal is lost.</td>
</tr>
<tr>
<td>RX power high</td>
<td>Incoming (RX) power level is high.</td>
</tr>
<tr>
<td>Field</td>
<td>Remarks</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>RX power low</td>
<td>Incoming (RX) power level is low.</td>
</tr>
<tr>
<td>TX fault</td>
<td>Transmit (TX) fault</td>
</tr>
<tr>
<td>TX bias high</td>
<td>TX bias current is high.</td>
</tr>
<tr>
<td>TX bias low</td>
<td>TX bias current is low.</td>
</tr>
<tr>
<td>TX power high</td>
<td>TX power is high.</td>
</tr>
<tr>
<td>TX power low</td>
<td>TX power is low.</td>
</tr>
<tr>
<td>Temp high</td>
<td>Temperature is high.</td>
</tr>
<tr>
<td>Temp low</td>
<td>Temperature is low.</td>
</tr>
<tr>
<td>Voltage high</td>
<td>Voltage is high.</td>
</tr>
<tr>
<td>Voltage low</td>
<td>Voltage is low.</td>
</tr>
<tr>
<td>Transceiver info I/O error</td>
<td>Transceiver information read and write error</td>
</tr>
<tr>
<td>Transceiver info checksum error</td>
<td>Transceiver information checksum error</td>
</tr>
<tr>
<td>Transceiver type and port configuration mismatch</td>
<td>Transceiver type does not match port configuration.</td>
</tr>
<tr>
<td>Transceiver type not supported by port hardware</td>
<td>Transceiver type is not supported on the port.</td>
</tr>
<tr>
<td>XFP</td>
<td></td>
</tr>
<tr>
<td>RX loss of signal</td>
<td>Incoming (RX) signal is lost.</td>
</tr>
<tr>
<td>RX not ready</td>
<td>RX is not ready</td>
</tr>
<tr>
<td>RX CDR loss of lock</td>
<td>RX clock cannot be recovered.</td>
</tr>
<tr>
<td>RX power high</td>
<td>RX power is high.</td>
</tr>
<tr>
<td>RX power low</td>
<td>RX power is low.</td>
</tr>
<tr>
<td>TX not ready</td>
<td>TX is not ready.</td>
</tr>
<tr>
<td>TX fault</td>
<td>TX fault</td>
</tr>
<tr>
<td>TX CDR loss of lock</td>
<td>TX clock cannot be recovered.</td>
</tr>
<tr>
<td>TX bias high</td>
<td>TX bias current is high.</td>
</tr>
<tr>
<td>TX bias low</td>
<td>TX bias current is low.</td>
</tr>
<tr>
<td>TX power high</td>
<td>TX power is high.</td>
</tr>
<tr>
<td>TX power low</td>
<td>TX power is low.</td>
</tr>
<tr>
<td>Module not ready</td>
<td>Module is not ready.</td>
</tr>
<tr>
<td>APD supply fault</td>
<td>APD (Avalanche Photo Diode) supply fault</td>
</tr>
<tr>
<td>TEC fault</td>
<td>TEC (Thermoelectric Cooler) fault</td>
</tr>
<tr>
<td>Wavelength unlocked</td>
<td>Wavelength of optical signal exceeds the manufacturer's tolerance.</td>
</tr>
<tr>
<td>Temp high</td>
<td>Temperature is high.</td>
</tr>
<tr>
<td>Temp low</td>
<td>Temperature is low.</td>
</tr>
<tr>
<td>Voltage high</td>
<td>Voltage is high.</td>
</tr>
<tr>
<td>Field</td>
<td>Remarks</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Voltage low</td>
<td>Voltage is low.</td>
</tr>
<tr>
<td>Transceiver info I/O error</td>
<td>Transceiver information read and write error</td>
</tr>
<tr>
<td>Transceiver info checksum error</td>
<td>Transceiver information checksum error</td>
</tr>
<tr>
<td>Transceiver type and port configuration mismatch</td>
<td>Transceiver type does not match port configuration.</td>
</tr>
<tr>
<td>Transceiver type not supported by port hardware</td>
<td>Transceiver type is not supported on the port.</td>
</tr>
<tr>
<td>XENPAK</td>
<td></td>
</tr>
<tr>
<td>WIS local fault</td>
<td>WIS (WAN Interface Sublayer) local fault</td>
</tr>
<tr>
<td>Receive optical power fault</td>
<td>Receive optical power fault</td>
</tr>
<tr>
<td>PMA/PMD receiver local fault</td>
<td>PMA/PMD (Physical Medium Attachment/Physical Medium Dependent) receiver local fault</td>
</tr>
<tr>
<td>PCS receive local fault</td>
<td>PCS (Physical Coding Sublayer) receiver local fault</td>
</tr>
<tr>
<td>PHY XS receive local fault</td>
<td>PHY XS (PHY Extended Sublayer) receive local fault</td>
</tr>
<tr>
<td>RX power high</td>
<td>RX power is high.</td>
</tr>
<tr>
<td>RX power low</td>
<td>RX power is low.</td>
</tr>
<tr>
<td>Laser bias current fault</td>
<td>Laser bias current fault</td>
</tr>
<tr>
<td>Laser temperature fault</td>
<td>Laser temperature fault</td>
</tr>
<tr>
<td>Laser output power fault</td>
<td>Laser output power fault</td>
</tr>
<tr>
<td>TX fault</td>
<td>TX fault</td>
</tr>
<tr>
<td>PMA/PMD receiver local fault</td>
<td>PMA/PMD receiver local fault</td>
</tr>
<tr>
<td>PCS receive local fault</td>
<td>PCS receive local fault</td>
</tr>
<tr>
<td>PHY XS receive local fault</td>
<td>PHY XS receive local fault</td>
</tr>
<tr>
<td>TX bias high</td>
<td>TX bias current is high.</td>
</tr>
<tr>
<td>TX bias low</td>
<td>TX bias current is low.</td>
</tr>
<tr>
<td>TX power high</td>
<td>TX power is high.</td>
</tr>
<tr>
<td>TX power low</td>
<td>TX power is low.</td>
</tr>
<tr>
<td>Temp high</td>
<td>Temperature is high.</td>
</tr>
<tr>
<td>Temp low</td>
<td>Temperature is low.</td>
</tr>
<tr>
<td>Transceiver info I/O error</td>
<td>Transceiver information read and write error</td>
</tr>
<tr>
<td>Transceiver info checksum error</td>
<td>Transceiver information checksum error</td>
</tr>
<tr>
<td>Transceiver type and port configuration mismatch</td>
<td>Transceiver type does not match port configuration.</td>
</tr>
<tr>
<td>Transceiver type not supported by port hardware</td>
<td>Transceiver type is not supported on the port.</td>
</tr>
</tbody>
</table>
Examples

Display the alarm information of the pluggable transceiver plugged in interface GigabitEthernet1/0/1. (The output of this command varies with devices.)

<Sysname> display transceiver alarm interface gigabitethernet 1/0/1
GigabitEthernet1/0/1 transceiver current alarm information:
 RX loss of signal
 RX power low

Table 4-8 display transceiver alarm command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>transceiver current alarm information</td>
<td>Current alarm information of the transceiver</td>
</tr>
<tr>
<td>RX loss of signal</td>
<td>Incoming (RX) signal is lost.</td>
</tr>
<tr>
<td>RX power low</td>
<td>Incoming (RX) power level is low.</td>
</tr>
</tbody>
</table>

display transceiver diagnosis

Syntax

display transceiver diagnosis interface [interface-type interface-number]

View

Any view

Default Level

2: System level

Parameters

interface [interface-type interface-number]: Displays the currently measured value of digital diagnosis parameters of the 3COM customized anti-spoofing pluggable optical transceiver plugged in the specified interface. interface-type interface-number represents interface type and interface number. If it is not specified, the command displays the currently measured value of digital diagnosis parameters of 3COM customized anti-spoofing pluggable optical transceivers in all the interfaces.

Description

Use the display transceiver diagnosis command to display the currently measured value of digital diagnosis parameters of 3COM customized anti-spoofing pluggable optical transceivers.

Examples

Display the currently measured value of the digital diagnosis parameters of the 3COM customized anti-spoofing pluggable optical transceiver plugged in interface GigabitEthernet1/0/2.

<Sysname> display transceiver diagnosis interface gigabitethernet1/0/2
GigabitEthernet1/0/2 transceiver diagnostic information:
Current diagnostic parameters:
 Temp(°C) Voltage(V) Bias(mA) RX power(dBM) TX power(dBM)
 36 3.31 6.13 -35.64 -5.19
Table 4-9 display transceiver diagnosis command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>transceiver diagnostic information</td>
<td>Digital diagnosis information of the transceiver plugged in the interface</td>
</tr>
<tr>
<td>Current diagnostic parameters</td>
<td>Current diagnostic parameters</td>
</tr>
<tr>
<td>Temp.(°C)</td>
<td>Digital diagnosis parameter-temperature, in °C, with the precision to 1°C.</td>
</tr>
<tr>
<td>Voltage(V)</td>
<td>Digital diagnosis parameter-voltage, in V, with the precision to 0.01 V.</td>
</tr>
<tr>
<td>Bias(mA)</td>
<td>Digital diagnosis parameter-bias current, in mA, with the precision to 0.01 mA.</td>
</tr>
<tr>
<td>RX power(dBM)</td>
<td>Digital diagnosis parameter-RX power, in dBM, with the precision to 0.01 dBM.</td>
</tr>
<tr>
<td>TX power(dBM)</td>
<td>Digital diagnosis parameter-TX power, in dBM, with the precision to 0.01 dBM.</td>
</tr>
</tbody>
</table>

display transceiver

Syntax

```text
display transceiver interface [ interface-type interface-number ]
```

View

Any view

Default Level

2: System level

Parameters

- **interface [interface-type interface-number]**: Displays main parameters of the pluggable transceiver plugged in the specified interface. `interface-type interface-number` represents interface type and interface number. If it is not specified, the command displays main parameters of the pluggable transceiver(s) in all the interfaces.

Description

Use the `display transceiver` command to display main parameters of a single or all pluggable transceivers.

Examples

```text
# Display main parameters of the pluggable transceiver plugged in interface GigabitEthernet1/0/3.
<Sysname> display transceiver interface gigabitethernet1/0/3
GigabitEthernet1/0/3 transceiver information:
  Transceiver Type       : 1000_BASE_SX_SFP
  Connector Type         : LC
  Wavelength(nm)         : 850
  Transfer Distance(m)   : 550(50um),270(62.5um)
```
Table 4-10 display transceiver command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>transceiver information</td>
<td>Pluggable transceiver information</td>
</tr>
<tr>
<td>Transceiver Type</td>
<td>Pluggable transceiver type</td>
</tr>
<tr>
<td>Connector Type</td>
<td>Type of the connectors of the transceiver:</td>
</tr>
<tr>
<td></td>
<td>• Optical connectors, including SC (SC connector, developed by NTT) and LC</td>
</tr>
<tr>
<td></td>
<td>(LC connector, 1.25 mm/RJ-45 optical connector developed by Lucent).</td>
</tr>
<tr>
<td></td>
<td>• Other connectors, including RJ-45 and CX 4.</td>
</tr>
<tr>
<td>Wavelength(nm)</td>
<td>• Optical transceiver: central wavelength of the laser sent, in nm. If the</td>
</tr>
<tr>
<td></td>
<td>transceiver supports multiple wavelengths, every two wavelength values are</td>
</tr>
<tr>
<td></td>
<td>separated by a comma.</td>
</tr>
<tr>
<td></td>
<td>• Electrical transceiver: displayed as N/A.</td>
</tr>
<tr>
<td>Transfer distance(xx)</td>
<td>Transfer distance, with xx representing km for single-mode transceivers and</td>
</tr>
<tr>
<td></td>
<td>m for other transceivers. If the transceiver supports multiple transfer</td>
</tr>
<tr>
<td></td>
<td>medium, every two values of the transfer distance are separated by a</td>
</tr>
<tr>
<td></td>
<td>comma. The corresponding transfer medium is included in the bracket</td>
</tr>
<tr>
<td></td>
<td>following the transfer distance value. The following are the transfer</td>
</tr>
<tr>
<td></td>
<td>media:</td>
</tr>
<tr>
<td></td>
<td>• 9 um: 9/125 um single-mode fiber</td>
</tr>
<tr>
<td></td>
<td>• 50 um: 50/125 um multi-mode fiber</td>
</tr>
<tr>
<td></td>
<td>• 62.5 um: 62.5/125 um multi-mode fiber</td>
</tr>
<tr>
<td></td>
<td>• TP: Twisted pair</td>
</tr>
<tr>
<td></td>
<td>• CX4: CX4 cable</td>
</tr>
<tr>
<td>Digital Diagnostic Monitoring</td>
<td>Whether the digital diagnosis function is supported, where:</td>
</tr>
<tr>
<td></td>
<td>• YES: supported</td>
</tr>
<tr>
<td></td>
<td>• NO: not supported</td>
</tr>
<tr>
<td>Vendor Name</td>
<td>Vendor name or name of the vendor who customizes the transceiver:</td>
</tr>
<tr>
<td></td>
<td>• 3COM customized anti-spoofing transceiver: 3COM is displayed.</td>
</tr>
<tr>
<td>Ordering Name</td>
<td>Pluggable transceiver model</td>
</tr>
</tbody>
</table>

display transceiver manuinfo

Syntax

display transceiver manuinfo interface [interface-type interface-number]

View

Any view
Default Level

2: System level

Parameters

interface [interface-type interface-number]: Displays part of the electrical label information of the 3COM customized anti-spoofing pluggable transceiver plugged in the specified interface. interface-type interface-number represents interface type and interface number. If it is not specified, the command displays part of the electrical label information of the 3COM customized anti-spoofing pluggable transceiver(s) in all the interfaces.

Description

Use the display transceiver manuinfo command to display part of the electrical label information of a single or all 3COM customized anti-spoofing pluggable transceivers.

Examples

Display the electrical label information of the 3COM customized anti-spoofing pluggable transceiver plugged in interface GigabitEthernet1/0/4.

<Sysname> display transceiver manuinfo interface gigabitethernet1/0/4

GigabitEthernet1/0/4 transceiver manufacture information:

Manu. Serial Number : 213410A0000054000251
Manufacturing Date : 2006-09-01
Vendor Name : 3COM

Table 4-11 display transceiver manuinfo command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manu. Serial Number</td>
<td>Serial number generated during debugging and testing of the customized transceivers</td>
</tr>
<tr>
<td>Manufacturing Date</td>
<td>Debugging and testing date. The date takes the value of the system clock of the computer that performs debugging and testing.</td>
</tr>
<tr>
<td>Vendor Name</td>
<td>Name of the vendor who customizes the transceiver, that is, 3COM.</td>
</tr>
</tbody>
</table>

reboot

Syntax

reboot [slot slot-number]

View

User view

Default Level

2: System level

Parameters

slot slot-number: Specifies the slot number of a member device. You can use the display irf command to view the member IDs of devices in a IRF system.
Description

Use the `reboot` command to reboot a member device, a subboard, or the whole IRF system.

You can use the `reboot [slot slot-number]` command on the master to reboot the master or a slave.

If the `slot` keyword is not provided, the whole IRF system will reboot.

⚠️ Caution

- Device reboot may result in the interruption of the ongoing services. Use these commands with caution.
- If a main boot file fails or does not exist, the device cannot be rebooted with the `reboot` command.
 In this case, you can re-specify a main boot file to reboot the device, or you can power off the device, then power it on and the system automatically uses the backup boot file to restart the device.
- If you are performing file operations when the device is to be rebooted, the system does not execute the command for the sake of security.

Examples

```
# If the current configuration does not change, reboot the device.
<Sysname> reboot
Start to check configuration with next startup configuration file, please wait..........DONE!
This command will reboot the device. Continue? [Y/N]:y
Now rebooting, please wait...

# If the current configuration changes, reboot the device.
<Sysname> reboot
Start to check configuration with next startup configuration file, please wait..........DONE!
This command will reboot the device. Current configuration will be lost in next startup if you continue. Continue? [Y/N]:y
Now rebooting, please wait...
```

reset unused porttag

Syntax

```
reset unused porttag
```

View

```
User view
```

Default Level

```
1: Monitor level
```

Parameters

```
None
```
Description

Use the reset unused porttag command to clear the 16-bit index saved but not used in the current systems of all member devices.

A confirmation is required when you carry out this command. If you fail to make a confirmation within 30 seconds or enter “N” to cancel the operation, the command will not be carried out.

Examples

Clear the 16-bit index saved but not used in the current system.
<Sysname> reset unused porttag
Current operation will delete all unused port tag(s). Continue? [Y/N]:y
<Sysname>

schedule job

Syntax

schedule job { at time1 [date] | delay time2 } view view command
undo schedule job

View

User view

Default Level

3: Manage level

Parameters

at time1 [date]: Specifies the execution time of a specified command.
- time1: Execution time of the command, in the format of hh:mm (hour/minute). The hh value ranges from 0 to 23, and the mm value ranges from 0 to 59. The value of hh:mm cannot exceed 23:59.
- date: Execution date of the command, in the format of MM/DD/YYYY (month/day/year) or YYYY/MM/DD (year/month/day). The YYYY value ranges from 2000 to 2035, the MM value ranges from 1 to 12, and the DD value range depends on a specific month.

delay time2: Specifies the execution waiting time of a specified command. time2 represents the waiting time, which can be in the following format:
- hh:mm (hour/minute): The hh value ranges from 0 to 720, and the mm value ranges from 0 to 59. The value of hh:mm cannot exceed 720:00.
- mm (minute): It ranges from 0 to 432000, with 0 indicating that a command is executed immediately without any delay.

view view: Specifies the view in which a command is executed. view represents the view name, and it takes the following values at present:
- shell, represents user view.
- system, represents system view.

command: The command string to be automatically executed at the scheduled time.

Description

Use the schedule job command to automatically execute a specified command at the scheduled time.
Use the **undo schedule job** command to remove the configuration.

Note the following:

- If you provide both the `time1` and `date` arguments, the execution time must be a future time.
- If you only provide the `time1` argument, when `time1` is earlier than the current system time, the specified command is executed at `time1` of the next day; when `time1` is later than the current system time, the specified command is executed at `time1` of the current day.
- No matter whether you use the `at` or `delay` keyword, the difference between the execution time of a command and the current system time cannot exceed 720 hours (namely, 30 days).
- At present, you can specify only user view and system view. To automatically execute the specified commands in other views or automatically execute multiple commands at a time, you can configure the system to automatically execute a batch file at a specified time (note that you must provide a complete file path for the system to execute the batch file.).
- The system does not check the `view` and `command` arguments. Therefore, ensure the correctness of the `command` argument (including the correct format of `command` and the correct relationship between the `command` and `view` arguments.).
- After the specified automatic execution time is reached, the system executes the specified commands without displaying any information except system information such as log, trap and debug.
- When the system is executing the specified command, you do not need to input any information. If there is information for you to confirm, the system automatically inputs `Y` or `Yes`; if certain characters need to be input, the system automatically inputs a default character string, and inputs an empty character string when there is no default character string.
- For the commands used to switch user interfaces, such as `telnet`, `ftp`, and `ssh2`, the commands used to switch views, such as `system-view`, `quit` and `interface ethernet`, and the commands used to modify status of the user that is executing commands, such as `super`, the operation interface, command view and status of the current user are not changed after the automatic execution function is performed.
- If you modify the system time after the automatic execution function is configured, the scheduled automatic execution configuration turns invalid automatically.
- Only the latest configuration takes effect if you execute the `schedule job` command repeatedly.

Examples

```
# Configure that the device will execute the batch file `1.bat` in system view in 60 minutes (supposing that the current time is 11:43).
<Sysname> schedule job delay 60 view system execute 1.bat
Info: Command execute 1.bat in system view will be executed at 12:43 10/31/2007 (in 1 hours and 0 minutes).

# Configure that the device will execute the batch file `1.bat` in system view at 12:00 in the current day (supposing that the current time is 11:43).
<Sysname> schedule job at 12:00 view system execute 1.bat
Info: Command execute 1.bat in system view will be executed at 12:00 10/31/2007 (in 0 hours and 16 minutes).
```

schedule reboot at

Syntax

```
schedule reboot at hh:mm [ date ]
```
undo schedule reboot

View
User view

Default Level
3: Manage level

Parameters

hh:mm: Reboot time of a device, in the format of hh:mm (hours:minutes). The value of the hh argument ranges from 0 to 23, and the value of the mm argument ranges from 0 to 59.

date: Reboot date of a device, in the format mm/dd/yyyy (month/day/year) or in the format yyyy/mm/dd (year/month/day) The yyyy value ranges from 2000 to 2035, the mm value ranges from 1 to 12, and the dd value depends on a specific month.

Description

Use the **schedule reboot at** command to enable the scheduled reboot function on all member devices and specify a specific reboot time and date.

Use the **undo schedule reboot** command to disable the scheduled reboot function.

By default, the scheduled reboot function is disabled.

There are two cases if no specific reboot date is specified:

- When the specified reboot time is later than the current time, the device will be rebooted at the reboot time of the current day.
- When the specified reboot time is earlier than the current time, the device will be rebooted at the reboot time the next day.
- If you are performing file operations when the device is to be rebooted, the system does not execute the command for the sake of security.

Note that:

- The precision of the device timer is 1 minute. One minute before the reboot time, the device will prompt “REBOOT IN ONE MINUTE” and will be rebooted in one minute.
- The difference between the reboot date and the current date cannot exceed 30 x 24 hours (namely, 30 days).
- After you execute the above command, the device will prompt you to confirm the configuration. You must enter Y or y to make the configuration take effect. The original configuration will be overwritten at the same time.
- If a date (month/day/year or year/month/day) later than the current date is specified for the **schedule reboot at** command, the device will be rebooted at the reboot time.
- If you use the **clock** command after the **schedule reboot at** command to adjust the system time, the reboot time set by the **schedule reboot at** command will become invalid.

⚠️ Caution

This command reboots the device in a future time, thus resulting in service interruption. Please use it with caution.
Examples

Configure the device to reboot at 12:00 AM (supposing that the current time is 11:43).

<Sysname> schedule reboot at 12:00
Reboot system at 12:00 06/06/2006(in 0 hour(s) and 16 minute(s))
confirm? [Y/N]:

If you have used the terminal logging command to enable the log display function on the terminal before setting a reboot time, the system will automatically display related log information after you enter <y>. By default, the log display function is enabled.

<Sysname>
%Jun 6 11:43:11:629 2006 Sysname CMD/4/REBOOT:
vty0(192.168.1.54): Set schedule reboot parameters at 11:43:11 06/06/2006, and system will reboot at 12:00 06/06/2006.

schedule reboot delay

Syntax

schedule reboot delay { hh:mm | mm }
undo schedule reboot

View

User view

Default Level

3: Manage level

Parameters

hh:mm: Device reboot wait time, in the format of hh:mm (hours:minutes). The value of the hh argument ranges from 0 to 720, and the value of the mm argument ranges from 0 to 59, and the value of the hh:mm argument cannot exceed 720:00.

mm: Device reboot wait time in minutes, in the range of 0 to 43,200.

Description

Use the schedule reboot delay command to enable the scheduled reboot function of all member devices and set a reboot wait time.

Use the undo schedule reboot command to disable the scheduled reboot function.

By default, the scheduled reboot function is disabled.

Note that:

- The reboot wait time can be in the format of hh:mm (hours:minutes) or mm (absolute minutes). The absolute minutes cannot exceed 30 x 24 x 60 minutes, namely, 30 days.
- The precision of the device timer is 1 minute. One minute before the reboot time, the device will prompt “REBOOT IN ONE MINUTE” and will be rebooted in one minute.
After you execute the above command, the device will prompt you to confirm the configuration. You must enter <Y> or <y> to make the configuration take effect. The original configuration will be overwritten at the same time.

- If you use the `clock` command after the `schedule reboot delay` command to adjust the system time, the reboot wait time set by the `schedule reboot delay` command will become invalid.
- If you are performing file operations when the device is to be rebooted, the system does not execute the command for the sake of security.

Caution

This command reboots the device after the specified delay time, thus resulting in service interruption. Please use it with caution.

Examples

Configure the device to reboot in 88 minutes (supposing the current time is 11:48).

```
<Sysname> schedule reboot delay 88
```

Reboot system at 13:16 06/06/2006(in 1 hour(s) and 28 minute(s)). confirm? [Y/N]:

If you have used the `terminal logging` command to enable the log display function on the terminal before setting a reboot time, the system will automatically display related log information after you enter y. By default, the log display function is enabled on the terminal.

```
<Sysname>
%Jun 6 11:48:44:860 2006 Sysname CMD/4/REBOOT:
```

shutdown-interval

Syntax

```
shutdown-interval time
undo shutdown-interval
```

View

System view

Default Level

2: System level

Parameters

`time`: Detection interval in seconds, in the range of 1 to 300.

Description

Use the `shutdown-interval` command to set a detection interval.

Use the `undo shutdown-interval` command to restore the default.
By default, the detection interval is 30 seconds.

Note that:

- If a protocol module such as the operation, administration and maintenance (OAM) module detects an exception on a port (for example, signal loss of the link on the peer end), the port will be closed automatically, without execution of the `shutdown` command. You can set the automatic recovery time of the port by using the `shutdown-interval` command.
- The `shutdown-interval` command helps you to dynamically set a detection interval to cooperate with the OAM module.
- If you change the detection interval to T1 during interface detection, the interval from when you change the interval to the time when detection starts is T. If T<T1, the interface which is down will be brought up after T1-T time; if T>=T1, the interface which is down will be brought up immediately.

Examples

```bash
# Set the detection interval to 100 seconds.
<sysname> system-view
[sysname] shutdown-interval 100
```

startup bootrom-access enable

Syntax

```bash
startup bootrom-access enable
undo startup bootrom-access enable
```

View

User view

Default Level

2: System level

Parameters

None

Description

Use the `startup bootrom-access enable` command to enable Boot ROM access during system startup (that is, you can press Ctrl+B to enter the Boot ROM menu).

Use the `undo startup bootrom-access enable` command to disable Boot ROM access during system startup (that is, you cannot enter the Boot ROM menu no matter whether you press Ctrl+B or not).

By default, Boot ROM access during system startup is enabled.

Refer to the `display startup` command in *File System Management Commands* in the *System Volume* for the related configuration.

Examples

```bash
# Disable Boot ROM access during system startup.
<sysname> undo startup bootrom-access enable
```
system-failure

Syntax

 system-failure { maintain | reboot }
 undo system-failure { maintain | reboot }

View

 System view

Default Level

 3: Manage level

Parameters

 maintain: Specifies that when the system detects any software abnormality, it maintains the current situation, and does not take any measure to recover itself.
 reboot: Specifies that when the system detects any software abnormality, it recovers itself through automatic reboot.

Description

Use the system-failure command to configure the exception handling method on all member devices. By default, all member devices adopt the reboot method to handle exceptions. The exception handling method is effective to the failed member device only, and does not influence the operations of other IRF members.

Examples

 # Set the exception handling method to reboot.
 <Sysname> system-view
 [Sysname] system-failure reboot
5 File System Management Commands

Note

- The current working directory is the root directory of the storage medium on the device in the examples in this manual.
- For the qualified filename formats, refer to File System Management Configuration in the System Volume.

File System Configuration Commands

cd

Syntax

cd { directory | .. | / }

View

User view

Default Level

3: Manage level

Parameters

directory: Name of the target directory, in the format of [drive:]][/path. drive represents the name of the storage medium, which is flash for the switch 4210G s not specified, it indicates the file or subfolder under the current directory.

..: Returns to the upper directory. If the current working directory is the root directory, or there is no such an upper directory, the current working directory is not changed after the execution of the cd command. No command line help for this keyword.

/: Returns to the root directory of the storage medium. No command line help for this keyword.

Description

Use the cd command to change the current working directory.

Examples

Enter the test folder after logging in to the device.
< Sysname > cd test

Return to the upper directory (Remember to enter a space after the keyword cd).
<Sysname> cd ..

Return to the root directory.

<Sysname> cd /

Enter the root directory of the flash on a slave with the member ID 2 after logging in to the master.

<Sysname> cd slot2#flash:/

Change the current directory from the file system of the slave to the test folder under the root directory of the master.

<Sysname> cd flash:/test

copy

Syntax

 copy fileurl-source fileurl-dest

View

User view

Default Level

3: Manage level

Parameters

 fileurl-source: Name of the source file.

 fileurl-dest: Name of the target file or folder.

Description

Use the copy command to copy a file.

If you specify a target folder, the system will copy the file to the specified folder and use the name of the source file as the file name.

Examples

Copy file testcfg.cfg under the current folder and save it as testbackup.cfg.

<Sysname> copy testcfg.cfg testbackup.cfg
Copy flash:/test.cfg to flash:/testbackup.cfg?[Y/N]:y
....
%Copy file flash:/test.cfg to flash:/testbackup.cfg...Done.

After logging in to the master, copy the configuration file of the master to the root directory of a slave (with the member ID 2).

<Sysname> copy vrcfg.cfg slot2#flash:
Copy flash:/vrcfg.cfg to slot2#flash:/vrcfg.cfg?[Y/N]:y

%Copy file flash:/vrcfg.cfg to slot2#flash:/vrcfg.cfg...Done.
delete

Syntax

\texttt{delete \{unreserved\} file-url}

View

User view

Default Level

3: Manage level

Parameters

\texttt{/unreserved}: Permanently deletes the specified file, and the deleted file can never be restored.

\texttt{file-url}: Name of the file to be deleted. Asterisks (*) are acceptable as wildcards. For example, to remove files with the extension of .txt in the current directory, you may use the \texttt{delete *.txt} command.

Description

Use the \texttt{delete} command to move a specified file from a storage medium to the recycle bin, where you can restore the file with the \texttt{undelete} command or permanently delete it with the \texttt{reset recycle-bin} command.

The \texttt{dir /all} command can display the files moved to the recycle bin. These files are enclosed in pairs of brackets.

Caution

If you delete two files in different directories but with the same filename, only the last one is retained in the recycle bin.

Examples

Remove file tt.cfg from the root directory of the storage medium on the master after logging in to the device.

<Sysname> delete tt.cfg
.
Delete flash:/tt.cfg?[Y/N]:y
.
%Delete file flash:/tt.cfg...Done.

Remove file tt.cfg from the root directory of the storage medium on a slave (with the member ID 2) after logging in to the device.

- Method 1

<Sysname> delete slot2#flash:/tt.cfg
Delete slot2#flash:/tt.cfg?[Y/N]:y
%Delete file slot2#flash:/tt.cfg...Done.

- Method 2
<Sysname> cd slot2#flash:
<Sysname> delete tt.cfg
Delete slot2#flash:/tt.cfg?[Y/N]:y
%Delete file slot2#flash:/tt.cfg...Done.

dir

Syntax

dir [/all] [file-url]

View

User view

Default Level

3: Manage level

Parameters

=all: Displays all files (including those in the recycle bin).

file-url: Name of the file or directory to be displayed. Asterisks (*) are acceptable as wildcards. For example, to display files with the .txt extension under the current directory, you may use the dir * .txt command.

Description

Use the dir command to display information about all visible files and folders in the current directory.

Use the dir /all command to display information about all files and folders in the current directory, including hidden files, hidden sub-folders and the files in the recycle bin that originally belong to the current directory. The names of these deleted files are enclosed in pairs of brackets [].

The dir file-url command displays information about a file or folder.

Examples

Display information about all files and folders in the storage medium of the master after logging in to the device.

<Sysname> dir /all
Directory of flash: /

0 -rwh 4 Apr 26 2008 12:02:05 snmpboots
1 -rw- 10187730 Apr 26 2008 16:47:07 startup.bin
2 -rwh 3144 Apr 26 2008 13:45:35 private-data.txt
3 -rw- 2161 Apr 26 2008 13:53:25 startup.cfg
4 -rw- 10058752 Sep 19 2008 17:41:46 startup_b58.bin
5 -rw- 10139143 Apr 26 2008 13:08:20 startup_wenxiangchong.bin
6 -rwh 716 Apr 26 2008 12:01:58 hostkey
7 -rwh 572 Apr 26 2008 12:02:11 serverkey
8 -rwh 548 Apr 26 2008 12:02:17 dsakey
9 -rw- 3035 Apr 26 2008 13:45:42 new-config.cfg
10 -rw- 2200 Apr 26 2008 14:58:35 [aa.cfg]
Display information about all files and folders in the storage medium of a slave (with the member ID 2) after logging in to the device.

<Sysname> cd slot2#flash:/
<IRF> dir /all

Directory of slot2#flash:/

<table>
<thead>
<tr>
<th>#</th>
<th>Access</th>
<th>Size (MB)</th>
<th>Date/Time</th>
<th>File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-rwh</td>
<td>0.0003</td>
<td>Apr 26 2008 13:45:28</td>
<td>private-data.txt</td>
</tr>
<tr>
<td>1</td>
<td>-rw-</td>
<td>0.0023</td>
<td>Apr 26 2008 16:36:18</td>
<td>startup.cfg</td>
</tr>
<tr>
<td>2</td>
<td>-rw-</td>
<td>0.0012</td>
<td>Apr 26 2008 12:00:22</td>
<td>patchstate</td>
</tr>
<tr>
<td>3</td>
<td>-rwh</td>
<td>0.0007</td>
<td>Apr 26 2008 14:31:36</td>
<td>hostkey</td>
</tr>
<tr>
<td>4</td>
<td>-rwh</td>
<td>0.0004</td>
<td>Apr 26 2008 14:31:41</td>
<td>snmpboots</td>
</tr>
<tr>
<td>5</td>
<td>-rw-</td>
<td>1.01873</td>
<td>Apr 26 2008 12:01:10</td>
<td>startup.bin</td>
</tr>
<tr>
<td>6</td>
<td>-rwh</td>
<td>0.0005</td>
<td>Apr 26 2008 14:31:47</td>
<td>serverkey</td>
</tr>
<tr>
<td>7</td>
<td>-rwh</td>
<td>0.0005</td>
<td>Apr 26 2008 14:31:52</td>
<td>dsakey</td>
</tr>
<tr>
<td>8</td>
<td>-rw-</td>
<td>0.0030</td>
<td>Apr 26 2008 13:45:36</td>
<td>new-config.cfg</td>
</tr>
<tr>
<td>9</td>
<td>drw-</td>
<td>-</td>
<td>Apr 26 2008 12:11:53</td>
<td>oldver</td>
</tr>
</tbody>
</table>

31496 KB total (1839 KB free)

Table 5-1 dir command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directory of</td>
<td>The current working directory</td>
</tr>
<tr>
<td>d</td>
<td>Directory. If it is not displayed, it indicates that the displayed item is a file.</td>
</tr>
<tr>
<td>r</td>
<td>The directory or file is readable.</td>
</tr>
<tr>
<td>w</td>
<td>The directory or file is writeable.</td>
</tr>
<tr>
<td>h</td>
<td>The directory or file is hidden.</td>
</tr>
<tr>
<td>[]</td>
<td>The file is in the recycle bin.</td>
</tr>
</tbody>
</table>

execute

Syntax

execute filename

View

System view

Default Level

2: System level

Parameters

filename: Name of a batch file with a .bat extension. You can use the rename command to change the suffix of the configuration file to .bat to use it as a batch file.
Description

Use the `execute` command to execute the specified batch file.

Batch files are command line files. Executing a batch file is to execute a set of command lines in the file.

- You should not include invisible characters in a batch file. If an invisible character is found during the execution, the batch process will abort and the commands that have been executed cannot be cancelled.
- Not every command in a batch file is sure to be executed. For example, if a certain command is not correctly configured, the system omits this command and goes to the next one.
- The configuration generated after a batch file is executed will not be backed up to the standby main board automatically.
- Each configuration command in a batch file must be a standard configuration command, meaning that the valid configuration information can be displayed with the `display current-configuration` command after this command is configured successfully; otherwise, this command may not be executed correctly.

Examples

Execute the batch file `test.bat` in the root directory.

```
<Sysname> system-view
[Sysname] execute test.bat
```

file prompt

Syntax

```
file prompt { alert | quiet }
```

View

System view

Default Level

3: Manage level

Parameters

- `alert`: Enables the system to warn you about operations that may bring undesirable results such as file corruption or data loss.
- `quiet`: Disables the system from warning you about any operation.

Description

Use the `file prompt` command to set a prompt mode for file operations.

By default, the prompt mode is `alert`.

Note that when the prompt mode is set to `quiet`, the system does not warn for any file operation. To avoid undesirable consequences resulting from misoperation, you are recommended to use the `alert` mode.

Examples

Set the file operation prompt mode to `alert`.

```
```
fixdisk

Syntax

 fixdisk device

View

User view

Default Level

3: Manage level

Parameters

 device: Storage medium name.

Description

Use the fixdisk command to restore the space of a storage medium when it becomes unavailable because of some abnormal operation.

Note that you can execute the fixdisk command for the storage medium on the master, but you cannot execute the command for the storage medium on the slaves.

Examples

 # Restore the space of the flash.
 <Sysname> fixdisk flash:
 Fixdisk flash: may take some time to complete...
 %Fixdisk flash: completed.

format

Syntax

 format device

View

User view

Default Level

3: Manage level

Parameters

 device: Name of a storage medium.

Description

Use the format command to format a storage medium.
Caution

Formatting a storage medium results in loss of all the files on the storage medium and these files cannot be restored. In particular, if there is a startup configuration file on a storage medium, formatting the storage medium results in loss of the startup configuration file.

Examples

Format the flash.

```
<Sysname> format flash:
All data on flash: will be lost, proceed with format? [Y/N]:y
.
%Format flash: completed.
```  

mkdir

Syntax

```
mkdir directory
```

View

User view

Default Level

3: Manage level

Parameters

```
directory: Name of a folder.
```

Description

Use the `mkdir` command to create a folder under a specified directory on the storage medium.

Note that:

- The name of the folder to be created must be unique under the specified directory. Otherwise, you will fail to create the folder under the directory.
- To use this command to create a folder, the specified directory must exist. For instance, to create folder `flash:/test/mytest`, the `test` folder must exist. Otherwise, you will fail to create folder `mytest`.

Examples

Create a folder named test under the current directory.

```
<Sysname> mkdir test
....
%Created dir flash:/test
```

Create folder test/subtest under the current directory.

```
<Sysname> mkdir test/subtest
....
```
%Created dir flash:/test/subtest

Create folder test on a slave (with the member ID 2) after logging in to the device.
<Sysname> mkdir slot2#flash:/test
....
%Created dir slot2#flash:/test.

more

Syntax

more file-url

View

User view

Default Level

3: Manage level

Parameters

file-url: File name.

Description

Use the more command to display the contents of the specified file.
So far, this command is valid only for text files.

Examples

Display the contents of file test.txt.
<Sysname> more test.txt
Welcome to 4210G

Display the contents of file testcfg.cfg.
<Sysname> more testcfg.cfg
#
version 5.20, ESS 2201
#
sysname Sysname
#
vlan 2
#
return
<Sysname>

Display the contents of file testcfg.cfg on a slave (with the member ID 2).
<Sysname> more slot2#flash:/testcfg.cfg

#
version 5.20, ESS 2201
#
move

Syntax

move fileurl-source fileurl-dest

View

User view

Default Level

3: Manage level

Parameters

fileurl-source: Name of the source file.
fileurl-dest: Name of the target file or folder.

Description

Use the move command to move a file.
If you specify a target folder, the system will move the source file to the specified folder, with the file name unchanged.

Examples

Move file flash:/test/sample.txt to flash:/, and save it as 1.txt.
<Sysname> move test/sample.txt 1.txt
Move flash:/test/sample.txt to flash:/1.txt?[Y/N]:y
...
% Moved file flash:/test/sample.txt to flash:/1.txt

Move file b.cfg to the subfolder test2.
<Sysname> move b.cfg test2
Move flash:/b.cfg to flash:/test2/b.cfg?[Y/N]:y
.
% Moved file flash:/b.cfg to flash:/test2/b.cfg.

pwd

Syntax

pwd

View

User view

Default Level

3: Manage level
Parameters

None

Description

Use the `pwd` command to display the current path.

Examples

Display the current path.
<Sysname> pwd
flash:

rename

Syntax

`rename fileurl-source fileurl-dest`

View

User view

Default Level

3: Manage level

Parameters

fileurl-source: Name of the source file or folder.
fileurl-dest: Name of the target file or folder.

Description

Use the `rename` command to rename a file or folder.
The target file name must be unique under the current path.

Examples

Rename file `sample.txt` as `sample.bat`.
<Sysname> rename sample.txt sample.bat
Rename flash:/sample.txt to flash:/sample.bat? [Y/N]:y

% Renamed file flash:/sample.txt to flash:/sample.bat

reset recycle-bin

Syntax

`reset recycle-bin [/force]`

View

User view
Default Level

3: Manage level

Parameters

/force: Deletes all files in the recycle bin, including files that cannot be deleted by the command without the /force keyword.

Description

Use the reset recycle-bin command to permanently delete the files in the recycle bin in the current directory.

If a file is corrupted, you may not be able to delete the file using the reset recycle-bin command. In this case, you can use the reset recycle-bin /force command, which can delete all the files in the recycle bin forcibly.

Note that:

- Unlike this command, the delete file-url command only moves a file to the recycle bin, and the file still occupies the memory space. To delete the file in the recycle bin, you need to execute the reset recycle-bin command in the original directory of the file.
- The reset recycle-bin command deletes files in the current directory and in the recycle bin. If the original path of the file to be deleted is not the current directory, use the cd command to enter the original directory of the file, and then execute the reset recycle-bin command.

Examples

Delete file b.cfg under the current directory and in the recycle bin.

- Display all the files in the recycle bin and under the current directory.

 <Sysname> dir /all

 Directory of flash://

 0 -rw- 10471471 Sep 18 2008 02:45:15 4210G.bin
 1 -rwh 4 Apr 26 2000 12:03:51 snmpboots
 2 -rwh 1792 Apr 26 2000 12:49:53 private-data.txt
 3 -rw- 9989823 Jul 14 2008 19:30:46 4210G_b57.bin
 4 -rw- 6 Apr 26 2000 12:04:33 patchstate
 5 -rw- 2209 Apr 26 2000 12:07:20 startup.cfg
 6 -rwh 716 Apr 26 2000 12:03:46 hostkey
 7 -rwh 572 Apr 26 2000 12:03:55 serverkey
 8 -rwh 548 Apr 26 2000 12:04:00 dsakey
 9 -rw- 478164 Apr 26 2000 14:52:35 4210G_505.btm
 10 -rw- 368 Apr 26 2000 12:04:04 patch_xxx.bin
 11 -rw- 2195 Apr 26 2000 12:43:08 sfp.cfg
 12 -rw- 5501 Apr 26 2000 13:05:57 [a.cfg]
 13 -rw- 2159 Apr 26 2000 13:06:04 [b.cfg]

31496 KB total (11018 KB free)

//The above information indicates that the current directory is flash:, and there are two files a.cfg and b.cfg in the recycle bin.
- **Delete file** `b.cfg` under the current directory and in the recycle bin.

  ```
  <Sysname> reset recycle-bin
  Clear flash:/~/a.cfg ?[Y/N]:n
  Clear flash:/~/b.cfg ?[Y/N]:y
  Clearing files from flash may take a long time. Please wait...
  ......
  %Cleared file flash:/~/b.cfg...
  ```

- **In directory** `flash:/`, **check whether the file** `b.cfg` **in the recycle bin is deleted.**

  ```
  <Sysname> dir /all
  ```

 Directory of flash: />

  ```
  0  -rw-  10471471  Sep 18 2008 02:45:15  4210G-d501.bin
  1  -rwh    4  Apr 26 2000 12:03:51  snmpboots
  2  -rwh  1792  Apr 26 2000 12:49:53  private-data.txt
  3  -rw-  998923  Jul 14 2008 19:30:46  4210G_b57.bin
  4  -rw-    6  Apr 26 2000 12:04:33  patchstate
  5  -rw-  2209  Apr 26 2000 12:07:20  startup.cfg
  6  -rwh   716  Apr 26 2000 12:03:46  hostkey
  7  -rwh   572  Apr 26 2000 12:03:55  serverkey
  8  -rwh   548  Apr 26 2000 12:04:00  dsakey
  9  -rw-  478164  Apr 26 2000 14:52:35  4210G_505.btm
 10  -rw-   368  Apr 26 2000 12:04:04  patch_xxx.bin
 11  -rw-  2195  Apr 26 2000 12:43:08  sfp.cfg
 12  -rw-  2195  Apr 26 2000 13:08:47  [a.cfg]
  ```

 31496 KB total (11015 KB free)

 // The above information indicates that file flash:/b.cfg is deleted permanently.

 # Delete file `aa.cfg` in the subdirectory `test` and in the recycle bin.

 - **Enter the subdirectory**

    ```
    <Sysname> cd test/
    ```

 - **Check all the files in the subfolder** `test`.

    ```
    <Sysname> dir /all
    ```

 Directory of flash:/test

    ```
    ```

 31496 KB total (11010 KB free)

 // The above information indicates only one file exists in the folder, and the file has been moved to the recycle bin.

 - **Permanently delete file** `test/aa.cfg`.

    ```
    <Sysname> reset recycle-bin
    Clear flash:/test/~/aa.cfg ?[Y/N]:y
    Clearing files from flash may take a long time. Please wait...
    ..
    %Cleared file flash:/test/~/aa.cfg...
    ```
rmdir

Syntax

```
rmdir directory
```

View

User view

Default Level

3: Manage level

Parameters

```
directory: Name of the folder.
```

Description

Use the `rmdir` command to remove a folder.

- The folder must be an empty one. If not, you need to delete all files and subfolders under it with the `delete` command.
- After you execute the `rmdir` command successfully, the files in the recycle bin under the folder will be automatically deleted.

Examples

```
# Remove folder mydir.
<Sysname> rmdir mydir
Rmdir flash:/mydir?[Y/N]: y

%Removed directory flash:/mydir.
```

undelete

Syntax

```
undelete file-url
```

View

User view

Default Level

3: Manage level

Parameters

```
file-url: Name of the file to be restored.
```

Description

Use the `undelete` command to restore a file from the recycle bin.

If another file with the same name exists under the same path, the undelete operation will cause it to be overwritten and the system will prompt you whether to continue.
Examples

Restore file a.cfg in directory flash: from the recycle bin.
<Sysname> undelete a.cfg
Undelete flash:/a.cfg?[Y/N]:y
.....
%Undeleted file flash:/a.cfg.

Restore file b.cfg in directory flash:/test from the recycle bin.
<Sysname> undelete flash:/test/b.cfg
Undelete flash:/test/b.cfg?[Y/N]:y
.....
%Undeleted file flash:/test/b.cfg.

Or, you can use the following steps to restore file flash:/test/b.cfg.
<Sysname> cd test
<Sysname> undelete b.cfg
Undelete flash:/test/b.cfg?[Y/N]:y
.....
%Undeleted file flash:/test/b.cfg.

Configuration File Management Commands

archive configuration

Syntax

archive configuration

View

User view

Default Level

3: Manage level

Parameters

None

Description

Use the archive configuration command to save the current running configuration manually.

After the execution of this command, the system saves the current running configuration with the specified filename (filename prefix + serial number) to the specified path.

Note the following:

- Before executing the archive configuration command, you must configure the filename prefix and path of the saved configuration file by using the archive configuration location command.
- After execution of the archive configuration command, the current running configuration is only saved to the master, and the slaves do not perform the saving operation.
Examples

Save the current running configuration manually.
<Sysname> archive configuration
Warning: Save the running configuration to an archive file. Continue? [Y/N]: Y
Please wait...
Info: The archive configuration file myarchive_1.cfg is saved.

archive configuration interval

Syntax

archive configuration interval minutes
undo archive configuration interval

View

System view

Default Level

3: Manage level

Parameters

minutes: Specifies the interval for automatically saving the current running configuration, in minutes. The value ranges from 10 to 525,600 (365 days).

Description

Use the archive configuration interval command to enable the automatic saving of the current running configuration and set the interval.

Use the undo archive configuration interval command to restore the default.

By default, the system does not save the current running configuration automatically.

After the execution of this command, the system saves the current running configuration with the specified filename to the specified path at a specified interval (the value of the minutes argument).

Configure an automatic saving interval according to the storage medium performance and the frequency of configuration modification:

- If the configuration of the device does not change frequently, you are recommended to save the current running configuration manually as needed
- If a low-speed storage medium (such as a flash) is used, you are recommended either to save the current running configuration manually, or to configure automatic saving with an interval longer than 1,440 minutes (24 hours).

Note the following:

- Before executing the archive configuration interval command, you must configure the filename prefix and path of the saved configuration file by using the archive configuration location command.
- After execution of the archive configuration interval command, the current running configuration is only saved to the master, and the slaves cannot save the configuration. However, the command is executed on both the master and the slaves to ensure the rollback of the configuration after the master is changed.
Examples

Configure the system to save the current running configuration every 60 minutes.
<Sysname> system-view
[Sysname] archive configuration interval 60
Info: Archive files will be saved every 60 minutes.

archive configuration location

Syntax

archive configuration location directory filename-prefix filename-prefix
undo archive configuration location

View

System view

Default Level

3: Manage level

Parameters

directory: The path of the folder for saving the saved configuration file, a case insensitive string of 1 to 63 characters, in the format of storage medium name:/[folder name]/subfolder name. The folder must be created before the configuration.

filename-prefix: The filename prefix of a saved configuration file, a case insensitive string of 1 to 30 characters (can include letters, numbers, _, and - only).

Description

Use the archive configuration location command to configure the path and filename prefix of a saved configuration file.

Use the undo archive configuration location command to restore the default.

By default, the path and filename prefix of a saved configuration file are not configured, and the system does not save the configuration file periodically.

Note the following:

- Before the current running configuration is saved either manually or automatically, the file path and filename prefix must be configured.
- If the undo archive configuration location command is executed, the current running configuration can neither be saved manually nor automatically, and the configuration by executing the archive configuration interval and archive configuration max commands restores to the default, meanwhile, the saved configuration files are cleared.
- The saving and rollback operations are executed only on the master. To make the configuration rollback take effect on the new master after an active/standby switchover, execute the archive configuration location command to specify the path and filename prefix of the saved configuration file on both the master and slaves. Therefore, before the execution of this command, ensure that the specified path is available on both the master and the slaves, and the path cannot include any member ID.
Examples

Configure the path and the filename prefix of a saved configuration file as flash:/archive/ and my_archive respectively.

- Create folder flash:/archive on the master.
 <Sysname> mkdir archive

 %Created dir flash:/archive.

- Create folder flash:/archive on a slave (with the member ID 2).
 <Sysname> mkdir slot2#flash:/archive

 %Created dir slot2#flash:/archive.

- Configure the path and the filename prefix of the saved configuration file.
 <Sysname> system-view
 [Sysname] archive configuration location flash:/archive filename-prefix my_archive

archive configuration max

Syntax

archive configuration max file-number
undo archive configuration max

View

System view

Default Level

3: Manage level

Parameters

file-number: The maximum number of configuration files that can be saved, in the range 1 to 10. The value of the file-number argument is determined by the memory space. You are recommended to set a comparatively small value for this argument if the available memory space is small.

Description

Use the archive configuration max command to set the maximum number of configuration files that can be saved.

Use the undo archive configuration max command to restore the default.

By default, a maximum of 5 configuration files can be saved.

Since excessive configuration files occupy large memory space, you can use this command to control the number of the files. After the maximum number of configuration files is saved, the system deletes the oldest files when the next file is saved (either automatically or manually). When you change the maximum number of configuration files that can be saved, the exceeded files are not deleted. If the number of the existing configuration files is larger than or equal to the newly configured upper limit, the system deletes the oldest \(n \) files when the next file is saved, where \(n = \text{the current number} - \text{the newly configured number} + 1 \), for example: if the number of configuration files that have been saved is 7, and the newly configured upper limit is 4, when there is a new configuration file to be saved, the system deletes 4 oldest files, where \(4 = 7-4+1 \).
Before executing this command, configure the path and filename prefix of a saved configuration file by using the **archive configuration location** command; otherwise, the execution of this command fails.

Note that, if the **undo archive configuration location** command is executed, the maximum number of configuration files that can be saved also restores to the default.

Examples

```bash
# Set the maximum number of configuration files that can be saved to 10.
<Sysname> system-view
[Sysname] archive configuration max 10
```

backup startup-configuration

Syntax

```bash
backup startup-configuration to dest-addr [ dest-filename ]
```

View

User view

Default Level

2: System level

Parameters

- **dest-addr**: IP address or name of a TFTP server. The address cannot be an IPv6 address.
- **dest-filename**: Target filename used to save the startup configuration file for the next system startup on the server.

Description

Use the **backup startup-configuration** command to back up the startup configuration file (used at the next system startup) to a specified TFTP server. If you do not specify this filename, the original filename is used.

For a device that has main and backup startup configuration files, this command only backs up the main startup configuration file.

Presently, the device uses TFTP to back up configuration files.

Examples

```bash
# Back up the startup configuration file of the device to the TFTP server with IP address 2.2.2.2, using filename 192-168-1-26.cfg.
<Sysname> display startup
    Current startup saved-configuration file: flash:/sfp.cfg
    Next main startup saved-configuration file: flash:/sfp.cfg
    Next backup startup saved-configuration file: NULL
<Sysname> backup startup-configuration to 2.2.2.2 192-168-1-26.cfg
Backup next startup-configuration file to 2.2.2.2, please wait...finished!
<Sysname>
```

After the above operation, the device backs up file **sfp.cfg** to TFTP server 2.2.2.2, where the file is saved as **192-168-1-26.cfg**.
configuration replace file

Syntax

 configuration replace file filename

View

 System view

Default Level

 3: Manage level

Parameters

 filename: Specifies the name of the replacement configuration file for configuration rollback.

Description

 Use the configuration replace file command to set configuration rollback.
 After the execution of this command, the current running configuration rolls back to the configuration state based on the specified configuration file (filename).

Examples

 # Roll back from the current running configuration to a previous configuration state based on a saved configuration file my_archive_1.cfg.
 <Sysname> system-view
 [Sysname] configuration replace file my_archive_1.cfg
 Info: Now replacing the current configuration. Please wait...
 Info: Succeeded in replacing current configuration with the file my_archive_1.cfg.

display archive configuration

Syntax

 display archive configuration

View

 Any view

Default Level

 1: Monitor level

Parameters

 None

Description

 Use the display archive configuration command to display the information about configuration rollback.

Examples

 # Display the information about configuration rollback.
display archive configuration

Location: flash:/archive
Filename prefix: my_archive
Archive interval in minutes: 120
Maximum number of archive files: 10

Saved archive files:

<table>
<thead>
<tr>
<th>No.</th>
<th>TimeStamp</th>
<th>FileName</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aug 05 2007 20:24:54</td>
<td>my_archive_1.cfg</td>
</tr>
<tr>
<td>2</td>
<td>Aug 05 2007 20:34:54</td>
<td>my_archive_2.cfg</td>
</tr>
<tr>
<td>#</td>
<td>Aug 05 2007 20:44:54</td>
<td>my_archive_3.cfg</td>
</tr>
</tbody>
</table>

`#` indicates the most recent archive file.
Next archive file to be saved: my_archive_4.cfg

Table 5-2 display archive configuration command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Absolute path of the saved configuration files</td>
</tr>
<tr>
<td>Archive interval in minutes</td>
<td>Configuration file saving interval, in minutes. If the automatic saving is disabled, this field is not displayed.</td>
</tr>
</tbody>
</table>

display saved-configuration

Syntax

display saved-configuration [by-linenum]

View

Any view

Default Level

2: System level

Parameters

by-linenum: Identifies each line of displayed information with a line number.

Description

Use the `display saved-configuration` command to display the contents of the configuration file saved for the next startup of the device.

During device management and maintenance, you can use this command to check whether important configurations are saved to the configuration file to be used for the next startup of the device.

This command displays the main configuration file to be used for the next system startup.

If the system is not specified with a configuration file for the next startup or the specified configuration file does not exist, no information will be displayed when you execute the `display saved-configuration` command.

Related commands: `save`, `reset saved-configuration`; `display current-configuration` in Basic System Configuration Commands in the System Volume.
Examples

Display the configuration file saved for the next startup of the device.
<Sysname> display saved-configuration

version 5.20, ESS 2201
sysname Sysname
domain default enable system
telnet server enable
multicast routing-enable
vlan 1
vlan 999
domain system
access-limit disable
state active
idle-cut disable
self-service-url disable
interface NULL0

---- More ----

The configurations are displayed in the order of global, port, and user interface. "---- More ----" means that all information on this screen has been displayed, and if you press the Space key, the next screen will be displayed.

Display the contents of the configuration file saved for the next startup of the device with a number identifying each line.
<Sysname> display saved-configuration by-linenum
1:
2: version 5.20, ESS 2201
3:
4: sysname Sysname
5:
6: domain default enable system
7:
8: telnet server enable
9:
10: multicast routing-enable
11:
12: vlan 1
13:

14: vlan 999
15: #
16: domain system
17: access-limit disable
18: state active
19: idle-cut disable
20: self-service-url disable
21: #
22: interface NULL0
23: #

"---- More ----"

"---- More ----" means that all information on this screen has been displayed, and if you press the Space key, the next screen will be displayed.

display startup

Syntax

display startup

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the display startup command to display the configuration files used at the current system startup and the configuration file(s) to be used at the next system startup.

Note that:

- The slaves are started and run based on the current configurations of the master; therefore the current startup configuration files displayed on all the member devices in an IRF are always the same.
- After the master is changed, the new master does not restart using the configuration file but runs with the current configuration instead. Therefore, when you execute the display startup command, the startup configuration file used for the current startup of the new master is displayed as NULL and those of the slaves are also NULL to keep consistent with the new master.

Related commands: startup saved-configuration.

Examples

Display the startup configuration file used at the current system startup and the one to be used at the next system startup.

<Sysname> display startup
MainBoard:
Current startup saved-configuration file: NULL
Next main startup saved-configuration file: flash:/startup.cfg
Next backup startup saved-configuration file: flash:/startup2.cfg
Slot 2:
Current startup saved-configuration file: NULL
Next main startup saved-configuration file: flash:/startup.cfg
Next backup startup saved-configuration file: flash:/startup2.cfg

Table 5-3 display startup command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MainBoard</td>
<td>The configuration files used for the current and the next startup of the master</td>
</tr>
<tr>
<td>Current Startup saved-configuration file</td>
<td>The configuration file used for the current startup</td>
</tr>
<tr>
<td>Next main startup saved-configuration file</td>
<td>The main configuration file used for the next startup</td>
</tr>
<tr>
<td>Next backup startup saved-configuration file</td>
<td>The backup configuration file used for the next startup</td>
</tr>
<tr>
<td>Slot 2</td>
<td>The configuration files used for the current and the next startup of the slave (with the member ID 2)</td>
</tr>
</tbody>
</table>

reset saved-configuration

Syntax

reset saved-configuration [backup | main]

View

User view

Default Level

2: System level

Parameters

backup: Deletes the backup startup configuration file.
main: Deletes the main startup configuration file.

Description

Use the reset saved-configuration command to delete the startup configuration file saved on the storage medium of the device.

Note that:

- This command will permanently delete the configuration file from all the member devices in a IRF. Use it with caution.
- On a device that has the main and backup startup configuration files, you can choose to delete either the main or backup startup configuration file. However, in the case that the main and backup startup configuration files are the same, if you perform the delete operation for once, the
system will not delete the configuration file but only set the corresponding startup configuration file (main or backup, according to which one you specified in the command) to NULL.

- The execution of the `reset saved-configuration` command and that of the `reset saved-configuration main` command have the same effect, that is, they will delete the main startup configuration file.

Related commands: `save`, `display saved-configuration`.

Examples

Delete the startup configuration file for the next startup from the storage medium of the device.

```bash
<Sysname> reset saved-configuration backup
The saved configuration file will be erased. Are you sure? [Y/N]:y
Configuration file in flash is being cleared.
Please wait ...
..
MainBoard:
   Configuration file is cleared.
Slot 2:
   Erase next configuration file successfully
```

restore startup-configuration

Syntax

```
restore startup-configuration from src-addr src-filename
```

View

User view

Default Level

2: System level

Parameters

- `src-addr`: IP address or name of a TFTP server. The address cannot be an IPv6 address.
- `src-filename`: Filename of the configuration file to be downloaded from the specified server.

Description

Use the `restore startup-configuration` command to download a configuration file from the specified TFTP server to the device and specify the configuration file as the startup configuration file to be used at the next startup of the device.

- The file downloaded is set as the main startup configuration file to be used at the next system startup.
- This command downloads the configuration file to the root directory of the storage medium of all the member devices and specifies the file as the startup configuration file to be used at the next startup of all the member devices.

If the file to be downloaded has the same filename as an existing file on a member device, you will be prompted whether you want to overwrite the existing file or not. In addition, both the master and the slaves are assumed to use the storage media of the same type when the device is checking the
filename or backing up the configuration file to the slaves. When backing up the configuration file to the
slaves, the device saves the file to the same directory on the slaves as on the master, that is, the root
directory.

Examples

Download file config.cfg from the TFTP server whose IP address is 2.2.2.2, and the file is to be used
as the main configuration file at the next startup of the device.

<Sysname> restore startup-configuration from 2.2.2.2 config.cfg
Restore next startup-configuration file from 2.2.2.2. Please wait...finished!
Now restore next startup-configuration file from main to slave board. Please wait...finished!

save

Syntax

save file-url [all | slot slot-number]
save [safely] [backup | main]

View

Any view

Default Level

2: System level

Parameters

file-url: File path, where the extension of the file name must be .cfg. When used with the keyword all or
slot, this argument cannot include a member ID. If the file path includes a folder name, you must first
create the folder on the member device; otherwise, the operation will fail.

all: Saves the current configuration in the specified filename to all the member devices in a IRF.

slot slot-number: Saves the current configuration in the specified filename to a slave. slot-number
represents the member ID of a member device. The value range depends on the device model. You
can use the display irf command to view the member IDs of the member devices in a IRF.

safely: Sets the configuration saving mode to safe. If this argument is not specified, the configuration
file is saved in fast mode.

backup: Saves the current configuration to the startup configuration file specified in the interactive
mode, and specifies the file as the backup startup configuration file to be used at the next startup of the
device.

main: Saves the current configuration to the main startup configuration file specified in the interactive
mode, and specifies the file as the main startup configuration file to be used at the next startup of the
device.

Description

Use the save filename [all | slot slot-number] command to save the current configuration to the
specified configuration file, but the system will not specify the file as the startup configuration file for
the next system startup. If the file specified by filename does not exist, the system will create the file and
then save the configuration to the file; if the all or slot keyword is not specified, the configuration will be
saved to the master.
Use the `save [safely] [backup | main]` command to save the current configuration to the root directory of the storage medium on a member device, and specify the file as the startup configuration file for the next system startup. If the `backup` or `main` keyword is not specified, the `main` keyword is used by default.

Whether the `save [safely] [backup | main]` command or the `save filename all command+Enter` takes effect on all the member devices or on the master only depends on whether the configuration file auto-save function is enabled.

Related commands: `slave auto-update config`, `reset saved-configuration`, `display current-configuration`, `display saved-configuration`.

Examples

Save the current configuration file to the specified directory, but do not specify the configuration file as the configuration file for the next startup.

```bash
<Sysname> save test.cfg
The current configuration will be saved to flash:/test.cfg. Continue? [Y/N]:y
Now saving current configuration to the device.
Saving configuration flash:/test.cfg. Please wait...
............
Configuration is saved to flash successfully.
```

Save the current configuration to the root directory of the storage medium on a member device, and specify the file as the configuration file for the next startup.

```bash
<Sysname> display startup
MainBoard:
Current startup saved-configuration file: NULL
Next main startup saved-configuration file: flash:/aa.cfg
Next backup startup saved-configuration file: NULL
Slot 2:
Current startup saved-configuration file: NULL
Next main startup saved-configuration file: flash:/aa.cfg
Next backup startup saved-configuration file: NULL
// The above information indicates that the main startup configuration file for the next startup of all the member devices is aa.cfg.
```

```bash
<Sysname> save
The current configuration will be written to the device. Are you sure? [Y/N]:y
Please input the file name(*.cfg)[flash:/aa.cfg]
(To leave the existing filename unchanged, press the enter key):startup.cfg
flash:/startup.cfg exists, overwrite? [Y/N]:y
Validating file. Please wait..................
Saved the current configuration to mainboard device successfully.
Slot 2:
Save next configuration file successfully
Configuration is saved to device successfully.
<Sysname> display startup
MainBoard:
Current startup saved-configuration file: NULL
Next main startup saved-configuration file: flash:/startup.cfg
```
Next backup startup saved-configuration file: NULL
Slot 2:
Current startup saved-configuration file: NULL
Next main startup saved-configuration file: flash:/startup.cfg
Next backup startup saved-configuration file: NULL

// The above information indicates that the main configuration file for the next startup of all the member devices in the IRF is changed to **startup.cfg**.

Save the current configuration in the name of **test.cfg** to a slave (with the member ID of 2) (approach 1).

<Sysname> save test.cfg slot 2
The current configuration will be saved to slot2#flash:/test.cfg. Continue? [Y/N]:y
Now saving current configuration to the device.
Saving configuration slot2#flash:/test.cfg. Please wait...
........
Configuration is saved to slot2#flash successfully.

Or, you can use the following command (approach 2):

<Sysname> save slot2#flash:/test.cfg

slave auto-update config

Syntax

```
slave auto-update config
undo slave auto-update config
```

View

System view

Default Level

2: System level

Parameters

None

Description

Use the **slave auto-update config** command to enable the configuration file auto-save function.
Use the **undo slave auto-update config** command to disable the function.
By default, the configuration file auto-save function is enabled.

Examples

Enable the configuration file auto-save function.

```
<Sysname> system-view
[Sysname] slave auto-update config
```
startup saved-configuration

Syntax

```
startup saved-configuration cfgfile [ backup | main ]
undo startup saved-configuration
```

View

User view

Default Level

2: System level

Parameters

- **cfgfile**: Configuration file name. The file must be a file with an extension .cfg stored in the root directory of the storage medium.
- **backup**: Sets the configuration file as the backup startup configuration file that will be used at the next startup of the device.
- **main**: Sets the configuration file as the main startup configuration file that will be used at the next startup of the device.

Description

Use the `startup saved-configuration` command to specify a startup configuration file (the configuration file to be used at the next system startup) for all the member devices.

Use the `undo startup saved-configuration` command to configure all the member devices to start up with the null configuration, that is, the factory configuration.

The startup configuration file for the next startup of all the member devices must the same. Therefore, before using the command, ensure that the specified configuration file has been saved to the root directories of the storage media of all the member devices; otherwise, the command will fail.

- The `startup saved-configuration` and `startup saved-configuration main` commands have the same effect: Both of them are used to specify the main startup configuration file.
- The main and backup startup configuration files can be specified as the same file. However, it is recommended you use different files, or, save the same configuration as two files using different file names, one specified as the main startup configuration file, and the other specified as the backup.
- If you execute the `undo startup saved-configuration` command, the system will set the main and backup startup configuration file as NULL, but will not delete the two configuration files.

Related commands: `display startup`.

Examples

```
# Specify a startup configuration file for the next system startup.
<Sysname> startup saved-configuration testcfg.cfg
Please wait ...
Setting the master board ...........
... Done!
Setting the slave board ...
```
Slot 2:
Set next configuration file successfully
FTP Configuration Commands

FTP Server Configuration Commands

display ftp-server

Syntax

display ftp-server

View

Any view

Default Level

3: Manage level

Parameters

None

Description

Use the display ftp-server command to display the FTP server configuration.

After configuring FTP server parameters, you may verify them with this command.

Examples

Display the FTP server configuration.

<Sysname> display ftp-server
 FTP server is running
 Max user number: 1
 User count: 1
 Timeout value(in minute): 30
 Put Method: fast

Table 6-1 display ftp-server command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max user number</td>
<td>Maximum number of login users at a time</td>
</tr>
<tr>
<td>User count</td>
<td>Number of the current login users</td>
</tr>
<tr>
<td>Timeout value (in minute)</td>
<td>Allowed idle time of an FTP connection. If there is no packet exchange between the FTP server and client during the whole period, the FTP connection will be disconnected.</td>
</tr>
</tbody>
</table>
display ftp-user

Syntax

`display ftp-user`

View

Any view

Default Level

3: Manage level

Parameters

None

Description

Use the `display ftp-user` command to display the detailed information of current FTP users.

Examples

```
# Display the detailed information of FTP users.
<Sysname> display ftp-user

UserName  HostIP    Port    Idle    HomeDir
ftp        192.168.1.54 1190    0        flash:

# If the name of the logged-in user exceeds 10 characters, the exceeded characters will be displayed in the next line and right justified, for example, if the logged-in user name is administrator, the information is displayed as follows:

<Sysname> display ftp-user

UserName  HostIP    Port    Idle    HomeDir
administra 192.168.0.152 1031    0        flash:
```

Table 6-2 display ftp-user command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UserName</td>
<td>Name of the currently logged-in user</td>
</tr>
<tr>
<td>HostIP</td>
<td>IP address of the currently logged-in user</td>
</tr>
<tr>
<td>Port</td>
<td>Port which the currently logged-in user is using</td>
</tr>
<tr>
<td>Idle</td>
<td>Duration time of the current FTP connection, in minutes</td>
</tr>
<tr>
<td>HomeDir</td>
<td>Authorized path of the present logged-in user</td>
</tr>
</tbody>
</table>
free ftp user

Syntax

 free ftp user username

View

 User view

Default Level

 3: Manage level

Parameters

 username: Username. You can use the display ftp-user command to view the logged-in user name of the current FTP connection.

Description

 Use the free ftp user command to manually release the FTP connection established with the specified username.

 Note that if the user to be released is transmitting a file, the connection between the user and the FTP server is terminated after the file transmission.

Examples

 # Manually release the FTP connection established with username ftpuser.
 <Sysname> free ftp user ftpuser
 Are you sure to free FTP user ftpuser? [Y/N]:y
 <Sysname>

ftp server acl

Syntax

 ftp server acl acl-number
 undo ftp server acl

View

 System view

Default Level

 3: Manage level

Parameters

 acl-number: Basic access control list (ACL) number, in the range 2000 to 2999.

Description

 Use the ftp server acl command to control the access to the device from FTP clients through ACL.

 Use the undo ftp server acl command to restore the default.

 By default, the access to the device from FTP clients is not controlled.
Associated with an ACL, the FTP server can deny the FTP requests of some FTP clients and only permit the access of clients allowed by the ACL rules. This configuration only filters the FTP connections to be established, and has no effect on the established FTP connections and operations. If you execute the command for multiple times, the last specified ACL takes effect.

Examples

```
# Associate the FTP service with ACL 2001 to allow only the client 1.1.1.1 to access the device through FTP.
<Sysname> system-view
[Sysname] acl number 2001
[Sysname-acl-basic-2001] rule 0 permit source 1.1.1.1 0
[Sysname-acl-basic-2001] rule 1 deny source any
[Sysname-acl-basic-2001] quit
[Sysname] ftp server acl 2001
```

ftp server enable

Syntax

```
ftp server enable
undo ftp server
```

View

System view

Default Level

3: Manage level

Parameters

None

Description

Use the `ftp server enable` command to enable the FTP server and allow the login of FTP users. Use the `undo ftp server` command to disable the FTP server. By default, the FTP server is disabled to prevent attacks.

Examples

```
# Enable the FTP server.
<Sysname> system-view
[Sysname] ftp server enable
```

ftp timeout

Syntax

```
ftp timeout minute
undo ftp timeout
```
View

System view

Default Level

3: Manage level

Parameters

minute: Idle-timeout timer in minutes, in the range 1 to 35791.

Description

Use the `ftp timeout` command to set the idle-timeout timer.

Use the `undo ftp timeout` command to restore the default.

By default, the FTP idle time is 30 minutes.

After you log in to an FTP server, if the connection is disrupted and the FTP server is not notified, the system will maintain the connection, which will cause the occupation of the system resources and affect the login of other FTP users. To address this problem, you can set an idle-timeout timer so that the FTP server can disconnect from the user if no information is received or/and transmitted before the timer expires.

Examples

```
# Set the idle-timeout timer to 36 minutes.
<Sysname> system-view
<Sysname> ftp timeout 36
```

ftp update

Syntax

```
ftp update { fast | normal }
undo ftp update
```

View

System view

Default Level

3: Manage level

Parameters

- **fast**: Fast update.
- **normal**: Normal update.

Description

Use the `ftp update` command to set the file update mode that the FTP server uses while receiving data.

Use the `undo ftp update` command to restore the default, namely, the normal mode.
Examples

Set the FTP update mode to normal.
<Sysname> system-view
<Sysname> ftp update normal

FTP Client Configuration Commands

Note

- In this section, the configuration procedure of entering FTP client view is omitted. You must use the `ftp` command to enter FTP client view for configurations under this view. For details, refer to `ftp`.
- Before executing the FTP client configuration commands in this section, make sure you have configured the proper authority for users on the FTP server, such as view the files under the current directory, read/download the specified file, create directory/upload files, rename/remove files, and so on.
- The prompt information in the examples of this section varies with FTP server types.

ascii

Syntax

ascii

View

FTP client view

Default Level

3: Manage level

Parameters

None

Description

Use the `ascii` command to set the file transfer mode to ASCII.

By default, the file transfer mode is ASCII.

The carriage return characters vary with operating systems. For example, to indicate the end of a line and transfer to the next line, the 3COM device system and Windows system use characters `/r/n`, and the Linux system uses characters `/n`. Therefore, after the file transmission between two systems that use different carriage return characters, such as Linux system and 3COM device system, the FTP transmission mode must be applied to ensure the correct resolution of the files.

FTP transfers files in two modes:
- Binary mode: for program file or picture transmission.
ASCII mode: for text file transmission.
Related commands: binary.

Examples

Set the file transfer mode to ASCII.

[ftp] ascii
200 Type set to A.

binary

Syntax

binary

View

FTP client view

Default Level

3: Manage level

Parameters

None

Description

Use the binary command to set the file transfer mode to binary (also called flow mode).
By default, the transfer mode is ASCII mode.
Related commands: ascii.

Examples

Set the file transfer mode to binary.

[ftp] binary
200 Type set to I.

bye

Syntax

bye

View

FTP client view

Default Level

3: Manage level

Parameters

None
Description

Use the `bye` command to disconnect from the remote FTP server and return to user view.

Examples

```bash
# Terminate the connection with the remote FTP server and return to user view.
[ftp] bye
221 Server closing.
```

cd

Syntax

```bash
cd { directory | .. | / }
```

View

FTP client view

Default Level

3: Manage level

Parameters

- `directory`: Name of the target directory, in the format of `[drive:][/]path`. `drive` represents the name of the storage medium, which is flash for the Switch 4210G. If `drive` is not specified, it indicates the file or subfolder under the current directory.
- `..`: Returns to the upper directory, the function same as `cdup`. If the current working directory is the root directory, or there is no such an upper directory, the current working directory is not changed after the execution of the `cd` command. No command line help for this keyword.
- `/`: Returns to the root directory of the storage medium. No command line help for this keyword.

Description

Use the `cd` command to change the current working directory on the remote FTP server.

You can use this command to access another authorized directory on the FTP server.

Related commands: `pwd`.

Examples

```bash
# Change the working directory to the sub-directory `logfile` of the current directory.
[ftp] cd logfile
250 CWD command successful.

# Change the working directory to the sub-directory `folder` of the authorized directory.
[ftp] cd /folder
250 CWD command successful.
```

cdup

Syntax

```bash
cdup
```
View
FTP client view

Default Level
3: Manage level

Parameters
None

Description
Use the `cdup` command to exit the current directory and enter the upper directory of the FTP server. Execution of this command will not change the working directory if the current directory is already the authorized directory (that is, `work-directory`).

Related commands: `cd`, `pwd`.

Examples

Change the current working directory path to the upper directory.
`[ftp] cdup`
200 CDUP command successful.

close

Syntax
close

View
FTP client view

Default Level
3: Manage level

Parameters
None

Description
Use the `close` command to terminate the connection to the FTP server, but remain in FTP client view. This command is equal to the `disconnect` command.

Examples

Terminate the connection to the FTP server and remain in FTP client view.
`[ftp] close`
221 Server closing.
`[ftp]`
debugging

Syntax

debugging
undo debugging

View

FTP client view

Default Level

3: Manage level

Parameters

None

Description

Use the **debugging** command to enable FTP client debugging.

Use the **undo debugging** command to disable FTP client debugging.

By default, FTP client debugging is disabled.

Examples

```bash
# The device serves as the FTP client. Enable FTP client debugging and use the active mode to
download file sample.file from the current directory of the FTP server.

<Sysname> terminal monitor
<Sysname> terminal debugging
<Sysname> ftp 192.168.1.46
Trying 192.168.1.46 ...
Press CTRL+K to abort
Connected to 192.168.1.46.
220 FTP service ready.
User(192.168.1.46:(none)):ftp
331 Password required for ftp.
Password:
230 User logged in.

[ftp]undo passive
[ftp] debugging
[ftp] get sample.file

---> PORT 192,168,1,44,4,21
200 Port command okay.
The parsed reply is 200
---> RETR sample.file
150 Opening ASCII mode data connection for /sample.file.
The parsed reply is 150
FTPC: File transfer started with the signal light turned on.
FTPC: File transfer completed with the signal light turned off.
```
Table 6-3 debugging command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--> PORT</td>
<td>Give an FTP order, with data port numbers being…</td>
</tr>
<tr>
<td></td>
<td>The parsed reply is</td>
</tr>
<tr>
<td></td>
<td>The received reply code, which is defined in RFC 959.</td>
</tr>
<tr>
<td>--> RETR</td>
<td>Download the file</td>
</tr>
<tr>
<td>FTPC:</td>
<td>File transfer started with the signal light turned on.</td>
</tr>
<tr>
<td>FTPC:</td>
<td>File transfer completed with the signal light turned off.</td>
</tr>
<tr>
<td></td>
<td>File transfer started, and the signal light is turned on.</td>
</tr>
<tr>
<td></td>
<td>File transfer is completed, and the signal light is turned off.</td>
</tr>
</tbody>
</table>

delete

Syntax

```
delete remotefile
```

View

FTP client view

Default Level

3: Manage level

Parameters

`remotefile`: File name.

Description

Use the `delete` command to permanently delete a specified file on the remote FTP server. To do this, you must be a user with the delete permission on the FTP server.

Examples

```
# Delete file temp.c.
[ftp] delete temp.c
250 DELE command successful.
```

dir

Syntax

```
dir [ remotefile [ localfile ] ]
```
View

FTP client view

Default Level

3: Manage level

Parameters

remotefile: Name of the file or directory on the remote FTP server.

localfile: Name of the local file to save the displayed information.

Description

Use the `dir` command to view the detailed information of the files and subdirectories under the current directory on the remote FTP server.

Use the `dir remotefile` command to display the detailed information of the specified file or directory on the remote FTP server.

Use the `dir remotefile localfile` command to display the detailed information of the specified file or directory on the remote FTP server, and save the displayed information into a local file specified by the `localfile` argument.

Note

You can use the `dir` command to display the folder- and file-related information, such as the size, and the date they were created. If you only need to view the name of all the files and subdirectories under the current directory, you can use the `ls` command.

Examples

View the detailed information of the files and subdirectories under the current directory on the remote FTP server.

```
[ftp] dir
227 Entering Passive Mode (192,168,1,46,5,68).
125 ASCII mode data connection already open, transfer starting for /*.
drwxrwxrwx  1 noone    nogroup         0 Aug 08  2006 logfile
-rwxrwxrwx  1 noone    nogroup  20471748 May 11 10:21 test.bin
-rwxrwxrwx  1 noone    nogroup      4001 Dec 08  2007 config.cfg
-rwxrwxrwx  1 noone    nogroup      3608 Jun 13  2007 startup.cfg
drwxrwxrwx  1 noone    nogroup         0 Dec 03  2007 test
-rwxrwxrwx  1 noone    nogroup       299 Oct 15  2007 key.pub
226 Transfer complete.
FTP: 394 byte(s) received in 0.189 second(s), 2.00K byte(s)/sec.
```

[ftp]

View the information of the file `ar-router.cfg`, and save the result to `aa.txt`.

```
[ftp] dir ar-router.cfg aa.txt
```
227 Entering Passive Mode (192,168,1,50,17,158).
125 ASCII mode data connection already open, transfer starting for /ar-router.cfg.
....226 Transfer complete.
FTP: 67 byte(s) received in 4.600 second(s), 14.00 byte(s)/sec.

View the content of aa.txt.

[ftp] quit
<Sysname> more aa.txt
-rwxrwxrwx 1 noone nogroup 3077 Jun 20 15:34 ar-router.cfg

disconnect

Syntax

disconnect

View

FTP client view

Default Level

3: Manage level

Parameters

None

Description

Use the disconnect command to disconnect from the remote FTP server but remain in FTP client view.
This command is equal to the close command.

Examples

Disconnect from the remote FTP server but remain in FTP client view.
[ftp] disconnect
221 Server closing.

display ftp client configuration

Syntax

display ftp client configuration

View

Any view

Default Level

1: Monitor level

Parameters

None
Description

Use the `display ftp client configuration` command to display the configuration information of the FTP client.

Note

Currently this command displays the configured source IP address or source interface of the FTP client.

Related commands: `ftp client source`.

Examples

```
# Display the current configuration information of the FTP client.
<Sysname> display ftp client configuration
The source IP address is 192.168.0.123
```

ftp

Syntax

```
ftp [ server-address [ service-port ] [ source { interface interface-type interface-number | ip source-ip-address } ] ]
```

View

User view

Default Level

3: Manage level

Parameters

- `server-address`: IP address or host name (a string of 1 to 20 characters) of a remote FTP server.
- `service-port`: TCP port number of the remote FTP server, in the range 0 to 65535. The default value is 21.
- `interface interface-type interface-number`: Specifies the source interface by its type and number. The primary IP address configured on this interface is the source address of the transmitted packets. If no primary IP address is configured on the source interface, the connection fails.
- `ip source-ip-address`: The source IP address of the current FTP client. This source address must be the one that has been configured on the device.

Description

Use the `ftp` command to log in to the remote FTP server and enter FTP client view.

Note that:

- This command applies to IPv4 networks.
- If you use this command without specifying any parameters, you will simply enter the FTP client view without logging in to the FTP server.
If you specify the parameters, you will be prompted to enter the username and password for accessing the FTP server.

The priority of the source address specified with this command is higher than that with the `ftp client source` command. If you specify the source address with the `ftp client source` command first and then with the `ftp` command, the source address specified with the `ftp` command is used to communicate with the FTP server.

Related commands: `ftp client source`.

Examples

```
# Log in from the current device Sysname1 to the device Sysname2 with the IP address of 192.168.0.211. The source IP address of the packets sent is 192.168.0.212.
<Sysname> ftp 192.168.0.211 source ip 192.168.0.212
Trying 192.168.0.211 ...
Connected to 192.168.0.211.
User(192.168.0.211:(none)):abc
331 Password required for abc
Password:
230 User logged in.
```

ftp client source

Syntax

```
ftp client source { interface interface-type interface-number | ip source-ip-address }
undo ftp client source
```

View

System view

Default Level

2: System level

Parameters

`interface interface-type interface-number`: Source interface for the FTP connection, including interface type and interface number. The primary IP address configured on the source interface is the source IP address of the packets sent by FTP. If no primary IP address is configured on the source interface, the connection fails.

`ip source-ip-address`: Source IP address of the FTP connection. It must be an IP address that has been configured on the device.

Description

Use the `ftp client source` command to configure the source address of the transmitted FTP packets from the FTP client.
Use the `undo ftp client source` command to restore the default.

By default, a device uses the IP address of the interface determined by the matched route as the source IP address to communicate with an FTP server.

Note that:

- The source address can be specified as the source interface and the source IP address. If you use the `ftp client source` command to specify the source interface and then the source IP address, the newly specified source IP address overwrites the configured source interface and vice versa.
- If the source address is specified with the `ftp client source` command and then with the `ftp` command, the source address specified with the latter one is used to communicate with the FTP server.
- The source address specified with the `ftp client source` command is valid for all FTP connections and the source address specified with the `ftp` command is valid only for the current FTP connection.

Related commands: `display ftp client configuration`.

Examples

```
# Specify the source IP address of the FTP client as 2.2.2.2.
<Sysname> system-view
[Sysname] ftp client source ip 2.2.2.2

# Specify the source interface of the FTP client as Vlan-interface 1.
<Sysname> system-view
[Sysname] ftp client source interface vlan-interface 1
```

ftp ipv6

Syntax

```
ftp ipv6 [ server-address [ service-port ] [ source ipv6 source-ipv6-address ] [ -i interface-type interface-number ] ]
```

View

User view

Default Level

3: Manage level

Parameters

- `server-address`: IP address or host name of the remote FTP server.
- `service-port`: TCP port number of the FTP server, in the range 0 to 65535. The default value is 21.
- `source ipv6 source-ipv6-address`: Specifies a source IPv6 address for transmitted FTP packets. This address must be an IPv6 address that has been configured on the device.
- `-i interface-type interface-number`: Specifies the type and number of the egress interface. This parameter can be used only in case that the FTP server address is a link local address and the specified egress interface must have a link local address (For the configuration of link local addresses, see IPv6 Basics in the IP Services Volume).
Description

Use the `ftp ipv6` command to log in to the FTP server and enter FTP client view.

Note that:

- This command applies to IPv6 networks.
- If you use this command without specifying any parameters, you will simply enter the FTP client view without logging in to an FTP server.
- If you specify the parameters, you will be asked to enter the username and password for accessing the FTP server.

Examples

```
# Log in to the FTP server with IPv6 address 3000::200.
<Sysname> ftp ipv6 3000::200
Trying 3000::200 ... 
Press CTRL+K to abort
Connected to 3000::200.
220 Welcome!
User(3000::200:(none)): MY_NAME
331 Please specify the password.
Password: 
230 Login successful.
[ftp]
```

get

Syntax

```
get remotefile [ localfile ]
```

View

FTP client view

Default Level

3: Manage level

Parameters

- `remotefile`: Name of the file to be downloaded.
- `localfile`: File name used after a file is downloaded and saved locally. If this argument is not specified, the file is saved locally using the source file name to the current working directory, namely the directory where the user executes the `ftp` command.

Description

Use the `get` command to download a file from a remote FTP server and save it.

Examples

```
# Download file `testcfg.cfg` to the root directory of the storage medium of the master, and save it as `newest.cfg`
```
[ftp] get startup.cfg newest.cfg

227 Entering Passive Mode (192,168,1,46,4,47).
125 ASCII mode data connection already open, transfer starting for /startup.cfg.
..226 Transfer complete.
FTP: 3608 byte(s) received in 2.050 second(s), 1.00K byte(s)/sec.

Download file testcfg.cfg to the root directory of the storage medium of the slave (with the member ID 2), and save it as newest.cfg.
[ftp] get startup.cfg slot2#flash:/newest.cfg

227 Entering Passive Mode (192,168,1,46,4,48).
125 ASCII mode data connection already open, transfer starting for /startup.cfg.
226 Transfer complete.
FTP: 3608 byte(s) received in 2.322 second(s), 1.00K byte(s)/sec.

lcd

Syntax
lcd

View
FTP client view

Default Level
3: Manage level

Parameters
None

Description
Use the lcd command to display the local working directory of the FTP client.

Examples

Display the local working directory.
[ftp] lcd
FTP: Local directory now flash:/clienttemp.

The above information indicates that the working directory of the FTP client before execution of the ftp command is flash:/clienttemp.

ls

Syntax
ls [remotefile [localfile]]

View
FTP client view
Default Level

3: Manage level

Parameters

remotefile: Filename or directory on the remote FTP server.

localfile: Name of a local file used to save the displayed information.

Description

Use the **ls** command to view the information of all the files and subdirectories under the current directory of the remote FTP server. The file names and subdirectory names are displayed.

Use the **ls remotesfile** command to view the information of a specified file or subdirectory.

Use the **ls remotesfile localfile** command to view the information of a specified file or subdirectory, and save the result to a local file specified by the **localfile** argument.

Note

The **ls** command can only display the names of files and directories on the FTP server, whereas the **dir** command can display other related information of the files and directories, such as the size, and the date they were created.

Examples

View the information of all files and subdirectories under the current directory of the FTP server.

```
[ftp] ls
227 Entering Passive Mode (192,168,1,50,17,165).
125 ASCII mode data connection already open, transfer starting for /*.
ar-router.cfg
logfile
mainar.bin
arbasicbtm.bin
ftp
test
bb.cfg
testcfq.cfg
226 Transfer complete.
FTP: 87 byte(s) received in 0.132 second(s) 659.00 byte(s)/sec.
```

View the information of directory **logfile**, and save the result to file **aa.txt**.

```
[ftp] ls logfile aa.txt
227 Entering Passive Mode (192,168,1,46,4,3).
125 ASCII mode data connection already open, transfer starting for /logfile/*. ....226 Transfer complete.
FTP: 20 byte(s) received in 3.962 second(s), 5.00 byte(s)/sec.
```

View the content of file **aa.txt**.
mkdir

Syntax

```markdown
mkdir directory
```

View

FTP client view

Default Level

3: Manage level

Parameters

- **directory**: Name of the directory to be created.

Description

Use the `mkdir` command to create a subdirectory under the current directory on the remote FTP server.

To do this, you must be a user with the permission on the FTP server.

Examples

```bash
# Create subdirectory mytest on the current directory of the remote FTP server.

[ftp] mkdir mytest
257 "mytest" new directory created.
```

open

Syntax

```markdown
open server-address [ service-port ]
```

View

FTP client view

Default Level

3: Manage level

Parameters

- **server-address**: IP address or host name of a remote FTP server.
- **service-port**: Port number of the remote FTP server, in the range 0 to 65535, with the default value of 21.
Description

Use the open command to log in to the IPv4 FTP server under FTP client view.

At login, you will be asked to enter the username and password for accessing the FTP server. If your input is correct, the login succeeds; otherwise, it fails.

If you have logged in to the IPv4 FTP server currently, you cannot use the open command to log in to another server. You need to disconnect with the current server first, and then try to connect with another one.

Related commands: close.

Examples

In FTP client view, log in to the FTP server with the IP address of 192.168.1.50.
<Sysname> ftp
[ftp] open 192.168.1.50
Trying 192.168.1.50 ...
Press CTRL+K to abort
Connected to 192.168.1.50.
220 FTP service ready.
User(192.168.1.50:(none)):aa
331 Password required for aa.
Password:
230 User logged in.

open ipv6

Syntax

open ipv6 server-address [service-port] [-i interface-type interface-number]

View

FTP client view

Default Level

3: Manage level

Parameters

server-address: IP address or host name of the remote FTP server.

service-port: Port number of the remote FTP server, in the range 0 to 65535. The default value is 21.

-i interface-type interface-number: Specifies the egress interface by its type and number. This parameter can be used only in case that the FTP server address is a link local address and the specified egress interface must have a link local address (For the configuration of link local addresses, see IPv6 Basics in the IP Services Volume).

Description

Use the open ipv6 command to log in to the IPv6 FTP server in FTP client view.
At login, you will be asked to enter the username and password for accessing the FTP server. If your input is correct, the login succeeds; otherwise, it fails.

Related commands: close.

Examples

Log in to the FTP server (with IPv6 address 3000::200) in FTP client view.

```bash
<Sysname> ftp
[ftp] open ipv6 3000::200
Trying 3000::200 ...
Press CTRL+K to abort
Connected to 3000::200.
220 Welcome!
User(3000::200:(none)): MY_NAME
331 Please specify the password.
Password:
230 Login successful.
```

passive

Syntax

```
passive
undo passive
```

View

FTP client view

Default Level

3: Manage level

Parameters

None

Description

Use the passive command to set the data transmission mode to passive.

Use the undo passive command to set the data transmission mode to active.

The default transmission mode is passive.

Data transmission modes fall into the passive mode and the active mode. The active mode means that the data connection request is initiated by a server. The passive mode means that the data connection request is initiated by a client. This command is mainly used in conjunction with a firewall to restrict the FTP session connection between private and public network users.

Examples

Set the data transmission mode to passive.

```bash
[ftp] passive
FTP: passive is on
```
put

Syntax

put localfile [remotefile]

View

FTP client view

Default Level

3: Manage level

Parameters

localfile: Name of the local file to be uploaded.
remotefile: File name used after a file is uploaded and saved on the FTP server.

Description

Use the put command to upload a file on the client to the remote FTP server.

If no name is assigned to the file to be saved on the FTP server, the name of the source file is used by default. After a file is uploaded, it will be saved under the user's authorized directory, which can be set with the authorization-attribute command.

Examples

Upload source file vrpcfg.cfg on the master to the remote FTP server and save it as ftpclient.cfg.

[ftp] put vrpcfg.cfg ftpclient.cfg
227 Entering Passive Mode (192,168,1,46,4,50).
125 ASCII mode data connection already open, transfer starting for /ftpclient.cfg.
226 Transfer complete.
FTP: 1366 byte(s) sent in 0.064 second(s), 21.00Kbyte(s)/sec.

Upload source file a.cfg on the slave (with the member ID 2) to the remote FTP server and save it as ftpclienta.cfg.

[ftp] put slot2#flash:/a.cfg ftpclienta.cfg
227 Entering Passive Mode (192,168,1,46,4,52).
125 ASCII mode data connection already open, transfer starting for /ftpclienta.cfg.
226 Transfer complete.
FTP: 1226 byte(s) sent in 0.065 second(s), 18.00Kbyte(s)/sec.

pwd

Syntax

pwd

View

FTP client view

Default Level

3: Manage level
Parameters

None

Description

Use the `pwd` command to display the currently accessed directory on the remote FTP server.

Examples

Display the currently accessed directory on the remote FTP server.

```
[ftp] cd servertemp
[ftp] pwd
257 "/servertemp" is current directory.
```

The above information indicates that the `servertemp` folder under the root directory of the remote FTP server is being accessed by the user.

quit

Syntax

```
quit
```

View

FTP client view

Default Level

3: Manage level

Parameters

None

Description

Use the `quit` command to disconnect from the remote FTP server and exit to user view.

Examples

Disconnect from the remote FTP server and exit to user view.

```
[ftp] quit
221 Server closing.
```

remotehelp

Syntax

```
remotehelp [ protocol-command ]
```

View

FTP client view
Default Level

3: Manage level

Parameters

protocol-command: FTP command.

Description

Use the `remotehelp` command to display the help information of FTP-related commands supported by the remote FTP server.

If no argument is specified, FTP-related commands supported by the remote FTP server are displayed.

Examples

```bash
# Display FTP commands supported by the remote FTP server.
[ftp] remotehelp
214-Here is a list of available ftp commands
    Those with '*' are not yet implemented.
    USER   PASS   ACCT*  CWD   CDUP   SMNT*  QUIT   REIN*  
    PORT   PASV   TYPE   STRU*  MODE*  RETR   STOR   STOU* 
    APPE*  ALLO*  REST*  RNFR*  RNTO*  ABOR*  DELE  RMD
    MKD    PWD    LIST   NLST   SITE*  SYST   STAT*  HELP
    NOOP*  XCUP   XCWD   XMKD   XPWD   XRMD
214 Direct comments to 3COM company.

# Display the help information for the `user` command.
[ftp] remotehelp user
214 Syntax: USER <sp> <username>.
```

Table 6-4 remotehelp command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>214-Here is a list of available ftp commands</td>
<td>The following is an available FTP command list.</td>
</tr>
<tr>
<td>Those with '*' are not yet implemented.</td>
<td>Those commands with '*' are not yet implemented.</td>
</tr>
<tr>
<td>USER</td>
<td>Username</td>
</tr>
<tr>
<td>PASS</td>
<td>Password</td>
</tr>
<tr>
<td>CWD</td>
<td>Change the current working directory</td>
</tr>
<tr>
<td>CDUP</td>
<td>Change to parent directory</td>
</tr>
<tr>
<td>SMNT*</td>
<td>File structure setting</td>
</tr>
<tr>
<td>QUIT</td>
<td>Quit</td>
</tr>
<tr>
<td>REIN*</td>
<td>Re-initialization</td>
</tr>
<tr>
<td>PORT</td>
<td>Port number</td>
</tr>
<tr>
<td>PASV</td>
<td>Passive mode</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>TYPE</td>
<td>Request type</td>
</tr>
<tr>
<td>STRU*</td>
<td>File structure</td>
</tr>
<tr>
<td>MODE*</td>
<td>Transmission mode</td>
</tr>
<tr>
<td>RETR</td>
<td>Download a file</td>
</tr>
<tr>
<td>STOR</td>
<td>Upload a file</td>
</tr>
<tr>
<td>STOU*</td>
<td>Store unique</td>
</tr>
<tr>
<td>APPE*</td>
<td>Appended file</td>
</tr>
<tr>
<td>ALLO*</td>
<td>Allocation space</td>
</tr>
<tr>
<td>REST*</td>
<td>Restart</td>
</tr>
<tr>
<td>RNFR*</td>
<td>Rename the source</td>
</tr>
<tr>
<td>RNTO*</td>
<td>Rename the destination</td>
</tr>
<tr>
<td>ABOR*</td>
<td>Abort the transmission</td>
</tr>
<tr>
<td>DELE</td>
<td>Delete a file</td>
</tr>
<tr>
<td>RMD</td>
<td>Delete a folder</td>
</tr>
<tr>
<td>MKD</td>
<td>Create a folder</td>
</tr>
<tr>
<td>PWD</td>
<td>Print working directory</td>
</tr>
<tr>
<td>LIST</td>
<td>List files</td>
</tr>
<tr>
<td>NLST</td>
<td>List file description</td>
</tr>
<tr>
<td>SITE*</td>
<td>Locate a parameter</td>
</tr>
<tr>
<td>SYST</td>
<td>Display system parameters</td>
</tr>
<tr>
<td>STAT*</td>
<td>State</td>
</tr>
<tr>
<td>HELP</td>
<td>Help</td>
</tr>
<tr>
<td>NOOP*</td>
<td>No operation</td>
</tr>
<tr>
<td>XCUP</td>
<td>Extension command, the same meaning as CUP</td>
</tr>
<tr>
<td>XCWD</td>
<td>Extension command, the same meaning as CWD</td>
</tr>
<tr>
<td>XMKD</td>
<td>Extension command, the same meaning as MKD</td>
</tr>
<tr>
<td>XPWD</td>
<td>Extension command, the same meaning as PWD</td>
</tr>
<tr>
<td>XRMD</td>
<td>Extension command, the same meaning as RMD</td>
</tr>
</tbody>
</table>

Syntax: USER <sp> <username>. Syntax of the user command: user (keyword) + space + username
rmdir

Syntax

```
rmdir directory
```

View

FTP client view

Default Level

3: Manage level

Parameters

- `directory`: Directory name on the remote FTP server.

Description

Use the `rmdir` command to remove a specified directory from the FTP server.

Note that only authorized users are allowed to use this command.

Note that:

- The directory to be deleted must be empty, meaning you should delete all files and subdirectories under the directory before you delete a directory. For the deletion of files, refer to the `delete` command.
- After you execute the `rmdir` command successfully, the files in the remote recycle bin under the directory will be automatically deleted.

Examples

```
# Delete the temp1 directory from the authorized directory on the FTP server.
[ftp] rmdir /temp1
200 RMD command successful.
```

user

Syntax

```
user username [password]
```

View

FTP client view

Default Level

3: Manage level

Parameters

- `username`: Login username.

- `password`: Login password.

Description

Use the `user` command to relog in to the currently accessed FTP server with another username.
Before using this command, you must configure the corresponding username and password on the FTP server; otherwise, your login fails and the FTP connection is closed.

Examples

User ftp1 has logged in to the FTP server. Use username ftp2 to log in to the current FTP server.
(Suppose username ftp2 and password 123123123123 have been configured on the FTP server).

[ftp] user ftp2
331 Password required for ftp2.
Password:
230 User logged in.

[ftp]

verbose

Syntax

verbose
undo verbose

View

FTP client view

Default Level

3: Manage level

Parameters

None

Description

Use the verbose command to enable the protocol information function to display detailed prompt information.

Use the undo verbose command to disable the protocol information function.

By default, the protocol information function is enabled.

Examples

Enable the protocol information function.
[ftp] verbose
FTP: verbose is on

Disable the protocol information function and perform the Get operation.
[ftp] undo verbose
FTP: verbose is off

[ftp] get startup.cfg bb.cfg

FTP: 3608 byte(s) received in 0.052 second(s), 69.00K byte(s)/sec.
Enable the protocol information function and perform the Get operation.

[ftp] verbose
FTP: verbose is on

[ftp] get startup.cfg aa.cfg

227 Entering Passive Mode (192,168,1,46,5,85).
125 ASCII mode data connection already open, transfer starting for /startup.cfg.
226 Transfer complete.
FTP: 3608 byte(s) received in 0.193 second(s), 18.00K byte(s)/sec.
TFTP Configuration Commands

TFTP Client Configuration Commands

display tftp client configuration

Syntax

display tftp client configuration

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the `display tftp client configuration` command to display the configuration information of the TFTP client.

Related commands: `tftp client source`.

Examples

Display the current configuration information of the TFTP client.

<Sysname> display tftp client configuration
The source IP address is 192.168.0.123

Note

Currently this command displays the configured source IP address or source interface of the TFTP client.

tftp-server acl

Syntax

```
tftp-server [ ipv6 ] acl acl-number
undo tftp-server [ ipv6 ] acl
```
View

System view

Default Level

3: Manage level

Parameters

ipv6: References an IPv6 ACL. If it is not specified, an IPv4 ACL is referenced.

acl-number: Number of a basic ACL, in the range 2000 to 2999.

Description

Use the `tftp-server acl` command to control the access to the TFTP servers from the device through ACL.

Use the `undo tftp-server acl` command to restore the default.

By default, the access to the TFTP servers from the device is not controlled.

You can use the rules defined in the ACL to permit or deny the access from the device to the specified TFTP server on the network.

For more information about ACL, refer to `ACL Configuration` in the Security Volume.

Examples

In IPv4 networking environment, allow the device to access the TFTP server with the IP address of 1.1.1.1 only.

```
<Sysname> system-view
[Sysname] acl number 2000
[Sysname-acl-basic-2000] rule permit source 1.1.1.1 0
[Sysname-acl-basic-2000] quit
[Sysname] tftp-server acl 2000
```

In IPv6 networking environment, allow the device to access the TFTP server with the IP address of 2001::1 only.

```
<Sysname> system-view
[Sysname] acl ipv6 number 2001
[Sysname-acl6-basic-2001] rule permit source 2001::1/128
[Sysname-acl6-basic-2001] quit
[Sysname] tftp-server ipv6 acl 2001
```

tftp

Syntax

```
tftp server-address { get | put | sget } source-filename [ destination-filename ] [ source { interface interface-type interface-number | ip source-ip-address } ]
```

View

User view
Default Level

3: Manage level

Parameters

server-address: IP address or host name of a TFTP server.
get: Downloads a file in normal mode.
put: Uploads a file.
sget: Downloads a file in secure mode.
source-filename: Source file name.
destination-filename: Destination file name.
source: Configures parameters for source address binding.
 • interface interface-type interface-number: Specifies the source interface by its type and number.
 The primary IP address configured on the source interface is the source IP address of the packets
 sent by TFTP. If no primary IP address is configured on the source interface, the transmission
 fails.
 • ip source-ip-address: Specifies the source IP address for the current TFTP client to transmit
 packets. This source address must be an IP address that has been configured on the device.

Description

Use the tftp command to upload files from the local device to a TFTP server or download files from the
TFTP server to the local device.

• If no destination file name is specified, a file is saved using the same name as that on the remote
 TFTP server to the current working directory of the user (namely, the working directory where the
tftp command is executed).
• The priority of the source address specified with this command is higher than that specified with
 the tftp client source command. If you use the tftp client source command to specify the source
 address first and then with the tftp command, the latter one is adopted.

This command applies to IPv4 networks.
Related commands: tftp client source.

Examples

Download the config.cfg file from the TFTP server with the IP address of 192.168.0.98 and save it
as config.bak. Specify the source IP address to be 192.168.0.92.

<Sysname> tftp 192.168.0.98 get config.cfg config.bak source ip 192.168.0.92
...
File will be transferred in binary mode
Downloading file from remote TFTP server, please wait....
TFTP: 372800 bytes received in 1 second(s)
File downloaded successfully.

Upload the config.cfg file from the local device to the default path of the TFTP server with the IP
address of 192.168.0.98 and save it as config.bak. Specify the source IP interface to be
Vlan-interface 1.

<Sysname> tftp 192.168.0.98 put config.cfg config.bak source interface vlan-interface 1
File will be transferred in binary mode
Sending file to remote TFTP server. Please wait...
TFTP: 345600 bytes sent in 1 second(s).
File uploaded successfully.

To upgrade the device, download the test.bin file from the TFTP server with the IP address of 192.168.1.26 and save it to both the root directory on the flash of the master and the root directory on the flash of the slave (with the member ID 2).

<Sysname> tftp 192.168.1.26 get newest.bin startup.bin
.
File will be transferred in binary mode
Downloading file from remote TFTP server, please wait..................
TFTP: 2737556 bytes received in 13 second(s)
File downloaded successfully.

// Download the BIN file from the TFTP server to the root directory on the flash of the master.
<Sysname> tftp 192.168.1.26 get newest.bin slot2#flash:/startup.bin

File will be transferred in binary mode
Downloading file from remote TFTP server, please wait...|
TFTP: 2737556 bytes received in 14 second(s)
File downloaded successfully.

// Download the BIN file from the TFTP server to the root directory on the flash of the slave.

tftp client source

Syntax

tftp client source { interface interface-type interface-number | ip source-ip-address }
undo tftp client source

View

System view

Default Level

2: System level

Parameters

interface interface-type interface-number: Specifies the source interface by its type and number. The primary IP address configured on the source interface is the source IP address of the packets sent by TFTP. If no primary IP address is configured on the source interface, the transmission fails.
ip source-ip-address: The source IP address of TFTP connections. It must be an IP address that has been configured on the device.

Description

Use the tftp client source command to configure the source address of the TFTP packets from the TFTP client.

Use the undo telnet client source command to restore the default.
By default, a device uses the IP address of the interface determined by the matched route as the source IP address to communicate with a TFTP server.

Note that:

- The source address can be specified as the source interface and the source IP; if you use the `tftp client source` command to specify the source interface and then the source IP, the newly specified source IP overwrites the configured source interface and vice versa.
- If the source address is specified with the `tftp client source` command and then with the `tftp` command, the source address specified with the latter one is used to communicate with the TFTP server.
- The source address specified with the `tftp client source` command is valid for all `tftp` connections and the source address specified with the `tftp` command is valid for the current `tftp` command.

Related commands: `display tftp client configuration`.

Examples

```
# Specify the source IP address of the TFTP client as 2.2.2.2.
<Sysname> system-view
  [Sysname] tftp client source ip 2.2.2.2

# Specify the source interface of the TFTP client as Vlan-interface 1.
<Sysname> system-view
  [Sysname] tftp client source interface vlan-interface 1
```

tftp ipv6

Syntax

```
tftp ipv6 tftp-ipv6-server [ -i interface-type interface-number ] { get | put } source-file [ destination-file ]
```

View

User view

Default Level

3: Manage level

Parameters

- `tftp-ipv6-server`: IPv6 address or host name (a string of 1 to 46 characters) of a TFTP server.
- `-i interface-type interface-number`: Specifies the egress interface by its type and number. This parameter can be used only in case that the TFTP server address is a link local address and the specified egress interface must have a link local address (For the configuration of link local address, see IPv6 Basics in the IP Services Volume).
- `get`: Downloads a file.
- `put`: Uploads a file.
- `source-filename`: Source filename.
- `destination-filename`: Destination filename. If not specified, this filename is the same as the source filename.
Description

Use the `tftp ipv6` command to download a specified file from a TFTP server or upload a specified local file to a TFTP server.

This command applies to IPv6 networks.

Examples

Download filetoget.txt from the TFTP server.

```shell
<Sysname> tftp ipv6 fe80::250:daff:fe91:e058 -i vlan-interface 1 get filetoget.txt
...
File will be transferred in binary mode
Downloading file from remote TFTP server, please wait....
TFTP: 411100 bytes received in 2 second(s)
File downloaded successfully.
```
HTTP Configuration Commands

display ip http

Syntax

display ip http

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the `display ip http` command to display information about HTTP.

Examples

Display information about HTTP.
<Sysname> display ip http
HTTP port: 80
Basic ACL: 2222
Current connection: 0
Operation status: Running

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP port</td>
<td>Port number used by the HTTP service</td>
</tr>
<tr>
<td>Basic ACL</td>
<td>A basic ACL number associated with the HTTP service</td>
</tr>
<tr>
<td>Current connection</td>
<td>The number of current connections</td>
</tr>
<tr>
<td>Operation status</td>
<td>Operation status, which takes the following values:</td>
</tr>
<tr>
<td></td>
<td>• Running: The HTTP service is enabled.</td>
</tr>
<tr>
<td></td>
<td>• Stopped: The HTTP service is disabled.</td>
</tr>
</tbody>
</table>
ip http acl

Syntax

 ip http acl acl-number
 undo ip http acl

View

 System view

Default Level

 2: System level

Parameters

 acl-number: ACL number, in the range 2000 to 2999: basic IPv4 ACL

Description

 Use the ip http acl command to associate the HTTP service with an ACL.
 Use the undo ip http acl command to remove the association.
 By default, the HTTP service is not associated with any ACL.
 After the HTTP service is associated with an ACL, only the clients permitted by the ACL can access the device.
 Related commands: acl number in ACL Commands in the Security Volume.

Examples

 # Configure to associate the HTTP service with ACL 2001 and only allow the clients within the 10.10.0.0/16 network segment to access the device through the Web function.
 <Sysname> system-view
 [Sysname] acl number 2001
 [Sysname-acl-basic-2001] rule permit source 10.10.0.0 0.0.255.255
 [Sysname-acl-basic-2001] quit
 [Sysname] ip http acl 2001

ip http enable

Syntax

 ip http enable
 undo ip http enable

View

 System view

Default Level

 2: System level

Parameters

 None
Description

Use the `ip http enable` command to enable the HTTP service.

Use the `undo ip http enable` command to disable the HTTP service.

The device can act as the HTTP server and the users can access and control the device through the Web function only after the HTTP service is enabled.

Examples

```
# Enable the HTTP service.
<Sysname> system-view
[Sysname] ip http enable

# Disable the HTTP service.
<Sysname> system-view
[Sysname] undo ip http enable
```

ip http port

Syntax

```
ip http port port-number
undo ip http port
```

View

System view

Default Level

3: Manage level

Parameters

`port-number`: Port number of the HTTP service, in the range 1 to 65535.

Description

Use the `ip http port` command to configure the port number of the HTTP service.

Use the `undo ip http port` command to restore the default.

By default, the port number of the HTTP service is 80.

Note that this command does not check whether the configured port number conflicts with that of an existing service. Therefore, you must ensure that the port number is not used by another service before the configuration.

Examples

```
# Configure the port number of the HTTP service as 8080.
<Sysname> system-view
[Sysname] ip http port 8080
```
HTTPS Configuration Commands

display ip https

Syntax

display ip https

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the `display ip https` command to display information about HTTPS.

Examples

```
# Display information about HTTPS.
<Sysname> display ip https
HTTPS port: 443
SSL server policy: test
Certificate access-control-policy:
Basic ACL: 2222
Current connection: 0
Operation status: Running
```

Table 9-1 display ip https command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTPS port</td>
<td>Port number used by the HTTPS service</td>
</tr>
<tr>
<td>SSL server policy</td>
<td>The SSL server policy associated with the HTTPS service</td>
</tr>
<tr>
<td>Certificate access-control-policy</td>
<td>The certificate attribute access control policy associated with the HTTPS service</td>
</tr>
<tr>
<td>Basic ACL</td>
<td>The basic ACL number associated with the HTTPS service</td>
</tr>
<tr>
<td>Current connection</td>
<td>The number of current connections</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>Operation status</td>
<td>Operation status, which takes the following values:</td>
</tr>
<tr>
<td></td>
<td>- Running: The HTTPS service is enabled.</td>
</tr>
<tr>
<td></td>
<td>- Stopped: The HTTPS service is disabled.</td>
</tr>
</tbody>
</table>

ip https acl

Syntax

```plaintext
ip https acl acl-number
undo ip https acl
```

View

System view

Default Level

3: Manage level

Parameters

- `acl-number`: ACL number, in the range 2000 to 2999: basic IPv4 ACL

Description

Use the `ip https acl` command to associate the HTTPS service with an ACL.

Use the `undo ip https acl` command to remove the association.

By default, the HTTPS service is not associated with any ACL.

After the HTTPS service is associated with an ACL, only the clients permitted by the ACL can access the device.

Related commands: `acl number` in *ACL Commands* in the *Security Volume*

Examples

Associate the HTTPS service with ACL 2001 and only allow the clients within the 10.10.0.0/16 network segment to access the HTTPS server through the Web function.

```plaintext
<Sysname> system-view
[Sysname] acl number 2001
[Sysname-acl-basic-2001] rule permit source 10.10.0.0 0.0.255.255
[Sysname-acl-basic-2001] quit
[Sysname] ip https acl 2001
```

ip https certificate access-control-policy

Syntax

```plaintext
ip https certificate access-control-policy policy-name
undo ip https certificate access-control-policy
```
View

System view

Default Level

3: Manage level

Parameters

policy-name: Name of the certificate attribute access control policy, a string of 1 to 16 characters.

Description

Use the `ip https certificate access-control-policy` command to associate the HTTPS service with a certificate attribute access control policy.

Use the `undo ip https certificate access-control-policy` command to remove the association.

By default, the HTTPS service is not associated with any certificate attribute access control policy. Association of the HTTPS service with a certificate attribute access control policy can control the access rights of clients.

Related commands: `pki certificate access-control-policy`. (In PKI Commands in the Security Volume)

Examples

Associate the HTTPS server to certificate attribute access control policy myacl.

```
<Sysname> system-view
[Sysname] ip https certificate access-control-policy myacl
```

ip https enable

Syntax

```
ip https enable
undo ip https enable
```

View

System view

Default Level

3: Manage level

Parameters

None

Description

Use the `ip https enable` command to enable the HTTPS service.

Use the `undo ip https enable` command to disable the HTTPS service.

By default, the HTTPS service is disabled.

The device can act as the HTTP server and the users can access and control the device through the Web function only after the HTTP service is enabled.
Note that enabling of the HTTPS service triggers an SSL handshake negotiation process. During the process, if a local certificate of the device already exists, the SSL negotiation is successfully performed, and the HTTPS service can be started normally. If no local certificate exists, a certificate application process will be triggered by the SSL negotiation. Since the application process takes much time, the SSL negotiation often fails and the HTTPS service cannot be started normally. Therefore, the `ip https enable` command must be executed for multiple times to ensure normal startup of the HTTPS service.

Examples

```
# Enable the HTTPS service.
<Sysname> system-view
[Sysname] ip https enable
```

ip https port

Syntax

```
ip https port port-number
undo ip https port
```

View

System view

Default Level

3: Manage level

Parameters

`port-number`: Port number of the HTTPS service, in the range 1 to 65535.

Description

Use the `ip https port` command to configure the port number of the HTTPS service. Use the `undo ip https port` command to restore the default.

By default, the port number of the HTTPS service is 443.

Note that this command does not check whether the configured port number conflicts with that of an existing service. Therefore, you must ensure that the port number is not used by another service before the configuration.

Examples

```
# Configure the port number of the HTTPS service as 6000.
<Sysname> system-view
[Sysname] ip https port 6000
```

ip https ssl-server-policy

Syntax

```
ip https ssl-server-policy policy-name
undo ip https ssl-server-policy
```

Description

Use the `ip https ssl-server-policy` command to configure the SSL server policy. Use the `undo ip https ssl-server-policy` command to remove the SSL server policy.

By default, the SSL server policy is `default`.

Note that this command does not check whether the configured SSL server policy conflicts with that of an existing service. Therefore, you must ensure that the SSL server policy is not used by another service before the configuration.

Examples

```
# Configure the SSL server policy as `custom`.
<Sysname> system-view
[Sysname] ip https ssl-server-policy custom
```

9-4
View
System view

Default Level
3: Manage level

Parameters

policy-name: Name of an SSL server policy, a string of 1 to 16 characters.

Description
Use the ip https ssl-server-policy command to associate the HTTPS service with an SSL server-end policy.

Use the undo ip https ssl-server-policy to remove the association between the HTTPS service and an SSL server-end policy.

By default, the HTTPS service is not associated with any SSL server-end policy.

Note that:
- The HTTPS service can be enabled only after this command is configured successfully.
- You cannot modify an SSL server-end policy or remove the association between the HTTPS service and an SSL server-end policy after the HTTS service is enabled.

Related commands: ssl server-policy in SSL Commands in the Security Volume

Examples

Configure the HTTPS service to use SSL server-end policy myssl.
<Sysname> system-view
[Sysname] ip https ssl-server-policy myssl
SNMP Configuration Commands

display snmp-agent community

Syntax

display snmp-agent community [read | write]

View

Any view

Default Level

1: Monitor level

Parameters

read: Displays the information of communities with read-only access right.
write: Displays the information of communities with read and write access right.

Description

Use the display snmp-agent community command to display community information for SNMPv1 or SNMPv2c.

Examples

Display the information of all the communities that have been configured.
<Sysname> display snmp-agent community
Community name: aa
 Group name: aa
 Acl:2001
 Storage-type: nonVolatile

Community name: bb
 Group name: bb
 Storage-type: nonVolatile

Community name: userv1
 Group name: testv1
 Storage-type: nonVolatile
Table 10-1 display snmp-agent community command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| Community name | Community name.
- If a community name is created by using the `snmp-agent community` command, the community name will be displayed.
- If a community name is created by using the `snmp-agent usm-user { v1 | v2c }` command, the user name will be displayed. |
| Group name | SNMP group name.
- If a community name is created by using the `snmp-agent community` command, the group name and the community name are the same, which means the community name will be displayed.
- If a community name is created by using the `snmp-agent usm-user { v1 | v2c }` command, the name of the group to which the user belongs will be displayed. |
| Acl | The number of the ACL in use.
After an ACL is configured, only the Network Management Station (NMS) with the IP address that matches the ACL rule can access the device. |
| Storage-type | Storage type, which could be:
- `volatile`: Information will be lost if the system is rebooted
- `nonVolatile`: Information will not be lost if the system is rebooted
- `permanent`: Information will not be lost if the system is rebooted. Modification is permitted, but deletion is forbidden
- `readOnly`: Information will not be lost if the system is rebooted. Read only, that is, no modification, no deletion
- `other`: Other storage types |

display snmp-agent group

Syntax

display snmp-agent group [group-name]

View

Any view

Default Level

1: Monitor level

Parameters

`group-name`: Specifies the SNMP group name, a string of 1 to 32 characters, case sensitive.

Description

Use the `display snmp-agent group` command to display information for the SNMP agent group, including group name, security model, MIB view, storage type, and so on. Absence of the `group-name` parameter indicates that information for all groups will be displayed.

Examples

Display the information of all SNMP agent groups.
<Sysname> display snmp-agent group
Group name: groupv3
 Security model: v3 noAuthnoPriv
 Readview: ViewDefault
 Writeview: <no specified>
 Notifyview: <no specified>
 Storage-type: nonVolatile

Table 10-2 display snmp-agent group command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group name</td>
<td>SNMP group name</td>
</tr>
<tr>
<td>Security model</td>
<td>Security model of the SNMP group, which can be: authPriv (authentication with privacy), authNoPriv (authentication without privacy), or noAuthNoPriv (no authentication no privacy).</td>
</tr>
<tr>
<td>Readview</td>
<td>The read only MIB view associated with the SNMP group</td>
</tr>
<tr>
<td>Writeview</td>
<td>The writable MIB view associated with the SNMP group</td>
</tr>
<tr>
<td>Notifyview</td>
<td>The notify MIB view associated with the SNMP group, the view with entries that can generate traps</td>
</tr>
<tr>
<td>Storage-type</td>
<td>Storage type, which includes: volatile, nonVolatile, permanent, readOnly, and other. For detailed information, refer to Table 10-1.</td>
</tr>
</tbody>
</table>

display snmp-agent local-engineid

Syntax

display snmp-agent local-engineid

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the display snmp-agent local-engineid command to display the local SNMP agent engine ID. SNMP engine ID identifies an SNMP entity uniquely within an SNMP domain. SNMP engine is an indispensable part of an SNMP entity. It provides the SNMP message allocation, message handling, authentication, and access control.

Examples

Display the local SNMP agent engine ID.
<Sysname> display snmp-agent local-engineid
SNMP local EngineID: 800007DB7F0000013859
display snmp-agent mib-view

Syntax

display snmp-agent mib-view [exclude | include | viewname view-name]

View

Any view

Default Level

1: Monitor level

Parameters

exclude: Displays MIB view information of the excluded type.
include: Displays MIB view information of the included type.
viewname view-name: Displays MIB view information with a specified MIB view name, where view-name is the name of the specified MIB view.

Description

Use the display snmp-agent mib-view command to display MIB view information. Absence of parameters indicates that information for all MIB views will be displayed.

Examples

Display all SNMP MIB views of the device.
<Sysname> display snmp-agent mib-view
 View name:ViewDefault
 MIB Subtree:iso
 Subtree mask:
 Storage-type: nonVolatile
 View Type:included
 View status:active
 View name:ViewDefault
 MIB Subtree:snmpUsmMIB
 Subtree mask:
 Storage-type: nonVolatile
 View Type:excluded
 View status:active
 View name:ViewDefault
 MIB Subtree:snmpVacmMIB
 Subtree mask:
 Storage-type: nonVolatile
 View Type:excluded
 View status:active
 View name:ViewDefault
 MIB Subtree:snmpModules.18
Subtree mask:
Storage-type: nonVolatile
View Type: excluded
View status: active

ViewDefault is the default view of the device. When you access the device through the ViewDefault view, you can access all the MIB objects of the iso subtree except for the MIB objects under the snmpUsmMIB, snmpVacmMIB, and snmpModules.18 subtrees.

Table 10-3 display snmp-agent mib-view command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>View name</td>
<td>MIB view name</td>
</tr>
<tr>
<td>MIB Subtree</td>
<td>MIB subtree corresponding to the MIB view</td>
</tr>
<tr>
<td>Subtree mask</td>
<td>MIB subtree mask</td>
</tr>
<tr>
<td>Storage-type</td>
<td>Storage type</td>
</tr>
<tr>
<td>View Type</td>
<td>View type, which can be included or excluded:</td>
</tr>
<tr>
<td></td>
<td>• Included indicates that all nodes of the MIB tree are included in current view, namely, you are allowed to access all the MIB objects of the subtree</td>
</tr>
<tr>
<td></td>
<td>• Excluded indicates that none of the nodes of the MIB tree are included in current view, namely, you are allowed to access none of the MIB objects of the subtree</td>
</tr>
<tr>
<td>View status</td>
<td>The status of MIB view</td>
</tr>
</tbody>
</table>

display snmp-agent statistics

Syntax

display snmp-agent statistics

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the **display snmp-agent statistics** command to display SNMP statistics.

Examples

Display the statistics on the current SNMP.

```
<Sysname> display snmp-agent statistics
1684 Messages delivered to the SNMP entity
5 Messages which were for an unsupported version
0 Messages which used a SNMP community name not known
```
0 Messages which represented an illegal operation for the community supplied
0 ASN.1 or BER errors in the process of decoding
1679 Messages passed from the SNMP entity
0 SNMP PDUs which had badValue error-status
0 SNMP PDUs which had genErr error-status
0 SNMP PDUs which had noSuchName error-status
0 SNMP PDUs which had tooBig error-status (Maximum packet size 1500)
16544 MIB objects retrieved successfully
2 MIB objects altered successfully
7 GetRequest-PDU accepted and processed
7 GetNextRequest-PDU accepted and processed
1653 GetBulkRequest-PDU accepted and processed
1669 GetResponse-PDU accepted and processed
2 SetRequest-PDU accepted and processed
0 Trap PDUs accepted and processed
0 Alternate Response Class PDUs dropped silently
0 Forwarded Confirmed Class PDUs dropped silently

Table 10-4 display snmp-agent statistics command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messages delivered to the SNMP entity</td>
<td>Number of packets delivered to the SNMP agent</td>
</tr>
<tr>
<td>Messages which were for an unsupported version</td>
<td>Number of packets from a device with an SNMP version that is not supported by the current SNMP agent</td>
</tr>
<tr>
<td>Messages which used a SNMP community name not known</td>
<td>Number of packets that use an unknown community name</td>
</tr>
<tr>
<td>Messages which represented an illegal operation for the community supplied</td>
<td>Number of packets carrying an operation that the community has no right to perform</td>
</tr>
<tr>
<td>ASN.1 or BER errors in the process of decoding</td>
<td>Number of packets with ASN.1 or BER errors in the process of decoding</td>
</tr>
<tr>
<td>Messages passed from the SNMP entity</td>
<td>Number of packets sent by the SNMP agent</td>
</tr>
<tr>
<td>SNMP PDUs which had badValue error-status</td>
<td>Number of SNMP PDUs with a badValue error</td>
</tr>
<tr>
<td>SNMP PDUs which had genErr error-status</td>
<td>Number of SNMP PDUs with a genErr error</td>
</tr>
<tr>
<td>SNMP PDUs which had noSuchName error-status</td>
<td>Number of PDUs with a noSuchName error</td>
</tr>
<tr>
<td>SNMP PDUs which had tooBig error-status (Maximum packet size 1500)</td>
<td>Number of PDUs with a tooBig error (the maximum packet size is 1,500 bytes)</td>
</tr>
<tr>
<td>MIB objects retrieved successfully</td>
<td>Number of MIB objects that have been successfully retrieved</td>
</tr>
<tr>
<td>MIB objects altered successfully</td>
<td>Number of MIB objects that have been successfully modified</td>
</tr>
<tr>
<td>GetRequest-PDU accepted and processed</td>
<td>Number of get requests that have been received and processed</td>
</tr>
<tr>
<td>GetNextRequest-PDU accepted and processed</td>
<td>Number of getNext requests that have been received and processed</td>
</tr>
<tr>
<td>GetBulkRequest-PDU accepted and processed</td>
<td>Number of getBulk requests that have been received and processed</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>GetResponse-PDU accepted and processed</td>
<td>Number of get responses that have been received and processed</td>
</tr>
<tr>
<td>SetRequest-PDU accepted and processed</td>
<td>Number of set requests that have been received and processed</td>
</tr>
<tr>
<td>Trap PDUs accepted and processed</td>
<td>Number of traps that have been received and processed</td>
</tr>
<tr>
<td>Alternate Response Class PDUs dropped</td>
<td>Number of dropped response packets</td>
</tr>
<tr>
<td>silently</td>
<td></td>
</tr>
<tr>
<td>Forwarded Confirmed Class PDUs dropped</td>
<td>Number of forwarded packets that have been dropped</td>
</tr>
<tr>
<td>silently</td>
<td></td>
</tr>
</tbody>
</table>

display snmp-agent sys-info

Syntax

display snmp-agent sys-info [contact | location | version] *

View

Any view

Default Level

1: Monitor level

Parameters

 contact: Displays the contact information of the current network administrator.
 location: Displays the location information of the current device.
 version: Displays the version of the current SNMP agent.

Description

Use the display snmp-agent sys-info command to display the current SNMP system information. If no keyword is specified, all SNMP agent system information will be displayed.

Examples

Display the current SNMP agent system information.

```
<Sysname> display snmp-agent sys-info
  The contact person for this managed node:
    3Com Corporation.

  The physical location of this node:
    Marlborough, MA 01752 USA

  SNMP version running in the system:
    SNMPv3
```
display snmp-agent trap queue

Syntax

```
display snmp-agent trap queue
```

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the `display snmp-agent trap queue` command to display basic information of the trap queue, including trap queue name, queue length and the number of traps in the queue currently.

Examples

```
# Display the current configuration and usage of the trap queue.
<Sysname> display snmp-agent trap queue
  Queue name: SNTP
  Queue size: 100
  Message number: 6
```

Table 10-5 display snmp-agent trap queue command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue name</td>
<td>Trap queue name</td>
</tr>
<tr>
<td>Queue size</td>
<td>Trap queue size</td>
</tr>
<tr>
<td>Message number</td>
<td>Number of traps in the current trap queue</td>
</tr>
</tbody>
</table>

display snmp-agent trap-list

Syntax

```
display snmp-agent trap-list
```

View

Any view

Default Level

1: Monitor level

Parameters

None
Description

Use the `display snmp-agent trap-list` command to display the modules that can generate traps and whether their trap function is enabled or not. If a module comprises multiple sub-modules, then as long as one sub-module has the trap function enabled, the whole module will be displayed as being enabled with the trap function.

Related commands: `snmp-agent trap enable`.

Examples

Display the modules that can generate traps and whether their trap function is enabled or not.

```plaintext
<Sysname> display snmp-agent trap-list
  configuration trap enable
  flash trap enable
  standard trap enable
  system trap enable

Enable traps: 4; Disable traps: 0
```

In the above output, enable indicates that the module is allowed to generate traps whereas disable indicates the module is not allowed to generate traps. You can configure the trap function (enable or disable) of each module through command lines.

display snmp-agent usm-user

Syntax

```plaintext
display snmp-agent usm-user [ engineid engineid | username user-name | group group-name ] *
```

View

Any view

Default Level

1: Monitor level

Parameters

- **engineid engineid**: Displays SNMPv3 user information for a specified engine ID, where `engineid` indicates the SNMP engine ID.
- **username user-name**: Displays SNMPv3 user information for a specified user name. It is case sensitive.
- **group group-name**: Displays SNMPv3 user information for a specified SNMP group name. It is case sensitive.

Description

Use the `display snmp-agent usm-user` command to display SNMPv3 user information.

Examples

Display SNMPv3 information of all created users.

```plaintext
<Sysname> display snmp-agent usm-user
  User name: userv3
```
Group name: mygroupv3
 Engine ID: 800063A203000FE240A1A6
 Storage-type: nonVolatile
 UserStatus: active

User name: userv3code
Group name: groupv3code
 Engine ID: 800063A203000FE240A1A6
 Storage-type: nonVolatile
 UserStatus: active

Table 10-6 display snmp-agent usm-user command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User name</td>
<td>SNMP user name</td>
</tr>
<tr>
<td>Group name</td>
<td>SNMP group name</td>
</tr>
<tr>
<td>Engine ID</td>
<td>Engine ID for an SNMP entity</td>
</tr>
<tr>
<td>Storage-type</td>
<td>Storage type, which can be the following:</td>
</tr>
<tr>
<td></td>
<td>• volatile</td>
</tr>
<tr>
<td></td>
<td>• nonvolatile</td>
</tr>
<tr>
<td></td>
<td>• permanent</td>
</tr>
<tr>
<td></td>
<td>• readOnly</td>
</tr>
<tr>
<td></td>
<td>• other</td>
</tr>
<tr>
<td></td>
<td>See Table 10-1 for details.</td>
</tr>
<tr>
<td>UserStatus</td>
<td>SNMP user status</td>
</tr>
</tbody>
</table>

enable snmp trap updown

Syntax

 enable snmp trap updown
 undo enable snmp trap updown

View

 Interface view

Default Level

 2: System level

Parameters

 None

Description

Use the enable snmp trap updown command to enable the trap function for interface state changes.

Use the undo enable snmp trap updown command to disable the trap function for interface state changes.

By default, the trap function for interface state changes is enabled.
Note that:

To enable an interface to generate linkUp/linkDown traps when its state changes, you need to enable the linkUp/linkDown trap function on the interface and globally. Use the `enable snmp trap updown` command to enable this function on an interface, and use the `snmp-agent trap enable [standard [linkdown | linkup] *]` command to enable this function globally.

Related commands: `snmp-agent target-host`, `snmp-agent trap enable`.

Examples

Enable the sending of linkUp/linkDown SNMP traps on port GigabitEthernet 1/0/1 and use the community name `public`.

```bash
<Sysname> system-view
[Sysname] snmp-agent trap enable
[Sysname] snmp-agent target-host trap address udp-domain 10.1.1.1 params securityname public
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] enable snmp trap updown
```

snmp-agent

Syntax

```
snmp-agent
undo snmp-agent
```

View

System view

Default Level

3: Manage level

Parameters

None

Description

Use the `snmp-agent` command to enable SNMP agent.

Use the `undo snmp-agent` command to disable SNMP agent.

By default, SNMP agent is disabled.

You can enable SNMP agent through any commands that begin with `snmp-agent`.

Examples

Enable SNMP agent on the device.

```bash
<Sysname> system-view
[Sysname] snmp-agent
```
snmp-agent calculate-password

Syntax

 snmp-agent calculate-password plain-password mode { 3desmd5 | 3dessha | md5 | sha } { local-engineid | specified-engineid engineid }

View

 System view

Default Level

 3: Manage level

Parameters

 plain-password: Plain text password to be encrypted, a string of 1 to 64 characters.

 mode: Specifies the encryption algorithm and authentication algorithm. The three encryption
algorithms Advanced Encryption Standard (AES), triple data encryption standard (3DES), and Data
Encryption Standard (DES) are in descending order in terms of security. Higher security means more
complex implementation mechanism and lower speed. DES is enough to meet general requirements.
Message-Digest Algorithm 5 (MD5) and Secure Hash Algorithm (SHA-1) are the two authentication
algorithms. MD5 is faster than SHA-1, while SHA-1 provides higher security than MD5.

 • 3desmd5: Converts a plain text encryption password to a cipher text encryption password. In this
case, the authentication protocol must be MD5, and the encryption algorithm must be 3DES.

 • 3dessha: Converts a plain text encryption password to a cipher text encryption password. In this
case, the authentication protocol must be SHA-1, and the encryption algorithm must be 3DES.

 • md5: Converts a plain text authentication password to a cipher text authentication password. In
this case, the authentication protocol must be MD5. Or, this algorithm can convert the plain text
encryption password to a cipher text encryption password. In this case, the authentication protocol
must be MD5, and the encryption algorithm can be either AES or DES (when the authentication
protocol is specified as MD5, cipher text passwords are the same by using the encryption
algorithms AES and DES).

 • sha: Converts the plain text authentication password to a cipher text authentication password. In
this case, the authentication protocol must be SHA-1. Or, this algorithm can convert the plain text
encryption password to a cipher text encryption password. In this case, the authentication protocol
must be SHA-1, and the encryption algorithm can be either AES or DES (when the authentication
protocol is specified as SHA-1, cipher text passwords are the same by using the encryption
algorithms AES and DES).

 local-engineid: Uses local engine ID to calculate cipher text password. For engine ID-related
configuration, refer to the snmp-agent local-engineid command.

 specified-engineid: Uses user-defined engine ID to calculate cipher text password.

 engineid: The engine ID string, an even number of hexadecimal characters, in the range 10 to 64. Its
length must not be an odd number, and the all-zero and all-F strings are invalid.

Description

Use the snmp-agent calculate-password command to convert the user-defined plain text password
to a cipher text password.

Note that:
The cipher text password converted with the sha keyword specified in this command is a string of 40 hexadecimal characters. For an authentication password, all of the 40 hexadecimal characters are valid; while for a privacy password, only the first 32 hexadecimal characters are valid.

Enable SNMP on the device before executing the command.

When creating an SNMPv3 user, if you specify to use the cipher text authentication/encryption password, you can use this command to generate a cipher text password.

The converted password is associated with the engine ID, namely, the password is valid only under the specified engine ID based on which the password was configured.

Related commands: snmp-agent usm-user v3.

Examples

Use local engine ID and MD5 authentication protocol to convert the plain text password authkey.

<Sysname> system-view
[Sysname] snmp-agent calculate-password authkey mode md5 local-engineid
The secret key is: 09659EC5A9AE91BA189E5845E1DDE0CC

snmp-agent community

Syntax

```
snmp-agent community { read | write } community-name [ acl acl-number | mib-view view-name ] *
undo snmp-agent community { read | write } community-name
```

View

System view

Default Level

3: Manage level

Parameters

- **read**: Indicates that the community has read only access right to the MIB objects; that is, the NMS can perform read-only operations when it uses this community name to access the agent.
- **write**: Indicates that the community has read and write access right to the MIB objects; that is, the NMS can perform read and write operations when it uses this community name to access the agent.
- **community-name**: Community name, a string of 1 to 32 characters.
- **acl acl-number**: Associates a basic ACL with the community name. *acl-number* is in the range 2,000 to 2,999. By using an ACL, you can configure to allow or prohibit the access to the agent from the NMS with the specified source IP address.
- **mib-view view-name**: Specifies the MIB view name associated with community-name, where view-name represents the MIB view name, a string of 1 to 32 characters. If no keyword is specified, the default view is ViewDefault (The view created by the system after SNMP agent is enabled).

Description

Use the **snmp-agent community** command to create a new SNMP community. Parameters to be configured include access right, community name, ACL, and accessible MIB views.

Use the **undo snmp-agent community** command to delete a specified community.
The community name configured with this command is only valid for the SNMP v1 and v2c agent. A community is composed of NMSs and SNMP agents, and is identified by the community name, which functions as a password. In a community, when devices communicate with each other, they use community name for authentication. The NMS and the SNMP agent can access each other only when they are configured with the same community name. Typically, public is used as the read-only community name, and private is used as the read and write community name. For security purposes, you are recommended to configure a community name other than public and private.

- The keyword acl specifies that only the NMS with a qualified IP address can access the agent.
- The argument community-name specifies the community name used by the NMS when it accesses the agent.
- The keyword mib-view specifies the MIB objects which the NMS can access.
- The keywords read and write specify the access type.

Related commands: snmp-agent mib-view.

Examples

Create a community with the name of readaccess, allowing read-only access right using this community name.

```plaintext
<Sysname> system-view
[Sysname] snmp-agent sys-info version v1 v2c
[Sysname] snmp-agent community read readaccess
```

- Set the SNMP version on the NMS to SNMPv1 or SNMPv2c
- Fill in the read-only community name readaccess
- Establish a connection, and the NMS can perform read-only operations to the MIB objects in the ViewDefault view on the device

Create a community with the name of writeaccess, allowing only the NMS with the IP address of 1.1.1.1 to configure the values of the agent MIB objects by using this community name; other NMSs are not allowed to perform the write operations by using this community name.

```plaintext
<Sysname> system-view
[Sysname-acl-basic-2001] rule permit source 1.1.1.1 0.0.0.0
[Sysname-acl-basic-2001] rule deny source any
<Sysname-acl-basic-2001> quit
[Sysname] snmp-agent sys-info version v2c
[Sysname] snmp-agent community write writeaccess acl 2001
```

- Set the IP address of the NMS to 1.1.1.1
- Set the SNMP version on the NMS to SNMPv2c
- Fill in the write community name writeaccess; namely, the NMS can perform read-only operations to the MIB objects in the ViewDefault view on the device

Create a community with the name of wr-sys-acc. The NMS can perform the read and write operations to the MIB objects of the system subtree (with the OID of 1.3.6.1.2.1.1).

```plaintext
<Sysname> system-view
[Sysname] snmp-agent sys-info version v1 v2c
[Sysname] snmp-agent mib-view included test system
[Sysname] snmp-agent community write wr-sys-acc mib-view system
```

- Set the SNMP version on the NMS to SNMPv1 or SNMPv2c
- Fill in the write community name wr-sys-acc
Establish a connection, and the NMS can perform read and write operations to the MIB objects in system view on the device.

snmp-agent group

Syntax

The following syntax applies to SNMPv1 and SNMP v2c:

```plaintext
snmp-agent group { v1 | v2c } group-name [ read-view read-view ] [ write-view write-view ] [ notify-view notify-view ] [ acl acl-number ]
undo snmp-agent group { v1 | v2c } group-name
```

The following syntax applies to SNMPv3:

```plaintext
snmp-agent group v3 group-name [ authentication | privacy ] [ read-view read-view ] [ write-view write-view ] [ notify-view notify-view ] [ acl acl-number ]
undo snmp-agent group v3 group-name [ authentication | privacy ]
```

View

System view

Default Level

3: Manage level

Parameters

- **v1**: SNMPv1.
- **v2c**: SNMPv2c.
- **v3**: SNMPv3.
- **group-name**: Group name, a string of 1 to 32 characters.
- **authentication**: Specifies the security model of the SNMP group to be authentication only (without privacy).
- **privacy**: Specifies the security model of the SNMP group to be authentication and privacy.
- **read-view read-view**: Read view, a string of 1 to 32 characters. The default read view is ViewDefault.
- **write-view write-view**: Write view, a string of 1 to 32 characters. By default, no write view is configured, namely, the NMS cannot perform the write operations to all MIB objects on the device.
- **notify-view notify-view**: Notify view, for sending traps, a string of 1 to 32 characters. By default, no notify view is configured, namely, the agent does not send traps to the NMS.
- **acl acl-number**: Associates a basic ACL with the group. **acl-number** is in the range 2000 to 2999. By using a basic ACL, you can restrict the source IP address of SNMP packets, that is, you can configure to allow or prohibit SNMP packets with a specific source IP address, so as to restrict the intercommunication between the NMS and the agent.

Description

Use the **snmp-agent group** command to configure a new SNMP group and specify its access right.

Use the **undo snmp-agent group** command to delete a specified SNMP group.

By default, SNMP groups configured by the **snmp-agent group v3** command use a no-authentication-no-privacy security model.
An SNMP group defines security model, access right, and so on. A user in this SNMP group has all these public properties.

Examples

```
# Create an SNMP group **group1** on an SNMPv3 enabled device, no authentication, no privacy.
<Sysname> system-view
[Sysname] snmp-agent group v3 group1
```

`snmp-agent local-engineid`

Syntax

```
snmp-agent local-engineid  engineid
undo snmp-agent local-engineid
```

View

System view

Default Level

3: Manage level

Parameters

`engineid`: Engine ID, an even number of hexadecimal characters, in the range 10 to 64. Its length must not be an odd number, and the all-zero and all-F strings are invalid.

Description

Use the `snmp-agent local-engineid` command to configure a local engine ID for an SNMP entity.

Use the `undo snmp-agent local-engineid` command to restore the default local engine ID.

By default, the engine ID of a device is the combination of company ID and device ID. Device ID varies by product; it could be an IP address, a MAC address, or a self-defined string of hexadecimal numbers.

An engine ID has two functions:

- For all devices managed by one NMS, each device needs a unique engine ID to identify the SNMP agent. By default, each device has an engine ID. The network administrator has to ensure that there is no repeated engine ID within an SNMP domain.
- In SNMPv3, the user name and cipher text password are associated with the engine ID. Therefore, if the engine ID changes, the user name and cipher text password configured under the engine ID become invalid.

Typically, the device uses its default engine ID. For ease of remembrance, you can set engine IDs for the devices according to the network planning. For example, if both device 1 and device 2 are on the first floor of building A, you can set the engine ID of device 1 to 000Af0010001, and that of device 2 to 000Af0010002.

Related commands: `snmp-agent usm-user`.

Examples

Configure the local engine ID as **123456789A**.

```
<Sysname> system-view
[Sysname] snmp-agent local-engineid 123456789A
```

snmp-agent log

Syntax

```
snmp-agent log { all | get-operation | set-operation }
undo snmp-agent log { all | get-operation | set-operation }
```

View

System view

Default Level

3: Manage level

Parameters

- `all`: Enables logging of SNMP GET and SET operations.
- `get-operation`: Enables logging of SNMP GET operation.
- `set-operation`: Enables logging of SNMP SET operation.

Description

Use the `snmp-agent log` command to enable SNMP logging.

Use the `undo snmp-agent log` command to restore the default.

By default, SNMP logging is disabled.

If specified SNMP logging is enabled, when the NMS performs a specified operation to the SNMP agent, the latter records the operation-related information and saves it to the information center. With parameters for the information center set, output rules of the SNMP logs are decided (that is, whether logs are permitted to output and the output destinations).

Examples

Enable logging of SNMP GET operation.

```
<Sysname> system-view
[Sysname] snmp-agent log get-operation
```

Enable logging of SNMP SET operation.

```
<Sysname> system-view
[Sysname] snmp-agent log set-operation
```

snmp-agent mib-view

Syntax

```
snmp-agent mib-view { excluded | included } view-name oid-tree [ mask mask-value ]
undo snmp-agent mib-view view-name
```
View

System view

Default Level

3: Manage level

Parameters

- `excluded`: Indicates that no nodes of the MIB tree are included in current view.
- `included`: Indicates that all nodes of the MIB tree are included in current view.
- `view-name`: View name, a string of 1 to 32 characters.
- `oid-tree`: MIB subtree, identified by the OID of the subtree root node, such as 1.4.5.3.1, or the name of the subtree root node, such as “system”. OID is made up of a series of integers, which marks the position of the node in the MIB tree and uniquely identifies a MIB object.
- `mask mask-value`: Mask for a MIB subtree, in the range 1 to 32 hexadecimal digits. It must be an even digit.

Description

Use the `snmp-agent mib-view` command to create or update MIB view information so that MIB objects can be specified.

Use the `undo snmp-agent mib-view` command to delete the current configuration.

By default, MIB view name is ViewDefault.

MIB view is a subset of MIB, and it may include all nodes of a MIB subtree (that is, the access to all nodes of this MIB subtree is permitted), or may exclude all nodes of a MIB subtree (that is, the access to all nodes of this MIB subtree is forbidden).

You can use the `display snmp-agent mib-view` command to view the access right of the default view. Also, you can use the `undo snmp-agent mib-view` command to remove the default view, after that, however, you may not be able to read or write all MIB nodes on the agent.

Related commands: `snmp-agent group`.

Examples

Create a MIB view `mibtest`, which includes all objects of the subtree `mib-2`, and excludes all objects of the subtree `ip`.

```
<Sysname> system-view
[Sysname] snmp-agent mib-view included mibtest 1.3.6.1
[Sysname] snmp-agent mib-view excluded mibtest ip
[Sysname] snmp-agent community read public mib-view mibtest
```

If the SNMP version on the NMS is set to SNMPv1, when the NMS uses the community name `public` to access the device, it cannot access all objects of the `ip` subtree (such as the `ipForwarding` node, the `ipDefaultTTL` node, and so on), but it can access all objects of the `mib-2` subtree.

snmp-agent packet max-size

Syntax

```
snmp-agent packet max-size byte-count
```
undo snmp-agent packet max-size

View
System view

Default Level
3: Manage level

Parameters
byte-count: Maximum size of the SNMP packets that can be received or sent by the agent, in the range 484 to 17,940.

Description
Use the `snmp-agent packet max-size` command to configure the maximum size of the SNMP packets that can be received or sent by the agent.

Use the `undo snmp-agent packet max-size` command to restore the default packet size.

By default, the maximum size of the SNMP packets that can be received or sent by the agent is 1,500 bytes.

If devices not supporting fragmentation exist on the routing path between the NMS and the agent, you can use the command to configure the maximum SNMP packet size, and thus to prevent giant packets from being discarded.

Typically, you are recommended to apply the default value.

Examples

Configure the maximum size of the SNMP packets that can be received or sent by the SNMP agent as 1,042 bytes.

<Sysname> system-view
<Sysname> snmp-agent packet max-size 1042

snmp-agent sys-info

Syntax

```
snmp-agent sys-info { contact sys-contact | location sys-location | version { all | { v1 | v2c | v3 }* } }
undo snmp-agent sys-info { contact | location | version { all | { v1 | v2c | v3 }* } }
```

View
System view

Default Level
3: Manage level

Parameters
contact sys-contact: A string of 1 to 200 characters that describes the contact information for system maintenance.

location sys-location: A string of 1 to 200 characters that describes the location of the device.

version: The SNMP version in use.
- **all**: Specifies SNMPv1, SNMPv2c, and SNMPv3.
- **v1**: SNMPv1.
- **v2c**: SNMPv2c.
- **v3**: SNMPv3.

Description

Use the `snmp-agent sys-info` command to configure system information, including the contact information, the location, and the SNMP version in use.

Use the `undo snmp-agent sys-info contact` and `undo snmp-agent sys-info location` command to restore the default.

Use the `undo snmp-agent sys-info version` command to disable use of the SNMP function of the specified version.

By default, the location information is Marlborough, MA 01752 USA, version is SNMPv3, and the contact is 3Com Corporation.

The device can process the SNMP packets of the corresponding version only if SNMP of a specific version is enabled. If SNMPv1 is enabled, the device will drop the received SNMPv2c packets; if SNMPv2c is enabled, the device will drop the received SNMPv1 packets. To enable the device to communicate with different NMSs, you can enable SNMP of different versions on a device.

Related commands: `display snmp-agent sys-info`.

Note

Network maintenance engineers can use the system contact information to get in touch with the manufacturer in case of network failures. The system location information is a management variable under the system branch as defined in RFC1213-MIB, identifying the location of the managed object.

Examples

```
# Configure the contact information as “Dial System Operator at beeper # 27345”.
<Sysname> system-view
[Sysname] snmp-agent sys-info contact Dial System Operator at beeper # 27345
```

snmp-agent target-host

Syntax

```
snmp-agent target-host trap address udp-domain { ip-address | ipv6 ipv6-address } [ udp-port port-number ] params securityname security-string [ v1 | v2c | v3 [ authentication | privacy ] ]
undo snmp-agent target-host trap address udp-domain { ip-address | ipv6 ipv6-address } params securityname security-string
```

View

System view
Default Level

3: Manage level

Parameters

- **trap**: Specifies the host to be the target host which will receive traps and notifications from the device.
- **address**: Specifies the destination IP address in the SNMP messages sent from the device.
- **udp-domain**: Indicates that the trap is transmitted using UDP.
- **ip-address**: The IPv4 address of the trap target host.
- **ipv6 ipv6-address**: Specifies the IPv6 address of the trap target host.
- **udp-port port-number**: Specifies the number of the port on the target host to receive traps.
- **params securityname security-string**: Specifies the authentication related parameter, which is an SNMPv1 or SNMPv2c community name or an SNMPv3 user name, a string of 1 to 32 characters.
 - **v1**: SNMPv1.
 - **v2c**: SNMPv2c.
 - **v3**: SNMPv3.
 - **authentication**: Specifies the security model to be authentication without privacy. Authentication is a process to check whether the packet is integral and whether it has been tampered. You need to configure the authentication password when creating an SNMPv3 user.
 - **privacy**: Specifies the security model to be authentication with privacy. Privacy is to encrypt the data part of a packet to prevent it from being intercepted. You need to configure the authentication password and privacy password when creating an SNMPv3 user.

Description

Use the `snmp-agent target-host` command to configure the related settings for a trap target host.

Use the `undo snmp-agent target-host` command to remove the current settings. According to the networking requirements, you can use this command for multiple times to configure different settings for a target host, enabling the device to send trap messages to different NMSs.

- If **udp-port port-number** is not specified, port number 162 is used.
- If the key words v1, v2 and v3 are not specified, v1 is used.
- If the key words authentication and privacy are not specified, the authentication mode is no authentication, no privacy.

Related commands: `enable snmp trap updown`, `snmp-agent trap enable`, `snmp-agent trap source`, `snmp-agent trap life`.

Examples

Enable the device to send SNMP traps to 10.1.1.1, using the community name of public.

```
<Sysname> system-view
[Sysname] snmp-agent trap enable standard
[Sysname] snmp-agent target-host trap address udp-domain 10.1.1.1 params securityname public
```
snmp-agent trap enable

Syntax

```
snmp-agent trap enable [ configuration | flash | standard [ authentication | coldstart | linkdown | linkup | warmstart ]* | system ]
undo snmp-agent trap enable [ configuration | flash | standard [ authentication | coldstart | linkdown | linkup | warmstart ]* | system ]
```

View

System view

Default Level

3: Manage level

Parameters

- `configuration`: Enables the sending of configuration traps.
- `flash`: Enables the sending of FLASH-related traps.
- `standard`: Standard traps.
 - `authentication`: Enables the sending of authentication failure traps in the event of authentication failure.
 - `coldstart`: Sends coldstart traps when the device restarts.
 - `linkdown`: Sends linkdown traps when the port is in a linkdown status. It should be configured globally.
 - `linkup`: Sends linkup traps when the port is in a linkup status. It should be configured globally.
 - `warmstart`: Sends warmstart traps when the SNMP restarts.
- `system`: Sends 3Com-SYS-MAN-MIB (a private MIB) traps.

Description

Use the `snmp-agent trap enable` command to enable the trap function globally.

Use the `undo snmp-agent trap enable` command to disable the trap function globally.

By default, the trap function of other modules is enabled.

Only after the trap function is enabled can each module generate corresponding traps.

Note that:

To enable an interface to generate Linkup/Linkdown traps when its state changes, you need to enable the linkUp/linkDown trap function on the interface and globally. Use the `enable snmp trap updown` command to enable this function on an interface, and use the `snmp-agent trap enable [standard | linkdown | linkup]*` command to enable this function globally.

Related commands: `snmp-agent target-host`, `enable snmp trap updown`.

Examples

```
# Enable the device to send SNMP authentication failure packets to 10.1.1.1, using the community name public.
<Sysname> system-view
[Sysname] snmp-agent target-host trap address udp-domain 10.1.1.1 params securityname public
```
snmp-agent trap if-mib link extended

Syntax

```
snmp-agent trap if-mib link extended
undo snmp-agent trap if-mib link extended
```

View

System view

Default Level

3: Manage level

Parameters

None

Description

Use the `snmp-agent trap if-mib link extended` command to extend the standard linkUp/linkDown traps defined in RFC. An extended linkUp/linkDown trap is the standard linkUp/linkDown trap defined in RFC appended with the interface description and interface type information.

Use the `undo snmp-agent trap if-mib link extended` command to restore the default.

By default, standard linkUp/linkDown traps defined in RFC are used.

- A standard linkUp trap is in the following format:

 #Apr 24 11:48:04:896 2008 Sysname IFNET/4/INTERFACE UPDOWN:

 Trap 1.3.6.1.6.3.1.1.5.4<linkUp>: Interface 983555 is Up, ifAdminStatus is 1, ifOperStatus is 1

- An extended linkUp trap is in the following format:

 #Apr 24 11:43:09:896 2008 Sysname IFNET/4/INTERFACE UPDOWN:

 Trap 1.3.6.1.6.3.1.1.5.4<linkUp>: Interface 983555 is Up, ifAdminStatus is 1, ifOperStatus is 1, ifDescr is GigabitEthernet1/0/1, ifType is 6

- A standard linkDown trap is in the following format:

 #Apr 24 11:47:35:224 2008 Sysname IFNET/4/INTERFACE UPDOWN:

 Trap 1.3.6.1.6.3.1.1.5.3<linkDown>: Interface 983555 is Down, ifAdminStatus is 2, ifOperStatus is 2

- An extended linkDown trap is in the following format:

 #Apr 24 11:42:54:314 2008 AR29.46 IFNET/4/INTERFACE UPDOWN:

 Trap 1.3.6.1.6.3.1.1.5.3<linkDown>: Interface 983555 is Down, ifAdminStatus is 2, ifOperStatus is 2, ifDescr is GigabitEthernet1/0/1, ifType is 6

The format of an extended linkUp/ linkDown trap is the standard format followed with the ifDescr and ifType information, facilitating problem location.

Note that after this command is configured, the device sends extended linkUp/linkDown traps. If the extended messages are not supported on NMS, the device may not be able to resolve the messages.

Examples

```
# Extend standard linkUp/linkDown traps defined in RFC.
```
snmp-agent trap life

Syntax

```
snmp-agent trap life seconds
undo snmp-agent trap life
```

View

System view

Default Level

3: Manage level

Parameters

- `seconds`: Timeout time, in the range 1 to 2,592,000 seconds.

Description

Use the `snmp-agent trap life` command to configure the holding time of the traps in the queue. Traps will be discarded when the holding time expires.

Use the `undo snmp-agent trap life` command to restore the default holding time of traps in the queue.

By default, the holding time of SNMP traps in the queue is 120 seconds.

The SNMP module sends traps in queues. As soon as the traps are saved in the trap queue, a timer is started. If traps are not sent out until the timer times out (namely, the holding time configured by using this command expires), the system removes the traps from the trap sending queue.

Related commands: `snmp-agent trap enable`, `snmp-agent target-host`.

Examples

```
# Configure the holding time of traps in the queue as 60 seconds.
<Sysname> system-view
<Sysname> snmp-agent trap life 60
```

snmp-agent trap queue-size

Syntax

```
snmp-agent trap queue-size size
undo snmp-agent trap queue-size
```

View

System view

Default Level

3: Manage level
Parameters

size: Number of traps that can be stored in the trap sending queue, in the range 1 to 1,000.

Description

Use the `snmp-agent trap queue-size` command to set the size of the trap sending queue.
Use the `undo snmp-agent trap queue-size` command to restore the default queue size.
By default, up to 100 traps can be stored in the trap sending queue.

After traps are generated, they will be saved into the trap sending queue. The size of the queue
determines the maximum number of the traps that can be stored in the queue. When the size of the
trap sending queue reaches the configured value, the newly generated traps are saved into the queue,
and the earliest ones are discarded.

Related commands: `snmp-agent trap enable`, `snmp-agent target-host`, `snmp-agent trap life`.

Examples

Set the maximum number of traps that can be stored in the trap sending queue to 200.

```
<Sysname> system-view
<Sysname> snmp-agent trap queue-size 200
```

snmp-agent trap source

Syntax

```
snmp-agent trap source interface-type interface-number
```

undo snmp-agent trap source

View

System view

Default Level

3: Manage level

Parameters

`interface-type interface-number`: Specifies the interface type and interface number.

Description

Use the `snmp-agent trap source` command to specify the source IP address contained in the trap.
Use the `undo snmp-agent trap source` command to restore the default.
By default, SNMP chooses the IP address of an interface to be the source IP address of the trap.
Upon the execution of this command, the system uses the primary IP address of the specified interface
as the source IP address of the traps, and the NMS will use this IP address to uniquely identify the
agent. Even if the agent sends out traps through different interfaces, the NMS uses this IP address to
filter all traps sent from the agent.

Use this command to trace a specific event by the source IP address of a trap.

Note that:
Before you can configure the IP address of a particular interface as the source IP address of the trap, ensure that the interface already exists and that it has a legal IP address. Otherwise, if the configured interface does not exist, the configurations will fail; if the specified IP address is illegal, the configuration will be invalid. After a legal IP address is configured for the interface, the configuration becomes valid automatically.

Related commands: **snmp-agent trap enable**, **snmp-agent target-host**.

Examples

```
# Configure the IP address of Vlan-interface 1 as the source address for traps.
<Sysname> system-view
[Sysname] snmp-agent trap source Vlan-interface 1
```

snmp-agent usm-user { v1 | v2c }

Syntax

```
snmp-agent usm-user { v1 | v2c } user-name group-name [ acl acl-number ]
```

undo snmp-agent usm-user { v1 | v2c } user-name group-name

View

System view

Default Level

3: Manage level

Parameters

- **v1**: The configured user name should be applied in the SNMPv1 networking environment. If the agent and the NMS use SNMPv1 packets to communicate with each other, this keyword is needed.
- **v2c**: The configured user name should be applied in the SNMPv2c networking environment. If the agent and the NMS use SNMPv2c packets to communicate with each other, this keyword is needed.
- **user-name**: User name, a string of 1 to 32 characters. It is case sensitive.
- **group-name**: Group name, a string of 1 to 32 characters. It is case sensitive.
- **acl acl-number**: Associates a basic ACL with the user. *acl-number* is in the range 2000 to 2999. By using a basic ACL, you can restrict the source IP address of SNMP packets, that is, you can configure to allow or prohibit SNMP packets with a specific source IP address, so as to allow or prohibit the specified NMS to access the agent by using this user name.

Description

Use the **snmp-agent usm-user { v1 | v2c }** command to add a user to an SNMP group.

Use the **undo snmp-agent usm-user { v1 | v2c }** command to delete a user from an SNMP group.

As defined in the SNMP protocol, in SNMPv1 and SNMPv2c networking applications, the NMS and the agent use community name to authenticate each other; in SNMPv3 networking applications, they use user name to authenticate each other. If you prefer using the user name in the authentication, the device supports configuration of SNMPv1 and SNMPv2c users. Creating an SNMPv1 or SNMPv2c user equals adding of a new read-only community name. After you add the user name into the read-only community name field of the NMS, the NMS can establish SNMP connection with the device.
To make the configured user take effect, create an SNMP group first.

Examples

Create a v2c user **userv2c** in group **readCom**.

```plaintext
<Sysname> system-view

[Sysname] snmp-agent sys-info version v2c
[Sysname] snmp-agent group v2c readCom
[Sysname] snmp-agent usm-user v2c userv2c readCom

- Set the SNMP version on the NMS to SNMPv2c
- Fill in the read community name **userv2c**, and then the NMS can access the agent
```

Create a v2c user **userv2c** in group **readCom**, allowing only the NMS with the IP address of 1.1.1.1 to access the agent by using this user name; other NMSs are not allowed to access the agent by using this user name.

```plaintext
<Sysname> system-view

[Sysname] acl number 2001
[Sysname-acl-basic-2001] rule permit source 1.1.1.1 0.0.0.0
[Sysname-acl-basic-2001] rule deny source any
[Sysname-acl-basic-2001] quit
[Sysname] snmp-agent sys-info version v2c
[Sysname] snmp-agent group v2c readCom
[Sysname] snmp-agent usm-user v2c userv2c readCom acl 2001

- Set the IP address of the NMS to 1.1.1.1
- Set the SNMP version on the NMS to SNMPv2c
- Fill in both the read community and write community options with **userv2c**, and then the NMS can access the agent.
```

snmp-agent usm-user v3

Syntax

```plaintext
snmp-agent usm-user v3 user-name group-name [ cipher ] [ authentication-mode { md5 | sha } auth-password [ privacy-mode { 3des | aes128 | des56 } priv-password ] ] [ acl acl-number ]
undo snmp-agent usm-user v3 user-name group-name { local | engineid engineid-string }
```

View

System view

Default Level

3: Manage level

Parameters

- **user-name**: User name, a string of 1 to 32 characters. It is case sensitive.
- **group-name**: Group name, a string of 1 to 32 characters. It is case sensitive.
- **cipher**: Specifies that **auth-password** and **priv-password** are cipher text passwords, which can be calculated by using the **snmp-agent calculate-password** command.
authentication-mode: Specifies the security model to be authentication. MD5 is faster than SHA, while SHA provides a higher security than MD5.

- **md5**: Specifies the authentication protocol as MD5.
- **sha**: Specifies the authentication protocol as SHA-1.

auth-password: Authentication password. If the cipher keyword is not specified, auth-password indicates a plain text password, which is a string of 1 to 64 visible characters. If the cipher keyword is specified, auth-password indicates a cipher text password. If the md5 keyword is specified, auth-password is a string of 32 hexadecimal characters. If the sha keyword is specified, auth-password is a string of 40 hexadecimal characters.

privacy-mode: Specifies the security model to be privacy. The three encryption algorithms AES, 3DES, and DES are in descending order in terms of security. Higher security means more complex implementation mechanism and lower speed. DES is enough to meet general requirements.

- **3des**: Specifies the privacy protocol as 3DES.
- **des56**: Specifies the privacy protocol as DES.
- **aes128**: Specifies the privacy protocol as AES.

priv-password: The privacy password. If the cipher keyword is not specified, priv-password indicates a plain text password, which is a string of 1 to 64 characters; if the cipher keyword is specified, priv-password indicates a cipher text password; if the 3des keyword is specified, priv-password is a string of 80 hexadecimal characters; if the aes128 keyword is specified, priv-password is a string of 40 hexadecimal characters; if the des56 keyword is specified, priv-password is a string of 40 hexadecimal characters.

acl acl-number: Associates a basic ACL with the user. acl-number is in the range 2000 to 2999. By using a basic ACL, you can restrict the source IP address of SNMP packets, that is, you can configure to allow or prohibit SNMP packets with a specific source IP address, so as to allow or prohibit the specified NMS to access the agent by using this user name.

local: Represents a local SNMP entity user.

des56: The engine ID string, an even number of hexadecimal characters, in the range 10 to 64. Its length must not be an odd number, and the all-zero and all-F strings are invalid.

Description

Use the snmp-agent usm-user v3 command to add a user to an SNMP group.

Use the undo snmp-agent usm-user v3 command to delete a user from an SNMP group.

The user name configured by using this command is applicable to the SNMPv3 networking environments. If the agent and the NMS use SNMPv3 packets to communicate with each other, you need to create an SNMPv3 user.

To make the configured user valid, create an SNMP group first. Configure the authentication and encryption modes when you create a group, and configure the authentication and encryption passwords when you create a user.

- If you specify the cipher keyword, the system considers the arguments auth-password and priv-password as cipher text passwords. In this case, the command supports copy and paste, meaning if the engine IDs of the two devices are the same, you can copy and paste the SNMPv3 configuration commands in the configuration file on device A to device B and execute the commands on device B. The cipher text password and plain text password on the two devices are the same.
If you do not specify the `cipher` keyword, the system considers the arguments `auth-password` and `priv-password` as plain text passwords. In this case, if you perform the copy and paste operation, the system will encrypt these two passwords, resulting in inconsistency of the cipher text and plain text passwords of the two devices.

Note that:

- If you use the `snmp-agent usm-user v3 cipher` command, the `pri-password` argument in this command can be obtained by the `snmp-agent calculate-password` command. To make the calculated cipher text password applicable to the `snmp-agent usm-user v3 cipher` command and have the same effect as that in the `snmp-agent usm-user v3 cipher` command, ensure that the same privacy protocol is specified for the two commands and the local engine ID specified in the `snmp-agent usm-user v3 cipher` command is consistent with the SNMP entity engine ID specified in the `snmp-agent calculate-password` command.
- If you execute this command repeatedly to configure the same user (namely, the user names are the same, no limitation to other keywords and arguments), the last configuration takes effect.
- A plain text password is required when the NMS accesses the device; therefore, please remember the user name and the plain text password when you create a user.

Related commands: `snmp-agent calculate-password`, `snmp-agent group`, `snmp-agent usm-user { v1 | v2c }`.

Examples

```bash
# Add a user `testUser` to the SNMPv3 group `testGroup`. Configure the security model as `authentication without privacy`, the authentication protocol as `MD5`, the plain-text authentication password as `authkey`.

```
<Sysname> system-view
[Sysname] snmp-agent group v3 testGroup authentication
[Sysname] snmp-agent usm-user v3 testUser testGroup authentication-mode md5 authkey
```

- Set the SNMP version on the NMS to SNMPv3
- Fill in the user name `testUser`,
- Set the authentication protocol to `MD5`
- Set the authentication password to `authkey`
- Establish a connection, and the NMS can access the MIB objects in the ViewDefault view on the device

# Add a user `testUser` to the SNMPv3 group `testGroup`. Configure the security model as `authentication and privacy`, the authentication protocol as `MD5`, the privacy protocol as `DES56`, the plain-text authentication password as `authkey`, and the plain-text privacy password as `prikey`.

```
<Sysname> system-view
[Sysname] snmp-agent group v3 testGroup privacy
[Sysname] snmp-agent usm-user v3 testUser testGroup authentication-mode md5 authkey privacy-mode des56 prikey
```

- Set the SNMP version on the NMS to SNMPv3
- Fill in the user name `testUser`,
- Set the authentication protocol to `MD5`
- Set the authentication password to `authkey`
- Set the privacy protocol to `DES`
- Set the privacy password to `prikey`
Establish a connection, and the NMS can access the MIB objects in the ViewDefault view on the device.

# Add a user testUser to the SNMPv3 group testGroup with the cipher keyword specified. Configure the security model as authentication and privacy, the authentication protocol as MD5, the privacy protocol as DES56, the plain-text authentication password as authkey, and the plain-text privacy password as prikey.

```bash
<Sysname> system-view
[Sysname] snmp-agent group v3 testGroup privacy
[Sysname] snmp-agent calculate-password authkey mode md5 local-engineid
The secret key is: 09659EC5A9AE91BA189E5845E1DDE0CC
[Sysname] snmp-agent calculate-password prikey mode md5 local-engineid
The secret key is: 800D7F26E786C4BECE61BF01E0A22705
[Sysname] snmp-agent usm-user v3 testUser testGroup cipher authentication-mode md5 09659EC5A9AE91BA189E5845E1DDE0CC privacy-mode des56 800D7F26E786C4BECE61BF01E0A22705
```

- Set the SNMP version on the NMS to SNMPv3
- Fill in the user name testUser,
- Set the authentication protocol to MD5
- Set the authentication password to authkey
- Set the privacy protocol to DES
- Set the privacy password to prikey
- Establish a connection, and the NMS can access the MIB objects in the ViewDefault view on the device.
MIB Configuration Commands

display mib-style

Syntax

display mib-style

View

Any view

Default Level

3: Manage level

Parameters

None

Description

Use the display mib-style command to display the MIB style of the device.

Two MIB styles are available on the device: new and compatible. After obtaining the MIB style, you can select matched 3Com network management software based on the MIB style.

Related commands: mib-style.

Examples

# After getting the device ID from node sysObjectID, you find that it is an 3Com device, and hope to know the current MIB style or the MIB style after next boot of the device.

<Sysname> display mib-style
Current MIB style: new
Next reboot MIB style: new

The above output information indicates that the current MIB style of the device is new, and the MIB style after next boot is still new.

mib-style

Syntax

mib-style [ new | compatible ]

View

System view
Default Level

3: Manage level

Parameters

new: Specifies the MIB style of the device as 3Com new; that is, both sysOID and private MIB of the device are located under the 3Com enterprise ID 25506.

compatible: Specifies the MIB style of the device as 3Com compatible; that is, sysOID of the device is located under the 3Com enterprise ID 25506, and private MIB is located under the enterprise ID 2011.

Description

Use the mib-style command to set the MIB style of the device.

By default, the MIB style of the device is new.

Note that the configuration takes effect only after the device reboots.

Examples

# Modify the MIB style of the device as compatible.

<Sysname> system-view
[Sysname] mib-style compatible
[Sysname] quit
<Sysname> display mib-style
Current MIB style: new
Next reboot MIB style: compatible
<Sysname> reboot
RMON Configuration Commands

display rmon alarm

Syntax

display rmon alarm [entry-number]

View

Any view

Default Level

1: Monitor level

Parameters

entry-number: Index of an RMON alarm entry, in the range 1 to 65535. If no entry is specified, the configuration of all alarm entries is displayed.

Description

Use the display rmon alarm command to display the configuration of the specified or all RMON alarm entries.

Related commands: rmon alarm.

Examples

# Display the configuration of all RMON alarm table entries.

<Sysname> display rmon alarm
AlarmEntry 1 owned by user1 is VALID.
Samples type : absolute
Variable formula : 1.3.6.1.2.1.16.1.1.1.4.1<etherStatsOctets.1>
Sampling interval : 10(sec)
Rising threshold : 50(linked with event 1)
Falling threshold : 5(linked with event 2)
When startup enables : risingOrFallingAlarm
Latest value : 0

Table 12-1 display rmon alarm command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlarmEntry</td>
<td>Alarm entry, corresponding to the management information base (MIB) node alarmIndex.</td>
</tr>
<tr>
<td>owned by</td>
<td>Owner of the entry, user1 in this example, corresponding to the MIB node alarmOwner.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>VALID</td>
<td>Status of the entry identified by the index (VALID means the entry is valid, and UNDERCREATION means invalid. You can use the display rmon command to view the invalid entry, while with the display current-configuration and display this commands you cannot view the corresponding rmon commands.), corresponding to the MIB node alarmStatus.</td>
</tr>
<tr>
<td>Samples type</td>
<td>The sampling type (the value can be absolute or delta), corresponding to the MIB node alarmSampleType.</td>
</tr>
<tr>
<td>Variable formula</td>
<td>Alarm variable, namely, the monitored MIB node, corresponding to the MIB node alarmVariable.</td>
</tr>
<tr>
<td>Sampling interval</td>
<td>Sampling interval, in seconds, corresponding to the MIB node alarmInterval.</td>
</tr>
<tr>
<td>Rising threshold</td>
<td>Alarm rising threshold (When the sampling value is bigger than or equal to this threshold, a rising alarm is triggered.), corresponding to the MIB node alarmRisingThreshold.</td>
</tr>
<tr>
<td>Falling threshold</td>
<td>Alarm falling threshold (When the sampling value is smaller than or equal to this threshold, a falling alarm is triggered.), corresponding to the MIB node alarmFallingThreshold.</td>
</tr>
<tr>
<td>When startup enables</td>
<td>How an alarm can be triggered, corresponding to the MIB node alarmStartupAlarm.</td>
</tr>
<tr>
<td>Latest value</td>
<td>The last sampled value, corresponding to the MIB node alarmValue.</td>
</tr>
</tbody>
</table>

**display rmon event**

**Syntax**

```
display rmon event [entry-number]
```

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

`entry-number`: Index of an RMON event entry, in the range 1 to 65535. If no entry is specified, the configuration of all event entries is displayed.

**Description**

Use the `display rmon event` command to display the configuration of the specified or all RMON event entries.

Displayed information includes event index, event owner, event description, action triggered by the event (such as sending log or trap messages), and last time the event occurred (the elapsed time since system initialization/startup) in seconds.

Related commands: `rmon event`. 
Examples

# Display the configuration of RMON event table.
<Sysname> display rmon event
EventEntry 1 owned by user1 is VALID.
    Description: null.
    Will cause log-trap when triggered, last triggered at 0days 00h:02m:27s.

Table 12-2 display rmon event command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EventEntry</td>
<td>Event entry, corresponding to the MIB node eventIndex.</td>
</tr>
<tr>
<td>owned by</td>
<td>Owner of the entry, corresponding to the MIB node eventOwner.</td>
</tr>
<tr>
<td>VALID</td>
<td>Status of the entry identified by the index (VALID means the entry is valid, and UNDERCREATION means invalid. You can use the display rmon command to view the invalid entry; while with the display current-configuration and display this commands you cannot view the corresponding rmon commands.), corresponding to the MIB node eventStatus.</td>
</tr>
<tr>
<td>Description</td>
<td>Description for the event, corresponding to the MIB node eventDescription.</td>
</tr>
<tr>
<td>cause log-trap when triggered</td>
<td>The actions that the system will take when the event is triggered:</td>
</tr>
<tr>
<td></td>
<td>• none: The system will take no action</td>
</tr>
<tr>
<td></td>
<td>• log: The system will log the event</td>
</tr>
<tr>
<td></td>
<td>• snmp-trap: The system will send a trap to the NMS</td>
</tr>
<tr>
<td></td>
<td>• log-and-trap: The system will log the event and send a trap to the NMS</td>
</tr>
<tr>
<td></td>
<td>This field corresponds to the MIB node eventType.</td>
</tr>
<tr>
<td>last triggered at</td>
<td>Time when the last event was triggered, corresponding to the MIB node eventLastTimeSent.</td>
</tr>
</tbody>
</table>

display rmon eventlog

Syntax

display rmon eventlog [entry-number]

View

Any view

Default Level

1: Monitor level

Parameters

entry-number: Index of an event entry, in the range 1 to 65535.

Description

Use the display rmon eventlog command to display log information for the specified or all event entries.
If *entry-number* is not specified, the log information for all event entries is displayed.

If you use the `rmon event` command to configure the system to log an event when the event is triggered, the event is recorded into the RMON log. You can use this command to display the details of the log table: event index, current event state, time the event was logged (the elapsed time in seconds since system initialization/startup), and event description.

**Examples**

```bash
Display the RMON log information for event entry 1.
<Sysname> display rmon eventlog 1
LogEntry 1 owned by null is VALID.
 Generated eventLog 1.1 at 0day(s) 00h:00m:33s.
 Description: The alarm formula defined in prialarmEntry 1,
 uprise 80 with alarm value 85. Alarm sample type is absolute.
 Generated eventLog 1.2 at 0day(s) 00h:42m:03s.
 Description: The alarm formula defined in prialarmEntry 2,
 less than(=) 5 with alarm value 0. Alarm sample type is delta.
```

**Table 12-3 display rmon eventlog command output description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogEntry</td>
<td>Event log entry, corresponding to the MIB node logIndex.</td>
</tr>
<tr>
<td>owned by</td>
<td>Owner of the entry, corresponding to the MIB node eventOwner.</td>
</tr>
<tr>
<td>VALID</td>
<td>Status of the entry identified by the index (VALID means the entry is valid,</td>
</tr>
<tr>
<td></td>
<td>and UNDERCREATION means invalid. You can use the display rmon command to</td>
</tr>
<tr>
<td></td>
<td>view the invalid entry; while with the display current-configuration and</td>
</tr>
<tr>
<td></td>
<td>display this commands you cannot view the corresponding rmon commands.).</td>
</tr>
<tr>
<td>Generates eventLog at</td>
<td>Time when the log was created (Time passed since the device was</td>
</tr>
<tr>
<td></td>
<td>booted), corresponding to the MIB node logTime.</td>
</tr>
<tr>
<td>Description</td>
<td>Log description, corresponding to the MIB node logDescription.</td>
</tr>
</tbody>
</table>

The above example shows that event 1 has generated two logs:

- eventLog 1.1, generated by private alarm entry 1, which is triggered because the alarm value (85) exceeds the rising threshold (80). The sampling type is `absolute`.
- eventLog 1.2, generated by private alarm entry 2, which is triggered because the alarm value (0) is lower than the falling threshold (5). The sampling type is `delta`.

**display rmon history**

**Syntax**

```
display rmon history [interface-type interface-number]
```

**View**

Any view

**Default Level**

1: Monitor level
**Parameters**

*interface-type interface-number*: Specifies an interface by its type and number.

**Description**

Use the `display rmon history` command to display RMON history control entry and history sampling information.

After you have created history control entry on an interface, the system calculates the information of the interface periodically and saves this information to the etherHistoryEntry table. You can use this command to display the entries in this table.

You can configure the number of history sampling records that can be displayed and the history sampling interval through the `rmon history` command.

**Related commands:** `rmon history`.

**Examples**

# Display RMON history control entry and history sampling information for interface GigabitEthernet 1/0/1.

```plaintext
<Sysname> display rmon history GigabitEthernet 1/0/1
HistoryControlEntry 1 owned by null is VALID
 Samples interface : GigabitEthernet1/0/1<ifIndex.1>
 Sampling interval : 10(sec) with 5 buckets max
 Sampled values of record 1 :
 dropevents : 0 , octets : 0
 packets : 0 , broadcast packets : 0
 multicast packets : 0 , CRC alignment errors : 0
 undersize packets : 0 , oversize packets : 0
 fragments : 0 , jumbos : 0
 collisions : 0 , utilization : 0
 Sampled values of record 2 :
 dropevents : 0 , octets : 0
 packets : 0 , broadcast packets : 0
 multicast packets : 0 , CRC alignment errors : 0
 undersize packets : 0 , oversize packets : 0
 fragments : 0 , jumbos : 0
 collisions : 0 , utilization : 0
 Sampled values of record 3 :
 dropevents : 0 , octets : 0
 packets : 0 , broadcast packets : 0
 multicast packets : 0 , CRC alignment errors : 0
 undersize packets : 0 , oversize packets : 0
 fragments : 0 , jumbos : 0
 collisions : 0 , utilization : 0
 Sampled values of record 4 :
 dropevents : 0 , octets : 0
 packets : 0 , broadcast packets : 0
 multicast packets : 0 , CRC alignment errors : 0
 undersize packets : 0 , oversize packets : 0
```

12-5
Table 12-4 display rmon history command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HistoryControlEntry</td>
<td>History control entry, corresponding to the MIB node etherHistoryIndex.</td>
</tr>
<tr>
<td>owned by</td>
<td>Owner of the entry, corresponding to the MIB node historyControlOwner.</td>
</tr>
<tr>
<td>VALID</td>
<td>Status of the entry identified by the index (VALID means the entry is valid, and UNDERCREATION means invalid. You can use the display rmon command to view the invalid entry; while with the display current-configuration and display this commands you cannot view the corresponding rmon commands.), corresponding to the MIB node historyControlStatus.</td>
</tr>
<tr>
<td>Samples Interface</td>
<td>The sampled interface</td>
</tr>
<tr>
<td>Sampling interval</td>
<td>Sampling period, in seconds, corresponding to the MIB node historyControlInterval. The system samples the information of an interface periodically.</td>
</tr>
<tr>
<td>buckets max</td>
<td>The maximum number of history table entries that can be saved, corresponding to the MIB node historyControlBucketsGranted. If the specified value of the buckets argument exceeds the history table size supported by the device, the supported history table size is displayed. If the current number of the entries in the table has reached the maximum number, the system will delete the earliest entry to save the latest one.</td>
</tr>
<tr>
<td>Sampled values of record number</td>
<td>The (number)th statistics recorded in the system cache. Statistics records are numbered according to the order of time they are saved into the cache.</td>
</tr>
<tr>
<td>dropevents</td>
<td>Dropped packets during the sampling period, corresponding to the MIB node etherHistoryDropEvents.</td>
</tr>
<tr>
<td>octets</td>
<td>Number of octets received during the sampling period, corresponding to the MIB node etherHistoryOctets.</td>
</tr>
<tr>
<td>packets</td>
<td>Number of packets received during the sampling period, corresponding to the MIB node etherHistoryPkts.</td>
</tr>
<tr>
<td>broadcastpackets</td>
<td>Number of broadcasts received during the sampling period, corresponding to the MIB node etherHistoryBroadcastPkts.</td>
</tr>
<tr>
<td>multicastpackets</td>
<td>Number of multicasts received during the sampling period, corresponding to the MIB node etherHistoryMulticastPkts.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>CRC alignment errors</td>
<td>Number of packets received with CRC alignment errors during the sampling period, corresponding to the MIB node etherHistoryCRCAlignErrors.</td>
</tr>
<tr>
<td>undersize packets</td>
<td>Number of undersize packets received during the sampling period, corresponding to the MIB node etherHistoryUndersizePkts.</td>
</tr>
<tr>
<td>oversize packets</td>
<td>Number of oversize packets received during the sampling period, corresponding to the MIB node etherHistoryOversizePkts.</td>
</tr>
<tr>
<td>fragments</td>
<td>Number of fragments received during the sampling period, corresponding to the MIB node etherHistoryFragments.</td>
</tr>
<tr>
<td>jabbers</td>
<td>Number of jabbers received during the sampling period corresponding to the MIB node etherHistoryJabbers.</td>
</tr>
<tr>
<td>collisions</td>
<td>Number of colliding packets received during the sampling period, corresponding to the MIB node etherHistoryCollisions.</td>
</tr>
<tr>
<td>utilization</td>
<td>Bandwidth utilization during the sampling period, corresponding to the MIB node etherHistoryUtilization.</td>
</tr>
</tbody>
</table>

**display rmon prialarm**

**Syntax**

display rmon prialarm [entry-number]

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

entry-number: Private alarm entry index, in the range 1 to 65535. If no entry is specified, the configuration of all private alarm entries is displayed.

**Description**

Use the display rmon prialarm command to display the configuration of the specified or all private alarm entries.

**Related commands:** rmon prialarm.

**Examples**

# Display the configuration of all private alarm entries.

<Sysname> display rmon prialarm  
PrialarmEntry 1 owned by user1 is VALID.  
Samples type : absolute  
Variable formula : (.1.3.6.1.2.1.16.1.1.1.6.1*100/.1.3.6.1.2.1.16.1.1.1.5.1)  
Description : ifUtilization.GigabitEthernet1/0/1
Sampling interval : 10(sec)
Rising threshold : 80(linked with event 1)
Falling threshold : 5(linked with event 2)
When startup enables : risingOrFallingAlarm
This entry will exist : forever
Latest value : 85

Table 12-5 display rmon prialarm command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PrialarmEntry</td>
<td>The entry of the private alarm table</td>
</tr>
<tr>
<td>owned by</td>
<td>Owner of the entry, user1 in this example</td>
</tr>
<tr>
<td>VALID</td>
<td>Status of the entry identified by the index (VALID means the entry is valid, and UNDERCREATION means invalid. You can use the display rmon command to view the invalid entry; while with the display current-configuration and display this commands you cannot view the corresponding rmon commands.)</td>
</tr>
<tr>
<td>Samples type</td>
<td>Sampling type, whose value can be absolute or delta.</td>
</tr>
<tr>
<td>Sampling interval</td>
<td>Sampling interval, in seconds. The system performs absolute sample or delta sample to sampling variables according to the sampling interval.</td>
</tr>
<tr>
<td>Rising threshold</td>
<td>Alarm rising threshold. An event is triggered when the sampled value is greater than or equal to this threshold.</td>
</tr>
<tr>
<td>Falling threshold</td>
<td>Alarm falling threshold. An event is triggered when the sampled value is less than or equal to this threshold.</td>
</tr>
<tr>
<td>linked with event</td>
<td>Event index associated with the prialarm</td>
</tr>
<tr>
<td>When startup enables</td>
<td>How can an alarm be triggered</td>
</tr>
<tr>
<td>This entry will exist</td>
<td>The lifetime of the entry, which can be forever or span the specified period</td>
</tr>
<tr>
<td>Latest value</td>
<td>The count result of the last sample</td>
</tr>
</tbody>
</table>

display rmon statistics

Syntax

display rmon statistics [ interface-type interface-number ]

View

Any view

Default Level

1: Monitor level

Parameters

interface-type interface-number: Specifies an interface by its type and number.

Description

Use the display rmon statistics command to display RMON statistics.
This command displays the interface statistics during the period from the time the statistics entry is created to the time the command is executed. The statistics are cleared after the device reboots.

Related commands: rmon statistics.

Examples

# Display RMON statistics for interface GigabitEthernet 1/0/1.

```
<Sysname> display rmon statistics GigabitEthernet 1/0/1
EtherStatsEntry 1 owned by null is VALID.
 Interface : GigabitEthernet1/0/1<ifIndex.3>
 etherStatsOctets : 43393306 , etherStatsPkts : 619825
 etherStatsBroadcastPkts : 503581 , etherStatsMulticastPkts : 44013
 etherStatsUndersizePkts : 0 , etherStatsOversizePkts : 0
 etherStatsFragments : 0 , etherStatsJabbers : 0
 etherStatsCRCAlignErrors : 0 , etherStatsCollisions : 0
 etherStatsDropEvents (insufficient resources): 0
 Packets received according to length:
 64 : 0 , 65-127 : 0 , 128-255 : 0
 256-511: 0 , 512-1023: 0 , 1024-1518: 0
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EtherStatsEntry</td>
<td>The entry of the statistics table, corresponding to the MIB node etherStatsIndex.</td>
</tr>
<tr>
<td>VALID</td>
<td>Status of the entry identified by the index (VALID means the entry is valid, and UNDERCREATION means invalid. You can use the display rmon command to view the invalid entry; while with the display current-configuration and display this commands you cannot view the corresponding rmon commands.), corresponding to the MIB node etherStatsStatus.</td>
</tr>
<tr>
<td>Interface</td>
<td>Interface on which statistics are gathered, corresponding to the MIB node etherStatsDataSource.</td>
</tr>
<tr>
<td>etherStatsOctets</td>
<td>Number of octets received and sent by the interface during the statistical period, corresponding to the MIB node etherStatsOctets.</td>
</tr>
<tr>
<td>etherStatsPkts</td>
<td>Number of packets received and sent by the interface during the statistical period, corresponding to the MIB node etherStatsPkts.</td>
</tr>
<tr>
<td>etherStatsBroadcastPkts</td>
<td>Number of broadcast packets received and sent by the interface during the statistical period, corresponding to the MIB node etherStatsBroadcastPkts.</td>
</tr>
<tr>
<td>etherStatsMulticastPkts</td>
<td>Number of multicast packets received and sent by the interface during the statistical period, corresponding to the MIB node etherStatsMulticastPkts.</td>
</tr>
<tr>
<td>etherStatsUndersizePkts</td>
<td>Number of undersize packets received and sent by the interface during the statistical period, corresponding to the MIB node etherStatsUndersizePkts.</td>
</tr>
<tr>
<td>etherStatsOversizePkts</td>
<td>Number of oversize packets received and sent by the interface during the statistical period, corresponding to the MIB node etherStatsOversizePkts.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>etherStatsFragments</td>
<td>Number of undersize packets with CRC errors received and sent by the interface during the statistical period, corresponding to the MIB node etherStatsFragments.</td>
</tr>
<tr>
<td>etherStatsJabbers</td>
<td>Number of oversize packets with CRC errors received and sent by the interface during the statistical period, corresponding to the MIB node etherStatsJabbers.</td>
</tr>
<tr>
<td>etherStatsCRCAlignErrors</td>
<td>Number of packets with CRC errors received and sent on the interface during the statistical period, corresponding to the MIB node etherStatsCRCAlignErrors.</td>
</tr>
<tr>
<td>etherStatsCollisions</td>
<td>Number of collisions received and sent on the interface during the statistical period, corresponding to the MIB node etherStatsCollisions.</td>
</tr>
<tr>
<td>etherStatsDropEvents</td>
<td>Total number of drop events received and sent on the interface during the statistical period, corresponding to the MIB node etherStatsDropEvents.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Packets received according to length:</th>
</tr>
</thead>
</table>
| 64 : 0 , 65-127 : 0 , 128-255 : 0 , 256-511: 0 , 512-1023: 0 , 1024-1518: 0 | Statistics of packets received and sent according to length during the statistical period (Hardware support is needed for the statistics. If the hardware does not support the function, all statistics are displayed as 0.), in which:

- Information of the field 64 corresponds to the MIB node etherStatsPkts64Octets
- Information of the field 65-127 corresponds to the MIB node etherStatsPkts65to127Octets
- Information of the field 128-255 corresponds to the MIB node etherStatsPkts128to255Octets
- Information of the field 256-511 corresponds to the MIB node etherStatsPkts256to511Octets
- Information of the field 512-1023 corresponds to the MIB node etherStatsPkts512to1023Octets
- Information of the field 1024-1518 corresponds to the MIB node etherStatsPkts1024to1518Octets

---

**rmon alarm**

**Syntax**

```
rmon alarm entry-number alarm-variable sampling-interval { absolute | delta } rising-threshold threshold-value1 event-entry1 falling-threshold threshold-value2 event-entry2 [owner text]
undo rmon alarm entry-number
```

**View**

System view

**Default Level**

2: System level

**Parameters**

- `entry-number`: Alarm entry index, in the range 1 to 65535.
- `alarm-variable`: Alarm variable, a string of 1 to 256 characters. It can be in dotted object identifier (OID) format (in the format of `entry.integer.instance` or `leaf node name.instance`, for example,
1.3.6.1.2.1.2.1.10.1), or a node name like ifInOctets.1. Only variables that can be parsed into INTEGER (INTEGER, Counter, Gauge, or Time Ticks) in the ASN.1 can be used for the alarm-variable argument, such as the instance of the leaf node (like etherStatsOctets, etherStatsPkts, etherStatsBroadcastPkts, and so on) of the etherStatsEntry entry, the instance of the leaf node (like ifInOctets, ifInUcastPkts, ifInNUcastPkts, and so on) of the ifEntry entry.

**sampling-interval**: Sampling interval, in the range 5 to 65,535 seconds.

**absolute**: Sets the sampling type to **absolute**, namely, the system obtains the value of the variable when the sampling time is reached.

**delta**: Sets the sampling type to **delta**, namely, the system obtains the variation value of the variable during the sampling interval when the sampling time is reached.

**rising-threshold** threshold-value1 event-entry1: Sets the rising threshold, where threshold-value1 represents the rising threshold, in the range –2,147,483,648 to +2,147,483,647, and event-entry1 represents the index of the event triggered when the rising threshold is reached. event-entry1 ranges from 0 to 65,535, with 0 meaning no corresponding event is triggered and no event action is taken when an alarm is triggered.

**falling-threshold** threshold-value2 event-entry2: Sets the falling threshold, where threshold-value2 represents the falling threshold, in the range –2,147,483,648 to +2,147,483,647 and event-entry2 represents the index of the event triggered when the falling threshold is reached. event-entry2 ranges from 1 to 65,535.

**owner text**: Owner of the entry, a string of 1 to 127 characters. It is case sensitive and space is supported.

**Description**

Use the **rmon alarm** command to create an entry in the RMON alarm table.

Use the **undo rmon alarm** command to remove a specified entry from the RMON alarm table.

This command defines an alarm entry, so as to trigger the specified event when abnormality occurs. The event defines how to deal with the abnormality.

The following is how the system handles alarm entries:

1) Samples the alarm variables at the specified interval.
2) Compares the sampled values with the predefined threshold and does the following:
   - If the rising threshold is reached, triggers the event specified by the event-entry1 argument.
   - If the falling threshold is reached, triggers the event specified by the event-entry2 argument.

**Note**

- Before creating an alarm entry, define the events to be referenced in the event table with the **rmon event** command.
- When you create an entry, if the values of the specified alarm variable (alarm-variable), sampling interval (sampling-interval), sampling type (absolute or delta), rising threshold (threshold-value1) and falling threshold (threshold-value2) are identical to those of the existing alarm entry, the system considers their configurations are the same and the creation fails.
- You can create up to 60 alarm entries.
Examples

# Add entry 1 in the alarm table and sample the node 1.3.6.1.2.1.16.1.1.1.4.1 at a sampling interval of 10 seconds in absolute sampling type. Trigger event 1 when the sampled value is greater than or equal to the rising threshold of 5000, and event 2 when the sampled value is less than or equal to the falling threshold of 5. Set the owner of the entry to be user1.

<Sysname> system-view

[Sysname] rmon event 1 log
[Sysname] rmon event 2 none
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] rmon statistics 1
[Sysname-GigabitEthernet1/0/1] quit
[Sysname] rmon alarm 1 1.3.6.1.2.1.16.1.1.1.4.1 10 absolute rising-threshold 5000 1 falling-threshold 5 2 owner user1

1.3.6.1.2.1.16.1.1.1.4 is the OID of the leaf node etherStatsOctets. It represents the statistics of the received packets on the interface, in bytes. In the above example, you can use etherStatsOctets.1 to replace the parameter 1.3.6.1.2.1.16.1.1.1.4.1, where 1 indicates the serial number of the interface statistics entry. Therefore, if you execute the rmon statistics 5 command, you can use etherStatsOctets.5 to replace the parameter.

The above configuration implements the following:
- Sampling and monitoring interface GigabitEthernet 1/0/1
- Obtaining the absolute value of the number of received packets. If the total bytes of the received packets reach 5,000, the system will log the event; if the total bytes of the received packets are no more than 5, the system will take no action.

rmon event

Syntax

rmon event entry-number [ description string ] { log | log-trap log-trapcommunity | none | trap trap-community } [ owner text ]

undo rmon event entry-number

View

System view

Default Level

2: System level

Parameters

entry-number: Event entry index, in the range 1 to 65,535.

description string: Event description, a string of 1 to 127 characters.

log: Logs the event when it occurs.

log-trap log-trapcommunity: Log and trap events. The system performs both logging and trap sending when the event occurs. log-trapcommunity indicates the community name of the network management station that receives trap messages, a string of 1 to 127 characters.
none: Performs no action when the event occurs.

trap trap-community: Trap event. The system sends a trap with a community name when the event occurs. trap-community specifies the community name of the network management station that receives trap messages, a string of 1 to 127 characters.

owner text: Owner of the entry, a string of 1 to 127 characters. It is case sensitive and space is supported.

**Description**

Use the `rmon event` command to create an entry in the RMON event table.

Use the `undo rmon event` command to remove a specified entry from the RMON event table.

When create an event entry, you can define the actions that the system will take when the event is triggered by its associated alarm in the alarm table. According to your configuration, the system can log the event, send a trap, do both, or do neither at all.

Related commands: `display rmon event`, `rmon alarm`, `rmon prialarm`.

---

**Note**

- When you create an entry, if the values of the specified event description (description string), event type (log, trap, logtrap or none), and community name (trap-community or log-trapcommunity) are identical to those of the existing event entry, the system considers their configurations are the same and the creation fails.
- You can create up to 60 alarm entries.

---

**Examples**

```
Create event 10 in the RMON event table.
<Sysname> system-view
<Sysname> rmon event 10 log owner user1
```

**rmon history**

**Syntax**

```
rmon history entry-number buckets number interval sampling-interval [owner text]
undo rmon history entry-number
```

**View**

Ethernet interface view

**Default Level**

2: System level

**Parameters**

- **entry-number**: History control entry index, in the range 1 to 65535.
- **buckets number**: History table size for the entry, in the range 1 to 65,535.
**interval sampling-interval**: Sampling period, in the range 5 to 3600 seconds.

**owner text**: Owner of the entry, a string of 1 to 127 characters. It is case sensitive and space is supported.

**Description**

Use the `rmon history` command to create an entry in the RMON history control table.

Use the `undo rmon history` command to remove a specified entry from the RMON history control table.

After an entry is created, the system periodically samples the number of packets received/sent on the current interface, and saves the statistics as an instance under the leaf node of the etherHistoryEntry table. The maximum number of history entries can be saved in the table is specified by `buckets number`. If the number of the entries in the table has reached the maximum number, the system will delete the earliest entry to save the latest one. The statistics include total number of received packets on the current interface, total number of broadcast packets, and total number of multicast packets in a sampling period.

When you create an entry in the history table, if the specified history table size exceeds that supported by the device, the entry will be created. However, the validated value of the history table size corresponding to the entry is that supported by the device. You can use the `display rmon history` command to view the configuration result.

**Note**

- When you create an entry, if the value of the specified sampling interval (`interval sampling-interval`) is identical to that of the existing history entry, the system considers their configurations are the same and the creation fails.
- You can create up to 100 alarm entries.

**Related commands:** `display rmon history`.

**Examples**

```bash
Create RMON history control entry 1 for interface GigabitEthernet 1/0/1.
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] rmon history 1 buckets 10 interval 5 owner user1
```

**rmon prialarm**

**Syntax**

```
rmon prialarm entry-number prialarm-formula prialarm-des sampling-interval { absolute | changeratio | delta } rising-threshold threshold-value1 event-entry1 falling-threshold threshold-value2 event-entry2 entrytype { forever | cycle cycle-period } [owner text]
undo rmon prialarm entry-number
```

12-14
View

System view

Default Level

2: System level

Parameters

entry-number: Index of a private alarm entry, in the range 1 to 65535.

prialarm-formula: Private alarm variable formula, a string of 1 to 256 characters. The variables in the formula must be represented in OID format that starts with a point “.”, the formula (.1.3.6.1.2.1.2.1.10.1)*8 for example. You may perform the basic operations of addition, subtraction, multiplication, and division on these variables. The operations should yield a long integer. To prevent errors, make sure that the result of each calculating step falls into the value range for long integers.

prialarm-des: Private alarm entry description, a string of 1 to 127 characters.

sampling-interval: Sampling interval, in the range 10 to 65,535 seconds.

absolute | changeratio | delta: Sets the sampling type to absolute, delta, or change ratio. Absolute sampling is to obtain the value of the variable when the sampling time is reached; delta sampling is to obtain the variation value of the variable during the sampling interval when the sampling time is reached; change ratio sampling is not supported at present.

rising-threshold threshold-value1 event-entry1: Sets the rising threshold, where threshold-value1 represents the rising threshold, in the range –2,147,483,648 to +2,147,483,647, and event-entry1 represents the index of the event triggered when the rising threshold is reached. event-entry1 ranges from 0 to 65,535, with 0 meaning no corresponding event is triggered and no event action is taken when an alarm is triggered.

falling-threshold threshold-value2 event-entry2: Sets the falling threshold, where threshold-value2 represents the falling threshold, in the range –2,147,483,648 to +2,147,483,647 and event-entry2 represents the index of the event triggered when the falling threshold is reached. event-entry2 ranges from 1 to 65,535.

forever: Indicates that the lifetime of the private alarm entry is infinite.

cycle cycle-period: Sets the lifetime period of the private alarm entry, in the range 0 to 2,147,483,647 seconds.

owner text: Owner of the entry, a string of 1 to 127 characters. It is case sensitive and space is supported.

Description

Use the rmon prialarm command to create an entry in the private alarm table of RMON.

Use the undo rmon prialarm command to remove a private alarm entry from the private alarm table of RMON.

The following is how the system handles private alarm entries:

1) Samples the private alarm variables in the private alarm formula at the specified sampling interval.
2) Performs calculation on the sampled values with the formula.
3) Compares the calculation result with the predefined thresholds and does the following:
   ● If the result is equal to or greater than the rising threshold, triggers the event specified by the event-entry1 argument.
If the result is equal to or smaller than the falling threshold, triggers the event specified by the `event-entry2` argument.

**Note**

- Before creating an alarm entry, define the events to be referenced in the event table with the `rmon event` command.
- When you create an entry, if the values of the specified alarm variable formula (`prialarm-formula`), sampling type (`absolute changerratio` or `delta`), rising threshold (`threshold-value1`) and falling threshold (`threshold-value2`) are identical to those of the existing alarm entry, the system considers their configurations are the same and the creation fails.
- You can create up to 50 pri-alarm entries.

Related commands: `display rmon prialarm`, `rmon event`, `rmon history`, `rmon statistics`.

**Examples**

```
Create entry 5 in the private alarm table. Calculate the private alarm variables with the
(1.3.6.1.2.1.16.1.1.1.6.1*100/.1.3.6.1.2.1.16.1.1.1.5.1) formula and sample the corresponding
variables at intervals of 10 seconds. Rising threshold of 80 corresponds to event 1 (and record the
event into the log table); falling threshold of 5 corresponds to event 2 (but neither log it nor send a trap).
Set the lifetime of the entry to forever and owner to user1.

<Sysname> system-view
<Sysname> rmon event 1 log
<Sysname> rmon event 2 none
<Sysname> interface GigabitEthernet 1/0/1
<Sysname-GigabitEthernet1/0/1] rmon statistics 1
<Sysname-GigabitEthernet1/0/1] quit
<Sysname> rmon prialarm 1 (1.3.6.1.2.1.16.1.1.1.6.1*100/.1.3.6.1.2.1.16.1.1.1.5.1)
packet GigabitEthernet1/0/1 10 absolute rising_threshold 80 1 falling_threshold 5 2 entrytype
forever owner user1

1.3.6.1.2.1.16.1.1.1.6.1 is the OID of the node etherStatsBroadcastPkts.1, and 1.3.6.1.2.1.16.1.1.1.5.1
is the OID of the node etherStatsPkts.1. 1 indicates the serial number of the interface statistics entry.
Therefore, if you execute the `rmon statistics 5` command, you should use 1.3.6.1.2.1.16.1.1.1.6.5 and
1.3.6.1.2.1.16.1.1.1.5.5.

The above configuration implements the following:
- Sampling and monitoring interface GigabitEthernet1/0/1
- If the portion of broadcast packets received in the total packets is greater than or equal to 80%,
 the system will log the event; if the portion is less than or equal to 5%, the system will take no
 action.

You can view the event log using the `display rmon eventlog` command.
```
**rmon statistics**

**Syntax**

```plaintext
rmon statistics entry-number [owner text]
undo rmon statistics entry-number
```

**View**

Ethernet interface view

**Default Level**

2: System level

**Parameters**

- `entry-number`: Index of statistics entry, in the range 1 to 65535.
- `owner text`: Owner of the entry, a string of 1 to 127 characters. It is case sensitive and space is supported.

**Description**

Use the `rmon statistics` command to create an entry in the RMON statistics table.

Use the `undo rmon statistics` command to remove a specified entry from the RMON statistics table.

After an entry is created, the system continuously calculates the information of the interface. It provides statistics about network collisions, CRC alignment errors, undersize/oversize packets, broadcasts, multicasts, bytes received, packets received, bytes sent, packets sent, and so on. The statistics are cleared after the device reboots.

To display information for the RMON statistics table, use the `display rmon statistics` command.

---

**Note**

- Only one statistics entry can be created on one interface.
- You can create up to 100 statistics entries.

---

**Examples**

```
Create an entry in the RMON statistics table for interface GigabitEthernet 1/0/1. The index of the entry is 20, and the owner of the entry is user1.
<Sysname> system-view
[Sysname] interface GigabitEthernet 1/0/1
[Sysname-GigabitEthernet1/0/1] rmon statistics 20 owner user1
```
13  MAC Address Table Management Configuration

Commands

MAC Address Table Management Configuration Commands

display mac-address

Syntax

display mac-address blackhole [ vlan vlan-id ] [ count ]
display mac-address [ mac-address [ vlan vlan-id ] | [ dynamic | static ] [ interface interface-type interface-number ] [ vlan vlan-id ] [ count ]]

View

Any view

Default Level

1: Monitor level

Parameters

blackhole: Destination blackhole MAC address entries. These entries do not age but you can add or remove them. The packets whose destination MAC addresses match destination blackhole MAC address entries are dropped.

vlan vlan-id: Displays MAC address entries of the specified VLAN, where vlan-id is in the range 1 to 4094.

count: Displays the total number of MAC addresses in the MAC address table.

mac-address: Displays MAC address entries in a specified MAC address, in the format of H-H-H.

dynamic: Displays dynamic MAC address entries. Aging time is set for these entries.

static: Displays static MAC address entries. Similar to blackhole MAC address entries, these entries do not age but you can add or remove them.

interface interface-type interface-number: Displays MAC address learning status of the specified interface. interface-type interface-number specifies an interface by its type and number.
Description

Use the `display mac-address` command to display information about the MAC address table.

Related commands: `mac-address (system view)`, `mac-address (Ethernet interface view)`, `mac-address timer`.

Examples

# Display the MAC address table entry for MAC address 000f-e201-0101.

```plaintext
<Sysname> display mac-address 000f-e201-0101
```

<table>
<thead>
<tr>
<th>MAC ADDR</th>
<th>VLAN ID</th>
<th>STATE</th>
<th>PORT INDEX</th>
<th>AGING TIME(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>000f-e201-0101</td>
<td>1</td>
<td>Learned</td>
<td>GigabitEthernet1/0/1</td>
<td>AGING</td>
</tr>
</tbody>
</table>

Table 13-1 `display mac-address` command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC ADDR</td>
<td>MAC address</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>ID of the VLAN to which the MAC address belongs</td>
</tr>
<tr>
<td>STATE</td>
<td>State of a MAC address, includes:</td>
</tr>
<tr>
<td></td>
<td>• Config static: static entry configured by the user manually</td>
</tr>
<tr>
<td></td>
<td>• Config dynamic: dynamic entry configured by the user manually</td>
</tr>
<tr>
<td></td>
<td>• Learned: entry learned by the device</td>
</tr>
<tr>
<td></td>
<td>• Blackhole: destination blackhole entry</td>
</tr>
<tr>
<td></td>
<td>• Source-Blackhole: source blackhole entry</td>
</tr>
<tr>
<td>PORT INDEX</td>
<td>Number of the port corresponding to the MAC address, that is, packets</td>
</tr>
<tr>
<td></td>
<td>destined to this MAC address will be sent out from this port. (Displayed as</td>
</tr>
<tr>
<td></td>
<td>N/A for a blackhole MAC address entry).</td>
</tr>
<tr>
<td>AGING TIME(s)</td>
<td>Aging time, which could be:</td>
</tr>
<tr>
<td></td>
<td>• AGING, indicates that the entry is aging.</td>
</tr>
<tr>
<td></td>
<td>• NOAGED, indicates that the entry does not age.</td>
</tr>
</tbody>
</table>

`display mac-address aging-time`

Syntax

`display mac-address aging-time`

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the `display mac-address aging-time` command to display the aging time of dynamic entries in the MAC address table.
Related commands: **mac-address (system view)**, **mac-address (Ethernet interface view)**, **mac-address timer**, **display mac-address**.

### Examples

```
Display the aging time of dynamic entries in the MAC address table.
<Sysname> display mac-address aging-time
Mac address aging time: 300s

The above information indicates that the aging time of dynamic entries in the MAC address table is 300 seconds.
```

### mac-address (Interface view)

**Syntax**

```
mac-address { dynamic | static } mac-address vlan vlan-id
undo mac-address { dynamic | static } mac-address vlan vlan-id
```

**View**

Ethernet interface view, Layer-2 aggregate interface view

**Default Level**

2: System level

**Parameters**

- **dynamic**: Dynamic MAC address entries. Aging time is set for these entries.
- **static**: Static MAC address entries. They do not age but you can add or remove them.
- **mac-address**: Specifies a MAC address in the format of H-H-H, where 0s at the beginning of each H (16-bit hexadecimal digit) can be omitted; for example, inputting “f-e2-1” indicates that the MAC address is “000f-00e2-0001”.
- **vlan vlan-id**: Specifies an existing VLAN to which the Ethernet interface belongs, where `vlan-id` is the specified VLAN ID, in the range 1 to 4094.

**Description**

Use the **mac-address** command to add or modify a MAC address entry on a specified interface.

Use the **undo mac-address** command to remove a MAC address entry on the interface.

Note that, as your MAC address entries configuration cannot survive a reboot, save it after completing the configuration. The dynamic MAC address table entries however will be lost whether you save the configuration or not.

Related commands: **display mac-address**.

### Examples

```
Add a static entry for MAC address 000f-e201-0101 on port GigabitEthernet 1/0/1 that belongs to VLAN 2.
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] mac-address static 000f-e201-0101 vlan 2
```
# Add a static entry for MAC address 000f-e201-0102 on port Bridge-Aggregation 1 that belongs to VLAN 1.

```plaintext
<Sysname> system-view
<Sysname> interface bridge-Aggregation 1
<Sysname-Bridge-Aggregation1] mac-address static 000f-e201-0102 vlan 1
```

### mac-address (system view)

**Syntax**

```plaintext
mac-address blackhole mac-address vlan vlan-id
mac-address { dynamic | static } mac-address interface interface-type interface-number vlan vlan-id
undo mac-address [{ dynamic | static } mac-address interface interface-type interface-number vlan vlan-id]
undo mac-address [blackhole | dynamic | static] [mac-address] vlan vlan-id
undo mac-address [dynamic | static] mac-address interface interface-type interface-number vlan vlan-id
undo mac-address [dynamic | static] interface interface-type interface-number
```

**View**

System view

**Default Level**

2: System level

**Parameters**

- **blackhole**: Destination blackhole MAC address entries. These entries do not age but you can add or remove them. The packets whose destination MAC addresses match destination blackhole MAC address entries are dropped.
- **mac-address**: Specifies a MAC address in the format of H-H-H, where 0s at the beginning of each H (16-bit hexadecimal digit) can be omitted; for example, inputting “f-e2-1” indicates that the MAC address is “000f-00e2-0001”.
- **vlan vlan-id**: Specifies an existing VLAN to which the Ethernet interface belongs, where `vlan-id` is the specified VLAN ID, in the range 1 to 4094.
- **dynamic**: Dynamic MAC address entries. Aging time is set for these entries.
- **static**: Static MAC address entries. These entries do not age but you can add or remove them.
- **interface** `interface-type interface-number`: Outbound interface, with `interface-type interface-number` representing the interface type and number.

**Description**

Use the `mac-address` command to add or modify a MAC address entry.

Use the `undo mac-address` command to remove one or all MAC address entries.

Note that a static or blackhole entry will not be overwritten by a dynamic entry, but a dynamic entry can be overwritten by a static or blackhole entry. However, you can delete any type of MAC address entries.
As your MAC address entries configuration cannot survive a reboot, save it after completing the configuration. The dynamic entries however will be lost whether you save the configuration or not.

Related commands: **display mac-address**.

**Examples**

```
Add a static entry for MAC address 000f-e201-0101. All frames destined to this MAC address are sent out of port GigabitEthernet 1/0/1 which belongs to VLAN 2.
<Sysname> system-view
[Sysname] mac-address static 000f-e201-0101 interface gigabitethernet 1/0/1 vlan 2
```

**mac-address mac-learning disable**

**Syntax**

```
mac-address mac-learning disable
undo mac-address mac-learning disable
```

**View**

VLAN view

**Default Level**

2: System level

**Parameters**

None

**Description**

Use the **mac-address mac-learning disable** command to disable MAC address learning on a VLAN. Use the **undo mac-address mac-learning disable** command to enable MAC address learning on a VLAN.

By default, MAC address learning is enabled on all VLANs.

Note that:

- You may need to disable MAC address learning sometimes to prevent the MAC address table from being saturated, for example, when your device is being attacked by a great deal of packets with different source MAC addresses. This somewhat affects update of the MAC address table.
- As disabling MAC address learning may result in broadcast storms, you need to enable broadcast storm suppression after you disable MAC address learning on a port.

Related commands: **display mac-address mac-learning**.

---

**Note**

Once MAC learning is disabled in a VLAN, all MAC address entries learnt in the VLAN are removed.
Examples

# Disable MAC address learning on VLAN 10.
<Sysname> system-view
[Sysname] vlan 10
[Sysname-vlan10] mac-address mac-learning disable

mac-address max-mac-count (Interface view)

Syntax

mac-address max-mac-count count

undo mac-address max-mac-count

View

Ethernet interface view, port group view

Default Level

2: System level

Parameters

count: Maximum number of MAC addresses that can be learned on a port, ranging from 0 to 4096. When the argument takes 0, the VLAN is not allowed to learn MAC addresses.

disable-forwarding: Disables forwarding of frames with unknown source MAC addresses after the number of learned MAC addresses reaches the upper limit. Frames with the source MAC addresses listed in the MAC address table will be forwarded normally.

Description

Use the mac-address max-mac-count count command to configure the maximum number of MAC addresses that can be learned on an Ethernet port.

Use the undo mac-address max-mac-count command to restore the default maximum number of MAC addresses that can be learned on an Ethernet port.

By default, the maximum number of MAC addresses that can be learned on an Ethernet port is not configured.

If the command is executed in interface view, the configuration takes effect on the current interface; if the command is executed in port group view, the configuration takes effect on all ports belonging to the port group.

Related commands: mac-address, mac-address timer.

Examples

# Set the maximum number of MAC addresses that can be learned on port GigabitEthernet 1/0/1 to 600. After this upper limit is reached, frames received with unknown source MAC addresses on the port will not be forwarded.

<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] mac-address max-mac-count 600
[Sysname-GigabitEthernet1/0/1] mac-address max-mac-count disable-forwarding
**mac-address timer**

**Syntax**

```
mac-address timer { aging seconds | no-aging }
undo mac-address timer aging
```

**View**

System view

**Default Level**

2: System level

**Parameters**

- `aging seconds`: Sets an aging timer in seconds for dynamic MAC address entries. The `seconds` argument ranges from 10 to 1000000.
- `no-aging`: Sets dynamic MAC address entries not to age.

**Description**

Use the `mac-address timer` command to configure the aging timer for dynamic MAC address entries. Use the `undo mac-address timer` command to restore the default.

By default the default aging timer is 300 seconds.

Set the aging timer appropriately: a long aging interval may cause the MAC address table to retain outdated entries and fail to accommodate the latest network changes; a short interval may result in removal of valid entries and hence unnecessary broadcasts which may affect device performance.

**Examples**

```
Set the aging timer for dynamic MAC address entries to 500 seconds.
<Sysname> system-view
[Sysname] mac-address timer aging 500
```
MAC Information Configuration Commands

mac-address information enable (Ethernet interface view)

Syntax

mac-address information enable { added | deleted }
undo mac-address information enable { added | deleted }

View

Ethernet interface view

Default Level

1: Monitor level

Parameters

added: Enables the device to record security information when a new MAC address is learned on the Ethernet port.
deleted: Enables the device to record security information when an existing MAC address is deleted.

Description

Use the mac-address information enable command to enable MAC Information on the Layer-2 Ethernet interface.

Use the undo mac-address information enable command to disable MAC Information on the Layer-2 Ethernet interface.

By default, MAC Information is disabled on a Layer-2 Ethernet interface.

Note that:

- This command is not supported on aggregate interfaces.
- To enable MAC Information on an Ethernet interface, enable MAC Information globally first.

Examples

# Enable MAC Information on GigabitEthernet1/0/1.
<Sysname> system-view
mac-address information enable (system view)

Syntax

mac-address information enable
undo mac-address information enable

View

System view

Default Level

2: System level

Parameters

None

Description

Use the **mac-address information enable** command to enable MAC Information globally.

Use the **undo mac-address information enable** command to disable MAC Information globally.

By default, MAC Information is disabled globally.

Examples

```
Enable MAC Information globally.
<Sysname> system-view
<Sysname> mac-address information enable
```

mac-address information interval

Syntax

mac-address information interval value
undo mac-address information interval

View

System view

Default Level

2: System level

Parameters

*value*: Interval for sending Syslog or Trap messages (in seconds). The range for this argument is 1 to 20000.
Description

Use the **mac-address information interval** command to set the interval for sending Syslog or Trap messages.

Use the **undo mac-address information interval** command to restore the default interval for sending Syslog or Trap messages.

By default, the interval for sending Syslog or Trap messages is 1 second.

Examples

```bash
Set the interval for sending Syslog or Trap messages to 200 seconds.
<Sysname> system-view
[Sysname] mac-address information interval 200
```

mac-address information mode

**Syntax**

```
mac-address information mode { syslog | trap }
undo mac-address information mode
```

**View**

System view

**Default Level**

2: System level

**Parameters**

- **syslog**: Specifies that the device sends Syslog messages to inform the remote network management device of MAC address changes.
- **trap**: Specifies that the device sends trap messages to inform the remote network management device of MAC address changes.

**Description**

Use the **mac-address information mode** command to set the MAC Information mode, that is, whether to use Syslog messages or Trap messages to inform the remote network management device of MAC address changes.

Use the **undo mac-address information mode** command to restore the default.

By default, trap messages are sent to inform the remote network management device of MAC address changes.

**Examples**

```bash
Configure the device to send trap messages to inform the remote network management device of MAC address changes.
<Sysname> system-view
[Sysname] mac-address information mode trap
```
**mac-address information queue-length**

**Syntax**

```
mac-address information queue-length value
undo mac-address information queue-length
```

**View**

System view

**Default Level**

2: System level

**Parameters**

`value`: MAC Information queue length. The value range is 0 to 1000.

**Description**

Use the `mac-address information queue-length` command to set the MAC Information queue length.

Use the `undo mac-address information queue-length` command to restore the default.

By default, the MAC Information queue length is 50.

Setting the MAC Information queue length to 0 indicates that the device sends a Syslog or Trap message to the network management device as soon as a new MAC address is learned or an existing MAC address is deleted.

**Examples**

# Set the MAC Information queue length to 600.

```
<Sysname> system-view
[Sysname] mac-address information queue-length 600
```
System Maintaining and Debugging Commands

System Maintaining Commands

ping

Syntax

```
ping [ip] [-a source-ip] [-c count] [-f] [-h ttl] [-i interface-type interface-number] [-m interval] [-n] [-p pad] [-q] [-r] [-s packet-size] [-t timeout] [-tos tos] [-v] [-vpn-instance vpn-instance-name] * remote-system
```

Parameters

- **ip**: Supports IPv4 protocol.
- **-a source-ip**: Specifies the source IP address of an ICMP echo request (ECHO-REQUEST). It must be a legal IP address configured on the device.
- **-c count**: Specifies the number of times that an ICMP echo request is sent, in the range 1 to 4294967295. The default value is 5.
- **-f**: Discards packets larger than the MTU of a given interface, that is, the ICMP echo request is not allowed to be fragmented.
- **-h ttl**: Specifies the TTL value for an ICMP echo request, in the range 1 to 255. The default value is 255.
- **-i interface-type interface-number**: Specifies the ICMP echo request sending interface by its type and number.
- **-m interval**: Specifies the interval (in milliseconds) to send an ICMP echo response, in the range 1 to 65535. The default value is 200 ms.
  - If a response from the destination is received within the timeout time, the interval to send the next echo request equals the actual response period plus the value of `interval`.
  - If no response from the destination is received within the timeout time, the interval to send the next echo request equals the `timeout` value plus the value of `interval`.
- **-n**: Specifies that the Domain Name System (DNS) is disabled. DNS is enabled by default, that is, the `hostname` is translated into an address.
- **-p pad**: Specifies the value of the `pad` field in an ICMP echo request, in hexadecimal format, 1 to 8 bits, in the range 0 to ffffff. If the specified value is less than 8 bits, 0s will be added in front of the value to extend it to 8 bits. For example, if `pad` is configured as 0x2f, then the packets will be padded with 0x0000002f repeatedly to make the total length of the packet meet the requirements of the device. By
default, the padded value starts from 0x01 up to 0xff, where another round starts again if necessary, like 0x010203…feff01….

-q: Presence of this parameter indicates that only statistics are displayed. By default, all information is displayed.

-r: Records routes. By default, routes are not recorded.

-s packet-size: Specifies length (in bytes) of an ICMP echo request, in the range 20 to 8100. The default value is 56.

-t timeout: Specifies the timeout value (in milliseconds) of an ICMP echo reply (ECHO-REPLY), in the range 0 to 65535. It defaults to 2000.

-tos tos: Specifies type of service (ToS) of an echo request, in the range 0 to 255. The default value is 0.

-v: Displays non ICMP echo reply received. By default, the system does not display non ICMP echo reply.

-vpn-instance vpn-instance-name: Specifies the name of an MPLS VPN instance, which is a string of 1 to 31 characters. It is case sensitive.

remote-system: IP address or host name (a string of 1 to 20 characters) of the destination device.

Description

Use the ping command to verify whether the destination device in an IP network is reachable, and to display the related statistics.

Note that:

- You must use the command in the form of ping ip /p instead of ping ip if the destination name is a key word, such as ip.
- Only the directly connected segment address can be pinged if the outgoing interface is specified with the -i argument.

During the execution of the command, you can press Ctrl+C to abort the ping operation.

Examples

# Check whether the device with an IP address of 10.1.1.5 is reachable.

<Sysname> ping 10.1.1.5
PING 10.1.1.5 : 56 data bytes, press CTRL_C to break
Reply from 10.1.1.5 : bytes=56 Sequence=1 ttl=255 time=1 ms
Reply from 10.1.1.5 : bytes=56 Sequence=2 ttl=255 time=2 ms
Reply from 10.1.1.5 : bytes=56 Sequence=3 ttl=255 time=1 ms
Reply from 10.1.1.5 : bytes=56 Sequence=4 ttl=255 time=3 ms
Reply from 10.1.1.5 : bytes=56 Sequence=5 ttl=255 time=2 ms

--- 10.1.1.5 ping statistics ---
5 packet(s) transmitted
5 packet(s) received
0.00% packet loss
round-trip min/avg/max = 1/2/3 ms

The above information indicates the following:

- The destination host was reachable
- All probe packets sent by the source device got responses
- The minimum time, average time, and maximum time for the packet's roundtrip time are 1 ms, 2 ms, and 3 ms respectively

# Check whether the device with an IP address of 3.3.3.2 is reachable. Only the check results are displayed.

```bash
<Sysname> ping -q 3.3.3.2
PING 3.3.3.2: 56 data bytes, press CTRL_C to break

--- 3.3.3.2 ping statistics ---
 5 packet(s) transmitted
 5 packet(s) received
 0.00% packet loss
round-trip min/avg/max = 1/1/1 ms
```

# Check whether the device with an IP address of 3.3.3.2 is reachable. The route information is required to be displayed.

```bash
<Sysname> ping -r 3.3.3.2
PING 3.3.3.2: 56 data bytes, press CTRL_C to break

Reply from 3.3.3.2: bytes=56 Sequence=1 ttl=255 time=2 ms
 Record Route:
 3.3.3.2
 3.3.3.1
Reply from 3.3.3.2: bytes=56 Sequence=2 ttl=255 time=1 ms
 Record Route:
 3.3.3.2
 3.3.3.1
Reply from 3.3.3.2: bytes=56 Sequence=3 ttl=255 time=1 ms
 Record Route:
 3.3.3.2
 3.3.3.1
Reply from 3.3.3.2: bytes=56 Sequence=4 ttl=255 time=2 ms
 Record Route:
 3.3.3.2
 3.3.3.1
Reply from 3.3.3.2: bytes=56 Sequence=5 ttl=255 time=1 ms
 Record Route:
 3.3.3.2
 3.3.3.1

--- 3.3.3.2 ping statistics ---
 5 packet(s) transmitted
 5 packet(s) received
 0.00% packet loss
round-trip min/avg/max = 1/1/2 ms
```

The above information indicates the following:
- The destination host was reachable
- The IP address 3.3.3.1 was reached first, and then 3.3.3.2.
Table 15-1 ping command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PING 10.1.1.5</td>
<td>Check whether the device with IP address 10.1.1.5 is reachable</td>
</tr>
<tr>
<td>56 data bytes</td>
<td>Number of data bytes in the ICMP echo request</td>
</tr>
<tr>
<td>press CTRL_C to break</td>
<td>During the execution of the command, you can press Ctrl+C to abort the ping operation.</td>
</tr>
<tr>
<td>Reply from 10.1.1.5 : bytes=56 Sequence=1 ttl=255 time=1 ms</td>
<td>Received the ICMP reply from the device whose IP address is 10.1.1.5. If no reply is received during the timeout period, “Request time out” will be displayed.</td>
</tr>
<tr>
<td></td>
<td>• bytes= indicates the number of data bytes in the ICMP reply.</td>
</tr>
<tr>
<td></td>
<td>• Sequence= indicates the packet sequence.</td>
</tr>
<tr>
<td></td>
<td>• ttl= indicates the TTL value in the ICMP reply.</td>
</tr>
<tr>
<td></td>
<td>• time= indicates the response time.</td>
</tr>
<tr>
<td>Record Route:</td>
<td>The routers through which the ICMP echo request passed. They are displayed in inversed order, that is, the router with a smaller distance to the destination is displayed first.</td>
</tr>
<tr>
<td>--- 10.1.1.5 ping statistics ---</td>
<td>Statistics on data received and sent in the ping operation</td>
</tr>
<tr>
<td>5 packet(s) transmitted</td>
<td>Number of ICMP echo requests sent</td>
</tr>
<tr>
<td>5 packet(s) received</td>
<td>Number of ICMP echo requests received</td>
</tr>
<tr>
<td>0.00% packet loss</td>
<td>Percentage of packets not responded to the total packets sent</td>
</tr>
<tr>
<td>round-trip min/avg/max = 0/4/20 ms</td>
<td>Minimum/average/maximum response time, in ms</td>
</tr>
</tbody>
</table>

ping ipv6

Syntax

```
ping ipv6 [-a source-ipv6 | -c count | -m interval | -s packet-size | -t timeout] * remote-system [-i interface-type interface-number]
```

View

Any view

Default Level

0: Visit level

Parameters

- `-a source-ipv6`: Specifies the source IPv6 address of an ICMP echo request. It must be a legal IPv6 address configured on the device.

- `-c count`: Specifies the number of times that an ICMPv6 echo request is sent, in the range 1 to 4294967295. The default value is 5.

- `-m interval`: Specifies the interval (in milliseconds) to send an ICMPv6 echo reply, in the range 1 to 65535. The default value is 200 ms.

- `-t timeout`: If a response from the destination is received within the timeout time, the interval to send the next echo request equals the actual response period plus the value of interval.
If no response from the destination is received within the timeout time, the interval to send the next echo request equals the timeout value plus the value of interval.

-s packet-size: Specifies length (in bytes) of an ICMPv6 echo request, in the range 20 to 8100. It defaults to 56.

-t timeout: Specifies the timeout value (in milliseconds) of an ICMPv6 echo reply, in the range 0 to 65535. It defaults to 2000.

remote-system: IPv6 address or host name of the destination device, a string of 1 to 46 characters.

-i interface-type interface-number: Specifies an outgoing interface by its type and number. This parameter can be used only in case that the destination address is the link local address and the specified outgoing interface must have a link local address (For the configuration of link local address, see IPv6 Basics in the IP Services Volume).

Description

Use the ping ipv6 command to verify whether an IPv6 address is reachable, and display the corresponding statistics.

You must use the command in the form of ping ipv6 ipv6 instead of ping ipv6 if the destination name is an ipv6 name.

During the execution of the command, you can press Ctrl+C to abort the ping ipv6 operation.

Examples

# Verify whether the IPv6 address 2001::1 is reachable.

<Sysname> ping ipv6 2001::1
PING 1::2 : 56  data bytes, press CTRL_C to break
  Reply from 1::2
    bytes=56 Sequence=1 hop limit=64 time = 4 ms
  Reply from 1::2
    bytes=56 Sequence=2 hop limit=64 time = 2 ms
  Reply from 1::2
    bytes=56 Sequence=3 hop limit=64 time = 2 ms
  Reply from 1::2
    bytes=56 Sequence=4 hop limit=64 time = 2 ms
  Reply from 1::2
    bytes=56 Sequence=5 hop limit=64 time = 2 ms

--- 1::2 ping statistics ---
  5 packet(s) transmitted
  5 packet(s) received
  0.00% packet loss
  round-trip min/avg/max = 2/2/4 ms

The “hop limit” field in this prompt information has the same meaning as the “ttl” field in the prompt information displayed by the IPv4 ping command, indicating the TTL value in the ICMPv6 echo request. For the description on other fields, refer to Table 15-1.
tracert

Syntax

```
tracert [-a source-ip | -f first-ttl | -m max-ttl | -p port | -q packet-number | -vpn-instance
vpn-instance-name | -w timeout] * remote-system
```

View

Any view

Default Level

0: Visit level

Parameters

- `-a source-ip`: Specifies the source IP address of a tracert packet. It must be a legal IP address configured on the device.
- `-f first-ttl`: Specifies the first TTL, that is, the allowed number of hops for the first packet, in the range 1 to 255. It defaults to 1 and must be less than the maximum TTL.
- `-m max-ttl`: Specifies the maximum TTL, that is, the maximum allowed number of hops for a packet, in the range 1 to 255. It defaults to 30, and must be greater than the first TTL.
- `-p port`: Specifies the UDP port number of the destination device, in the range 1 to 65535. The default value is 33434. You do not need to modify this parameter.
- `-q packet-number`: Specifies the number of probe packets sent each time, in the range 1 to 65535. The default value is 3.
- `-vpn-instance vpn-instance-name`: Specifies the name of an MPLS VPN instance, which is a string of 1 to 31 characters.
- `-w timeout`: Specifies the timeout time of the reply packet of a probe packet, in the range 1 to 65535, in milliseconds. The default value is 5000 ms.
- `remote-system`: IP address or host name (a string of 1 to 20 characters) of the destination device.

Description

Use the `tracert` command to trace the path the packets traverse from the source to the destination device.

After having identified network failure with the `ping` command, you can use the `tracert` command to determine the failed node(s).

Output information of the `tracert` command includes IP addresses of all the Layer 3 devices the packets traverse from the source to the destination device. If a device times out, "* * *" will be displayed.

During the execution of the command, you can press Ctrl+C to abort the tracert operation.

Examples

```
Display the path the packets traverse from the source device to the destination device with an IP address of 18.26.0.115.
<Sysname> tracert 18.26.0.115
traceroute to 18.26.0.115(18.26.0.115) 30 hops max,40 bytes packet, press CTRL_C to break
1 128.3.112.1 10 ms 10 ms 10 ms
```
Table 15-2 tracert command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>traceroute to 18.26.0.115(18.26.0.115)</td>
<td>Display the route the IP packets traverse from the current device to the device whose IP address is 18.26.0.115.</td>
</tr>
<tr>
<td>30 hops max</td>
<td>Maximum number of hops of the probe packets, which can be set through the <code>-m</code> keyword</td>
</tr>
<tr>
<td>60 bytes packet</td>
<td>Number of bytes of a probe packet</td>
</tr>
<tr>
<td>press CTRL_C to break</td>
<td>During the execution of the command, you can press Ctrl+C to abort the tracert operation.</td>
</tr>
<tr>
<td>1 128.3.112.1 10 ms 10 ms 10 ms</td>
<td>The probe result of the probe packets whose TTL is 1, including the IP address of the device and the roundtrip time of three probe packets. The number of packets that can be sent in each probe can be set through the <code>-q</code> keyword.</td>
</tr>
<tr>
<td>12 * * *</td>
<td>The probe result of the probe packets whose TTL is 12. The result is: timeout</td>
</tr>
</tbody>
</table>

**tracert ipv6**

**Syntax**

```
tracert ipv6 [-f first-ttl] [-m max-ttl] [-p port] [-q packet-number] [-w timeout] * remote-system
```

**View**

Any view

**Default Level**

0: Visit level
Parameters

- **f first-ttl**: Specifies the first TTL, that is, the allowed number of hops for the first packet, in the range 1 to 255. It defaults to 1 and must be less than the maximum TTL.

- **m max-ttl**: Specifies the maximum TTL, that is, the maximum allowed number of hops for a packet, in the range 1 to 255. It defaults to 30 and must be greater than the first TTL.

- **p port**: Specifies the UDP port number of the destination device, in the range 1 to 65535. The default value is 33434. It is unnecessary to modify this parameter.

- **q packet-number**: Specifies the number of probe packets sent each time, in the range 1 to 65535, defaulting to 3.

- **w timeout**: Specifies the timeout time of the reply packet of a probe packet, in the range 1 to 65535, in milliseconds. The default value is 5000 ms.

**remote-system**: IPv6 address or host name of the destination device, a string of 1 to 46 characters.

Description

Use the `tracert ipv6` command to view the path the IPv6 packets traverse from the source to the destination device.

After having identified network failure with the `ping` command, you can use the `tracert` command to determine the failed node(s).

Output information of the `tracert ipv6` command includes IPv6 addresses of all the Layer 3 devices the packets traverse from the source to the destination device. If a device times out, "* * *" will be displayed.

During the execution of the command, you can press `Ctrl+C` to abort the tracert operation.

Examples

```
View the path the packets traverse from the source to the destination with IPv6 address 3002::1.
<Sysname> tracert ipv6 3002::1
traceroute to 3002::1 30 hops max,60 bytes packet, press CTRL_C to break
 1 3003::1 30 ms 10 ms 10 ms
 2 3002::1 10 ms 11 ms 9 ms
```

For description on the fields in the above output information, refer to Table 15-2.

System Debugging Commands

**debugging**

**Syntax**

```
debugging { all [timeout time] | module-name [option] }
undo debugging { all | module-name [option] }
```

**View**

User view

**Default Level**

1: Monitor level
Parameters

all: All debugging functions.

timeout time: Specifies the timeout time for the debugging all command. When all debugging is enabled, the system automatically executes the undo debugging all command after the time. The value ranges from 1 to 1440, in minutes.

module-name: Module name, such as arp or device. You can use the debugging ? command to display the current module name.

option: The debugging option for a specific module. Different modules have different debugging options in terms of their number and content. You can use the debugging module-name ? command to display the currently supported options.

Description

Use the debugging command to enable the debugging of a specific module.

Use the undo debugging command to disable the debugging of a specific module.

By default, debugging functions of all modules are disabled.

Note the following:

- Output of the debugging information may degrade system efficiency, so you are recommended to enable the debugging of a specific module for diagnosing network failure, and not to enable the debugging of multiple modules at the same time.
- Default Level describes the default level of the debugging all command. Different debugging commands may have different default levels.
- You must configure the debugging, terminal debugging and terminal monitor commands first to display detailed debugging information on the terminal. For the detailed description on the terminal debugging and terminal monitor commands, refer to Information Center Commands in the System Volume.

Related commands: display debugging.

Examples

# Enable IP packet debugging.

<Sysname> debugging ip packet

display debugging

Syntax

display debugging [ interface interface-type interface-number ] [ module-name ]

View

Any view

Default Level

1: Monitor level

Parameters

interface interface-type interface-number: Displays the debugging settings of the specified interface, where interface-type interface-number represents the interface type and number.
module-name: Module name.

**Description**

Use the **display debugging** command to display enabled debugging functions.

Related commands: **debugging**.

**Examples**

# Display all enabled debugging functions.

```bash
<Sysname> display debugging
IP packet debugging is on
```
Information Center Configuration Commands

display channel

Syntax

display channel [ channel-number | channel-name ]

View

Any view

Default Level

1: Monitor level

Parameters

channel-number: Displays information of the channel with a specified number, where channel-number represents the channel number, in the range 0 to 9.

channel-name: Displays information of the channel with a specified name, where channel-name represents the channel name, which could be a default name or a self-defined name. The user needs to specify a channel name first before using it as a self-defined channel name. For more information, refer to the info-center channel name command.

Table 16-1 Information channels for different output destinations

<table>
<thead>
<tr>
<th>Output destination</th>
<th>Information channel number</th>
<th>Default channel name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Console</td>
<td>0</td>
<td>console</td>
</tr>
<tr>
<td>Monitor terminal</td>
<td>1</td>
<td>monitor</td>
</tr>
<tr>
<td>Log host</td>
<td>2</td>
<td>loghost</td>
</tr>
<tr>
<td>Trap buffer</td>
<td>3</td>
<td>trapbuffer</td>
</tr>
<tr>
<td>Log buffer</td>
<td>4</td>
<td>logbuffer</td>
</tr>
<tr>
<td>SNMP module</td>
<td>5</td>
<td>snmpagent</td>
</tr>
</tbody>
</table>

Description

Use the display channel command to display channel information.

If no channel is specified, information for all channels is displayed.

Examples

# Display information for channel 0.

<Sysname> display channel 0
channel number:0, channel name:console

<table>
<thead>
<tr>
<th>MODU_ID</th>
<th>NAME</th>
<th>ENABLE</th>
<th>LOG_LEVEL</th>
<th>ENABLE</th>
<th>TRAP_LEVEL</th>
<th>ENABLE</th>
<th>DEBUG_LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ffff0000</td>
<td>default</td>
<td>Y</td>
<td>warnings</td>
<td>Y</td>
<td>debugging</td>
<td>Y</td>
<td>debugging</td>
</tr>
</tbody>
</table>

The above information indicates to output log information with the severity from 0 to 4, trap information with the severity from 0 to 7 and debugging information with the severity from 0 to 7 to the console. The information source modules are all modules (default).

**Table 16-2 display channel command output description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>channel number</td>
<td>A specified channel number, in the range 0 to 9.</td>
</tr>
<tr>
<td>channel name</td>
<td>A specified channel name, which varies with user’s configuration. For more information, refer to the info-center channel name command.</td>
</tr>
<tr>
<td>MODU_ID</td>
<td>The ID of the module to which the information permitted to pass through the current channel belongs</td>
</tr>
<tr>
<td>NAME</td>
<td>The name of the module to which the information permitted to pass through the current channel belongs</td>
</tr>
<tr>
<td></td>
<td>Default means all modules are allowed to output system information, but the module type varies with devices.</td>
</tr>
<tr>
<td>ENABLE</td>
<td>Indicates whether to enable or disable the output of log information, which could be Y or N.</td>
</tr>
<tr>
<td>LOG_LEVEL</td>
<td>The severity of log information, refer to Table 16-4 for details.</td>
</tr>
<tr>
<td>ENABLE</td>
<td>Indicates whether to enable or disable the output of trap information, which could be Y or N.</td>
</tr>
<tr>
<td>TRAP_LEVEL</td>
<td>The severity of trap information, refer to Table 16-4 for details.</td>
</tr>
<tr>
<td>ENABLE</td>
<td>Indicates whether to enable or disable the output of debugging information, which could be Y or N.</td>
</tr>
<tr>
<td>DEBUG_LEVEL</td>
<td>The severity of debugging information, refer to Table 16-4 for details.</td>
</tr>
</tbody>
</table>

**display info-center**

**Syntax**

```
display info-center
```

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

None

**Description**

Use the display info-center command to display the information of each output destination.
Examples

# Display configurations on each output destination.

```bash
<Sysname> display info-center
Information Center: enabled
Log host:
 2.2.2.2, channel number : 8, channel name : channel8,
 host facility local7
Console:
 channel number : 0, channel name : console
Monitor:
 channel number : 1, channel name : monitor
SNMP Agent:
 channel number : 5, channel name : snmpagent
Log buffer:
 enabled, max buffer size 1024, current buffer size 512,
 current messages 512, dropped messages 0, overwritten messages 740
 channel number : 4, channel name : logbuffer
Trap buffer:
 enabled, max buffer size 1024, current buffer size 256,
 current messages 216, dropped messages 0, overwritten messages 0
 channel number : 3, channel name : trapbuffer
Information timestamp setting:
 log - date, trap - date, debug - date,
 loghost - date
```

Table 16-3 display info-center command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information Center</td>
<td>The current state of the information center, which could be enabled or disabled.</td>
</tr>
<tr>
<td>Log host:</td>
<td>Configurations on the log host destination (It can be displayed only when the <code>info-center loghost</code> command is configured), including IP address of the log host, the channel number and channel name used, and logging facility used.)</td>
</tr>
<tr>
<td>2.2.2.2, channel number : 8, channel name : channel8, host facility local7</td>
<td></td>
</tr>
<tr>
<td>Console:</td>
<td>Configurations on the console destination, including the channel number and channel name used</td>
</tr>
<tr>
<td>channel number : 0, channel name : console</td>
<td></td>
</tr>
<tr>
<td>Monitor:</td>
<td>Configurations on the monitor terminal destination, including the channel number and channel name used</td>
</tr>
<tr>
<td>channel number : 1, channel name : monitor</td>
<td></td>
</tr>
<tr>
<td>SNMP Agent:</td>
<td>Configurations on the SNMP module destination, including the channel number and channel name used</td>
</tr>
<tr>
<td>channel number : 5, channel name : snmpagent</td>
<td></td>
</tr>
</tbody>
</table>
### Field

<table>
<thead>
<tr>
<th>Log buffer:</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enabled, max buffer size 1024, current buffer size 512, current messages 512, dropped messages 0, overwritten messages 740</td>
<td>Configurations on the log buffer destination, including whether information output to this destination is enabled or disabled, the maximum capacity, the current capacity, the current number of messages, the number of dropped messages, the number of messages that have been overwritten, and the channel number and channel name used.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trap buffer:</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enabled, max buffer size 1024, current buffer size 256, current messages 216, dropped messages 0, overwritten messages 0</td>
<td>Configurations on the trap buffer destination, including whether information output to this destination is enabled or disabled, the maximum capacity, the current capacity, the current number of messages, the number of dropped messages, the number of messages that have been overwritten, and the channel number and channel name used.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information timestamp setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The timestamp configurations, specifying the timestamp format for log, trap, debug, and log host information.</td>
</tr>
</tbody>
</table>

### display logbuffer

**Syntax**

```
display logbuffer [reverse] [level severity | size buffersize | slot slot-number] * [| { begin | exclude | include } regular-expression]
```

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

- **reverse**: Displays log entries chronologically, with the most recent entry at the top. If this keyword is not specified, the log entries will be displayed chronologically, with the oldest entry at the top.

- **level severity**: Displays information of the log with specified level, where severity represents information level, in the range 0 to 7.

**Table 16-4 Severity description**

<table>
<thead>
<tr>
<th>Severity</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency</td>
<td>0</td>
<td>The system is unusable.</td>
</tr>
<tr>
<td>Alert</td>
<td>1</td>
<td>Action must be taken immediately</td>
</tr>
<tr>
<td>Critical</td>
<td>2</td>
<td>Critical conditions</td>
</tr>
<tr>
<td>Error</td>
<td>3</td>
<td>Error conditions</td>
</tr>
<tr>
<td>Warning</td>
<td>4</td>
<td>Warning conditions</td>
</tr>
<tr>
<td>Notice</td>
<td>5</td>
<td>Normal but significant condition</td>
</tr>
<tr>
<td>Severity</td>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Informational</td>
<td>6</td>
<td>Informational messages</td>
</tr>
<tr>
<td>Debug</td>
<td>7</td>
<td>Debug-level messages</td>
</tr>
</tbody>
</table>

**size** `buffersize`: Displays specified number of the latest log messages in the log buffer, where `buffersize` represents the number of the latest log messages to be displayed in the log buffer, in the range 1 to 1,024.

**slot** `slot-number`: Displays the log information in the log buffer of the specified device. If the device is in an IRF, the `slot-number` argument represents the member ID of the device; if the device is not in any IRF, the `slot-number` argument represents the device ID.

`: Uses a regular expression to filter the output information. For detailed information about regular expression, refer to section CLI Display in *Basic System Configuration* in the *System Volume*.

- **begin**: Displays the line that matches the regular expression and all the subsequent lines.
- **exclude**: Displays the lines that do not match the regular expression.
- **include**: Displays the lines that match the regular expression.

**regular-expression**: Regular expression, a string of 1 to 256 characters. Note that this argument is case-sensitive and can have spaces included.

**Description**

Use the **display logbuffer** command to display the state of the log buffer and the log information recorded. Absence of the **size** `buffersize` argument indicates that all log information recorded in the log buffer is displayed.

**Examples**

# Display the state of the log buffer and the log information recorded on the device.

```plaintext
<Sysname> display logbuffer
Logging buffer configuration and contents:enabled
Allowed max buffer size : 1024
Actual buffer size : 512
Channel number : 4 , Channel name : logbuffer
Dropped messages : 0
Overwritten messages : 718
Current messages : 512

%Jun 17 15:57:09:578 2006 Sysname IC/7/SYS_RESTART:
% Jun 17 15:57:09:578 2006 Sysname IC/7/SYS_RESTART:
The rest is omitted here.
```

**Table 16-5 display logbuffer command output description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logging buffer configuration and contents</td>
<td>Indicates the current state of the log buffer and its contents, which could be enabled or disabled.</td>
</tr>
<tr>
<td>Allowed max buffer size</td>
<td>The maximum buffer size allowed</td>
</tr>
<tr>
<td>Actual buffer size</td>
<td>The actual buffer size</td>
</tr>
</tbody>
</table>
Field | Description
---|---
Channel number | The channel number of the log buffer, defaults to 4.
Channel name | The channel name of the log buffer, defaults to logbuffer.
Dropped messages | The number of dropped messages
Overwritten messages | The number of overwritten messages (when the buffer size is not big enough to hold all messages, the latest messages overwrite the old ones).
Current messages | The number of the current messages

### display logbuffer summary

**Syntax**

```
display logbuffer summary [level severity | slot slot-number] *
```

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

- **level severity**: Displays the summary of the log buffer, where severity represents information level, in the range 0 to 7.
- **slot slot-number**: Displays the summary of the log buffer of the specified device. If the device is in an IRF, the slot-number argument represents the member ID of the device; if the device is not in any IRF, the slot-number argument represents the device ID.

**Description**

Use the `display logbuffer summary` command to display the summary of the log buffer.

**Examples**

```
Display the summary of the log buffer on the device.
<Sysname> display logbuffer summary
```

```
SLOT EMERG ALERT CRIT ERROR WARN NOTIF INFO DEBUG
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 16 0 1 0
```

**Table 16-6 display logbuffer summary command output description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLOT</td>
<td>Slot number</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>EMERG</td>
<td>Represents emergency, refer to Table 16-4 for details</td>
</tr>
<tr>
<td>ALERT</td>
<td>Represents alert, refer to Table 16-4 for details</td>
</tr>
<tr>
<td>CRIT</td>
<td>Represents critical, refer to Table 16-4 for details</td>
</tr>
<tr>
<td>ERROR</td>
<td>Represents error, refer to Table 16-4 for details</td>
</tr>
<tr>
<td>WARN</td>
<td>Represents warning, refer to Table 16-4 for details</td>
</tr>
<tr>
<td>NOTIF</td>
<td>Represents notice, refer to Table 16-4 for details</td>
</tr>
<tr>
<td>INFO</td>
<td>Represents informational, refer to Table 16-4 for details</td>
</tr>
<tr>
<td>DEBUG</td>
<td>Represents debug, refer to Table 16-4 for details</td>
</tr>
</tbody>
</table>

**display trapbuffer**

**Syntax**

```
display trapbuffer [reverse] [size buffersize]
```

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

- **reverse**: Displays trap entries chronologically, with the most recent entry at the top. If this keyword is not specified, trap entries will be displayed chronologically, with the oldest entry at the top.
- **size buffersize**: Displays specified number of the latest trap messages in a trap buffer, where `buffersize` represents the number of the latest trap messages in a trap buffer, in the range 1 to 1,024.

**Description**

Use the `display trapbuffer` command to display the state and the trap information recorded.

Absence of the `size buffersize` argument indicates that all trap information is displayed.

**Examples**

```
Display the state of the trap buffer and the trap information recorded.
<Sysname> display trapbuffer
Trapping buffer configuration and contents:enabled
Allowed max buffer size : 1024
Actual buffer size : 256
Channel number : 3 , channel name : trapbuffer
Dropped messages : 0
Overwritten messages : 0
Current messages : 2
```

```
#Aug 7 14:47:35:636 2008 Sysname IFNET/4/INTERFACE UPDOWN:
```
Trap 1.3.6.1.6.3.1.1.5.3<linkDown>: Interface 983041 is Down, ifAdminStatus is 2, ifOperStatus is 2

Trap 1.3.6.1.6.3.1.1.5.4<linkUp>: Interface 983041 is Up, ifAdminStatus is 1, ifOperStatus is 1

Table 16-7 display trapbuffer command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trapping buffer configuration and contents</td>
<td>Indicates the current state of the trap buffer and its contents, which could be enabled or disabled.</td>
</tr>
<tr>
<td>Allowed max buffer size</td>
<td>The maximum buffer size allowed</td>
</tr>
<tr>
<td>Actual buffer size</td>
<td>The actual buffer size</td>
</tr>
<tr>
<td>Channel number</td>
<td>The channel number of the trap buffer, defaults to 3.</td>
</tr>
<tr>
<td>channel name</td>
<td>The channel name of the trap buffer, defaults to trapbuffer.</td>
</tr>
<tr>
<td>Dropped messages</td>
<td>The number of dropped messages</td>
</tr>
<tr>
<td>Overwritten messages</td>
<td>The number of overwritten messages (when the buffer size is not big enough to hold all messages, the latest messages overwrite the old ones).</td>
</tr>
<tr>
<td>Current messages</td>
<td>The number of the current messages</td>
</tr>
</tbody>
</table>

**enable log updown**

**Syntax**

```plaintext
enable log updown
undo enable log updown
```

**View**

Interface view

**Default Level**

2: System level

**Parameters**

None

**Description**

Use the `enable log updown` command to allow a port to generate link up/down logging information when the port state changes.

Use the `undo enable log updown` command to disable a port from generating link up/down logging information when the port state changes.

By default, all the ports are allowed to generate port link up/down logging information when the port state changes.
Examples

# Disable port GigabitEthernet 1/0/1 from generating link up/down logging information.

```
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] undo enable log updown
```

info-center channel name

Syntax

```
info-center channel channel-number name channel-name
undo info-center channel channel-number
```

View

System view

Default Level

2: System level

Parameters

- `channel-number`: Specifies a channel number, in the range 0 to 9.
- `channel-name`: Specifies a channel name, a string of 1 to 30 characters. It must be a combination of letters and numbers, and start with a letter and is case insensitive.

Description

Use the `info-center channel name` command to name a channel with a specified channel number.
Use the `undo info-center channel` command to restore the default name for a channel with a specified channel number.
Refer to Table 16-1 for details of default channel names and channel numbers.

Examples

# Name channel 0 as abc.

```
<Sysname> system-view
[Sysname] info-center channel 0 name abc
```

info-center console channel

Syntax

```
info-center console channel { channel-number | channel-name }
undo info-center console channel
```

View

System view

Default Level

2: System level
Parameters

channel-number: Specifies a channel number, in the range 0 to 9.

channel-name: Specifies a channel name, which could be a default name or a self-defined name. The user needs to specify a channel name first before using it as a self-defined channel name. For more information, refer to the info-center channel name command.

Description

Use the info-center console channel command to specify the channel to output system information to the console.

Use the undo info-center console channel command to restore the default output channel to the console.

By default, output of information to the console is enabled with channel 0 as the default channel (known as console).

Note that the info-center console channel command takes effect only after the information center is enabled first with the info-center enable command.

Examples

# Set channel 0 to output system information to the console.
<Sysname> system-view
<Sysname> info-center console channel 0

info-center enable

Syntax

info-center enable
undo info-center enable

View

System view

Default Level

2: System level

Parameters

None

Description

Use the info-center enable command to enable information center.

Use the undo info-center enable command to disable the information center.

The system outputs information to the log host or the console only after the information center is enabled first.

By default, the information center is enabled.

Examples

# Enable the information center.
info-center logbuffer

Syntax

```
info-center logbuffer [channel { channel-number | channel-name } | size buffersize] *
undo info-center logbuffer [channel | size]
```

View

System view

Default Level

2: System level

Parameters

- `channel-number`: A specified channel number, in the range 0 to 9.
- `channel-name`: Specifies a channel name, which could be a default name or a self-defined name. The user needs to specify a channel name first before using it as a self-defined channel name. For more information, refer to the `info-center channel name` command.
- `buffersize`: Specifies the maximum number of log messages that can be stored in a log buffer, in the range 0 to 1,024 with 512 as the default value.

Description

Use the `info-center logbuffer` command to enable information output to a log buffer and set the corresponding parameters.

Use the `undo info-center logbuffer` command to disable information output to a log buffer.

By default, information is output to the log buffer with the default channel of channel 4 (logbuffer) and the default buffer size of 512.

Note that the `info-center logbuffer` command takes effect only after the information center is enabled with the `info-center enable` command.

Examples

```
Configure the system to output information to the log buffer through channel 4, and set the log buffer size to 50.
<Sysname> system-view
<Sysname> info-center logbuffer size 50
```

info-center loghost

Syntax

```
info-center loghost host-ip [channel { channel-number | channel-name } | facility local-number] *
undo info-center loghost host-ip
```

Examples

```
Configure the system to output information to the log buffer through channel 4, and set the log buffer size to 50.
<Sysname> system-view
<Sysname> info-center logbuffer size 50
```
View

System view

Default Level

2: System level

Parameters

*host-ip*: The IP address of the log host.

*channel*: Specifies the channel through which system information can be output to the log host.

*channel-number*: Specifies a channel number, in the range 0 to 9.

*channel-name*: Specifies a channel name, which could be a default name or a self-defined name. The user needs to specify a channel name first before using it as a self-defined channel name. For more information, refer to the `info-center channel name` command.

*facility local-number*: The logging facility of the log host. The value can be local0 to local7 and defaults to local7. Logging facility is mainly used to mark different logging sources, query and filter the logs of the corresponding log source.

Description

Use the `info-center loghost` command to specify a log host and to configure the related parameters.

Use the `undo info-center loghost` command to restore the default configurations on a log host.

By default, output of system information to the log host is disabled. When it is enabled, the default channel name will be loghost and the default channel number will be 2.

Note that:

- The `info-center loghost` command takes effect only after the information center is enabled with the `info-center enable` command.
- Ensure to input a correct IP address while using the `info-center loghost` command to configure the IP address for a log host. System will prompt an invalid address if the loopback address (127.0.0.1) is input.
- A maximum number of 4 hosts (different) can be designated as the log host.

Examples

# Output log information to a Unix station with the IP address being 1.1.1.1/16.

```
<Sysname> system-view
[Sysname] info-center loghost 1.1.1.1
```

**info-center loghost source**

Syntax

```
info-center loghost source interface-type interface-number
undo info-center loghost source
```

View

System view
Default Level

2: System level

Parameters

interface-type interface-number: Specifies the egress interface for log information by the interface type and interface number.

Description

Use the `info-center loghost source` command to specify the source IP address for log information.

Use the `undo info-center loghost source` command to restore the default.

By default, the interface for sending log information is determined by the matched route, and the primary IP address of this interface is the source IP address of the log information.

After the source IP address of log information is specified, no matter the log information is actually output through which physical interface, the source IP address of the log information is the primary IP address of the specified interface. If you want to display the source IP address in the log information, you can configure it by using this command.

Note that:

- The `info-center loghost source` command takes effect only after the information center is enabled with the `info-center enable` command.
- The IP address of the specified source interface must be configured; otherwise, although the `info-center loghost source` command can be configured successfully, the log host will not receive any log information.

Examples

By default, the log information in the following format is displayed on the log host:

```
<188>Jul 22 05:58:06 2008 Sysname %10IFNET/4/LINK UPDOWN(l): Vlan-interace1: link status is UP
```

# Specify the primary IP address of VLAN-interace1 as the source IP address of log information.

```
<Sysname> system-view
[Sysname] interface Vlan-interace1
[Sysname-Vlan-interace1] ip address 2.2.2.2
[Sysname-Vlan-interace1] quit
[Sysname] info-center loghost source Vlan-interace1
```

After the above configuration, the log information in the following format is displayed on the log host (compared with the default format, the following format has the `-DevIP=2.2.2.2` field):

```
<188>Jul 22 06:11:31 2008 Sysname %10IFNET/4/LINK UPDOWN(l):-DevIP=2.2.2.2; Vlan-interace1: link status is UP0
```

info-center monitor channel

Syntax

```
info-center monitor channel { channel-number | channel-name }
undo info-center monitor channel
```

16-13
View

System view

Default Level

2: System level

Parameters

*channel-number*: Specifies a channel number, in the range 0 to 9.

*channel-name*: Specifies a channel name, which could be a default name or a self-defined name. The user needs to specify a channel name first before using it as a self-defined channel name. For more information, refer to the `info-center channel name` command.

Description

Use the `info-center monitor channel` command to configure the channel to output system information to the monitor.

Use the `undo info-center monitor channel` command to restore the default channel to output system information to the monitor.

By default, output of system information to the monitor is enabled with a default channel name of `monitor` and a default channel number of 1.

Note that the `info-center monitor channel` command takes effect only after the information center is enabled with the `info-center enable` command.

Examples

# Output system information to the monitor through channel 0.

```bash
<Sysname> system-view
<Sysname> info-center monitor channel 0
```

**info-center snmp channel**

Syntax

```
info-center snmp channel { channel-number | channel-name }
undo info-center snmp channel
```

View

System view

Default Level

2: System level

Parameters

*channel-number*: Specifies a channel number, in the range 0 to 9.

*channel-name*: Specifies a channel name, which could be a default name or a self-defined name. The user needs to specify a channel name first before using it as a self-defined channel name. For more information, refer to the `info-center channel name` command.
Description

Use the info-center snmp channel command to configure the channel to output system information to the SNMP module.

Use the undo info-center snmp channel command to restore the default channel to output system information to the SNMP module.

By default, output of system information to the SNMP module is enabled with a default channel name of snmpagent and a default channel number of 5.

For more information, refer to the display snmp-agent command in the SNMP Commands in the System Volume.

Examples

# Output system information to the SNMP module through channel 6.

<Sysname> system-view
[Sysname] info-center snmp channel 6

info-center source

Syntax

info-center source { module-name | default } channel { channel-number | channel-name } [ debug { level severity | state state } | log { level severity | state state } | trap { level severity | state state } ] *

undo info-center source { module-name | default } channel { channel-number | channel-name }

View

System view

Default Level

2: System level

Parameters

module-name: Specifies the output rules of the system information of the specified modules. For instance, if information on ARP module is to be output, you can configure this argument as ARP. You can use the info-center source ? command to view the modules supported by the device.

default: Specifies the output rules of the system information of all the modules allowed to output the system information, including all the modules displayed by using the info-center source ? command.

ddebug: Debugging information.

log: Log information.

trap: Trap information.

level severity: Specifies the severity of system information, refer to Table 16-4 for details. With this keyword, you can specify the severity level of the information allowed/denied to output.

state state: Configures whether to output the system information, which could be on (enabled) or off (disabled). With this keyword, you can specify whether to output the specified system information.

channel-number: Specifies a channel number, in the range 0 to 9.
channel-name: Specifies a channel name, which could be a default name or a self-defined name. The user needs to specify a channel name first before using it as a self-defined channel name. For more information, refer to the info-center channel name command.

Description

Use the info-center source command to specify the output rules of the system information.

Use the undo info-center source command to remove the specified output rules.

By default, the output rules for the system information are listed in Table 16-8.

This command can be used to set the filter and redirection rules of log, trap and debugging information.

For example, the user can set to output log information with severity higher than warning to the log host, and information with severity higher than informational to the log buffer. The user can also set to output trap information of the IP module to a specified output destination.

Note that:

- If you do not use the module-name argument to set output rules for a module, the module uses the default output rules or the output rules set by the default keyword; otherwise the module uses the output rules separately set for it.
- If you use the default keyword to set the output rules for all the modules without specifying the debug, log, and trap keywords, the default output rules for the modules are used. Refer to Table 16-8 for details.
- If you use the module-name argument to set the output rules for a module without specifying the debug, log, and trap keywords, the default output rules for the module are as follows: the output of log and trap information is enabled, with severity being informational; the output of debugging information is disabled, with severity being debug. For example, if you execute the command info-center source snmp channel 5, the command is actually equal to the command info-center source snmp channel 5 debug level debugging state off log level informational state on trap level informational state on.
- If you repeatedly use the command to set the output rules for a module or for all the modules with the default keyword, the last configured output rules take effect.
- After you separately set the output rules for a module, you must use the module-name argument to modify or remove the rules. The new configuration by using the default keyword is invalid on the module.
- You can configure to output the log, trap and debugging information to the trap buffer, but the trap buffer only receives the trap information and discards the log and debugging information.
- You can configure to output the log, trap and debugging information to the log buffer, but the log buffer only receives the log and debugging information and discards the trap information.
- You can configure to output the log, trap and debugging information to the SNMP module, but the SNMP module only receives the trap information and discards the log and debugging information.

Table 16-8 Default output rules for different output destinations

<table>
<thead>
<tr>
<th>Output destination</th>
<th>Modules allowed</th>
<th>LOG</th>
<th>TRAP</th>
<th>DEBUG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Enabled/disabled</td>
<td>Severity</td>
<td>Enabled/disabled</td>
</tr>
<tr>
<td>Console</td>
<td>default (all modules)</td>
<td>Enabled</td>
<td>Warning</td>
<td>Enabled</td>
</tr>
<tr>
<td>Output destination</td>
<td>Modules allowed</td>
<td>LOG</td>
<td>TRAP</td>
<td>DEBUG</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enabled/disabled</td>
<td>Severity</td>
<td>Enabled/disabled</td>
</tr>
<tr>
<td>Monitor terminal</td>
<td>default (all modules)</td>
<td>Enabled</td>
<td>Warning</td>
<td>Enabled</td>
</tr>
<tr>
<td>Log host</td>
<td>default (all modules)</td>
<td>Enabled</td>
<td>Informational</td>
<td>Enabled</td>
</tr>
<tr>
<td>Trap buffer</td>
<td>default (all modules)</td>
<td>Disabled</td>
<td>Informational</td>
<td>Enabled</td>
</tr>
<tr>
<td>Log buffer</td>
<td>default (all modules)</td>
<td>Enabled</td>
<td>Warning</td>
<td>Disabled</td>
</tr>
<tr>
<td>SNMP module</td>
<td>default (all modules)</td>
<td>Disabled</td>
<td>Debug</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

**Examples**

# Set the output channel for the log information of VLAN module to `snmpagent` and to output information with severity being `emergency`. Log information of other modules cannot be output to this channel; other types of information of this module may or may not be output to this channel.

```bash
<Sysname> system-view
[Sysname] info-center source default channel snmpagent log state off
[Sysname] info-center source vlan channel snmpagent log level emergencies state on
```

# Set the output channel for the log information of VLAN module to `snmpagent` and to output information with severity being `emergency`. Log information of other modules and all the other system information cannot be output to this channel.

```bash
<Sysname> system-view
[Sysname] info-center source default channel snmpagent debug state off log state off trap state off
[Sysname] info-center source vlan channel snmpagent log level emergencies state on
```

**info-center synchronous**

**Syntax**

```
info-center synchronous
undo info-center synchronous
```

**View**

- System view

**Default Level**

- 2: System level
Parameters

None

Description

Use the **info-center synchronous** command to enable synchronous information output.

Use the **undo info-center synchronous** command to disable the synchronous information output.

By default, the synchronous information output is disabled.

---

**Note**

- If system information, such as log information, is output before you input any information under a current command line prompt, the system will not display the command line prompt after the system information output.
- If system information is output when you are inputting some interactive information (non Y/N confirmation information), then after the system information output, the system will not display the command line prompt but your previous input in a new line.

---

**Examples**

# Enable the synchronous information output function, and then input the **display interface gigabitethe** command to view Ethernet interface information.

```
<Sysname> system-view
[Sysname] info-center synchronous
% Info-center synchronous output is on
[Sysname] display interface gigabitethe
```

At this time, the system receives log messages, and it then displays the log messages first. After the system displays all the log messages, it displays the user’s previous input, which is **display interface gigabitethe** in this example.

```
%Apr 29 08:12:44:71 2007 Sysname IFNET/4/LINK UPDOWN:
GigabitEthernet1/0/1: link status is UP
[Sysname] display interface gigabitethe
```

After the above information is displayed, you can input **rnet** to complete your input of the **display interface gigabitethernet** command, and then press the **Enter** key to execute the command.

# Enable the synchronous information output function, and then save the current configuration (input interactive information).

```
<Sysname> system-view
[Sysname] info-center synchronous
% Info-center synchronous output is on
[Sysname] save
```

The current configuration will be written to the device. Are you sure? [Y/N]:

At this time, the system receives the log information, and it then displays the log information first. After the system displays all the log information, it displays the user’s previous input, which is [Y/N] in this example.
After the above information is displayed, you can input **Y** or **N** to complete your input before the output of the log information.

### info-center timestamp

**Syntax**

```
info-center timestamp { debugging | log | trap } { boot | date | none }
undo info-center timestamp { debugging | log | trap }
```

**View**

System view

**Default Level**

2: System level

**Parameters**

- **debugging**: Sets the timestamp format of the debugging information.
- **log**: Sets the timestamp output format of the log information.
- **trap**: Sets the timestamp output format of the trap information.
- **boot**: The time taken to boot up the system, in the format of xxxxxx.yyyyyy, in which xxxxxx represents the most significant 32 bits of the time taken to boot up the system (in milliseconds) whereas yyyyyy is the least significant 32 bits. For example, 0.21990989 equals Jun 25 14:09:26:881 2007.
- **date**: The current system date and time, in the format of “Mmm dd hh:mm:ss:sss yyyy”.
  - **Mmm**: The abbreviations of the months in English, which could be Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec.
  - **dd**: The date, starting with a space if less than 10, for example “ 7”.
  - **hh:mm:ss:sss**: The local time, with hh ranging from 00 to 23, mm and ss ranging from 00 to 59, and sss ranging from 0 to 999.
  - **yyyy**: Represents the year.
- **none**: Indicates no time information is provided.

**Description**

Use the `info-center timestamp` command to configure the timestamp format.

Use the `undo info-center timestamp` command to restore the default.

By default, the timestamp format of log, trap and debugging information is **date**.

**Examples**

```
Configure the timestamp format for log information as **boot**.
<Sysname> system-view
<Sysname> info-center timestamp log boot

At this time, if you execute the **shutdown** command on GigabitEthernet1/0/1 that is in the UP state, the log information generated is as follows:
```

```
%0.1382605158 Sysname IFNET/4/LINK UPDOWN:
```
GigabitEthernet1/0/1: link status is DOWN

# Configure the timestamp format for log information as date.
<Sysname> system-view
[Sysname] info-center timestamp log date

At this time, if you execute the shutdown command on GigabitEthernet1/0/1 that is in the UP state, the log information generated is as follows:
%Sep 29 17:19:11:188 2007 Sysname IFNET/4/LINK UPDOWN:
GigabitEthernet1/0/1: link status is DOWN

# Configure the timestamp format for log information as none.
<Sysname> system-view
[Sysname] info-center timestamp log none

At this time, if you execute the shutdown command on GigabitEthernet1/0/1 that is in the UP state, the log information generated is as follows:
% Sysname IFNET/4/LINK UPDOWN:
GigabitEthernet1/0/1: link status is DOWN

info-center timestamp loghost

Syntax

info-center timestamp loghost { date | no-year-date | none }
undo info-center timestamp loghost

View

System view

Default Level

2: System level

Parameters

date: Indicates the current system date and time, in the format of "Mmm dd hh:mm:ss:ms yyyy". However, the display format depends on the log host.
nono-year-date: Indicates the current system date and time (year exclusive).
none: Indicates that no time stamp information is provided.

Description

Use the info-center timestamp loghost command to configure the time stamp format of the system information sent to the log host.

Use the undo info-center timestamp loghost command to restore the default.

By default, the time stamp format for system information sent to the log host is date.

Examples

# Configure that the system information output to the log host does not include the year information.
<Sysname> system-view
[Sysname] info-center timestamp loghost no-year-date
info-center trapbuffer

Syntax

info-center trapbuffer [ channel { channel-number | channel-name } | size buffersize ] *
undo info-center trapbuffer [ channel | size ]

View

System view

Default Level

2: System level

Parameters

size buffersize: Specifies the maximum number of trap messages in a trap buffer, in the range 0 to 1,024 with 256 as the default value.
channel-number: Specifies a channel number, in the range 0 to 9.
channel-name: Specifies a channel name, which could be a default name or a self-defined name. The user needs to specify a channel name first before using it as a self-defined channel name. For more information, refer to the info-center channel name command.

Description

Use the info-center trapbuffer command to enable information output to the trap buffer and set the corresponding parameters.

Use the undo info-center trapbuffer command to disable information output to the trap buffer.

By default, information output to the trap buffer is enabled with channel 3 (trapbuffer) as the default channel and a maximum buffer size of 256.

Note that the info-center trapbuffer command takes effect only after the information center is enabled with the info-center enable command.

Examples

# Configure the system to output information to the trap buffer through the default channel, and set the trap buffer size to 30.
<Sysname> system-view
[Sysname] info-center trapbuffer size 30

reset logbuffer

Syntax

reset logbuffer

View

User view

Default Level

3: Manage level
Parameters

None

Description

Use the reset logbuffer command to reset the log buffer contents.

Examples

# Reset the log buffer contents.
<Sysname> reset logbuffer

reset trapbuffer

Syntax

reset trapbuffer

View

User view

Default Level

3: Manage level

Parameters

None

Description

Use the reset trapbuffer command to reset the trap buffer contents.

Examples

# Reset the trap buffer contents.
<Sysname> reset trapbuffer

terminal debugging

Syntax

terminal debugging

undo terminal debugging

View

User view

Default Level

1: Monitor level

Parameters

None
Description

Use the `terminal debugging` command to enable the display of debugging information on the current terminal.

Use the `undo terminal debugging` command to disable the display of debugging information on the current terminal.

By default, the display of debugging information on the current terminal is disabled.

Note that:

- The debugging information is displayed (using the `terminal debugging` command) only after the monitoring of system information is enabled on the current terminal first (using the `terminal monitor` command).
- The configuration of this command is valid for only the current connection between the terminal and the device. If a new connection is established, the display of debugging information on the terminal restores the default.

Examples

# Enable the display of debugging information on the current terminal.

```
<Sysname> terminal debugging
% Current terminal debugging is on
```

terminal logging

Syntax

```
terminal logging
undo terminal logging
```

View

User view

Default Level

1: Monitor level

Parameters

None

Description

Use the `terminal logging` command to enable the display of log information on the current terminal.

Use the `undo terminal logging` command to disable the display of log information on the current terminal.

By default, the display of log information on the current terminal is disabled.

Note that:

- The log information is displayed (using the `terminal logging` command) only after the monitoring of system information is enabled on the current terminal first (using the `terminal monitor` command).
The configuration of this command is valid for only the current connection between the terminal and the device. If a new connection is established, the display of log information on the terminal restores the default.

Examples

# Disable the display of log information on the current terminal.
<Sysname> undo terminal logging
% Current terminal logging is off

terminal monitor

Syntax

terminal monitor
undo terminal monitor

View

User view

Default Level

1: Monitor level

Parameters

None

Description

Use the terminal monitor command to enable the monitoring of system information on the current terminal.

Use the undo terminal monitor command to disable the monitoring of system information on the current terminal.

By default, monitoring of the system information on the console is enabled and that on the monitor terminal is disabled.

Note that:

- You need to configure the terminal monitor command before you can display the log, trap, and debugging information.
- Configuration of the undo terminal monitor command automatically disables the monitoring of log, trap, and debugging information.
- The configuration of this command is valid for only the current connection between the terminal and the device. If a new connection is established, the monitoring of system information on the terminal restores the default.

Examples

# Enable the monitoring of system information on the current terminal.
<Sysname> terminal monitor
% Current terminal monitor is on
terminal trapping

Syntax

terminal trapping
undo terminal trapping

View

User view

Default Level

1: Monitor level

Parameters

None

Description

Use the terminal trapping command to enable the display of trap information on the current terminal.

Use the undo terminal trapping command to disable the display of trap information on the current terminal.

By default, the display of trap information on the current terminal is enabled.

Note that:

- The trap information is displayed (using the terminal trapping command) only after the monitoring of system information is enabled on the current terminal first (using the terminal monitor command).
- The configuration of this command is valid for only the current connection between the terminal and the device. If a new connection is established, the display of trap information on the terminal restores the default.

Examples

# Enable the display of trap information on the current terminal.

<Sysname> terminal trapping
% Current terminal trapping is on
Hotfix Configuration Commands

display patch information

Syntax

display patch information

View

Any view

Default Level

3: Manage level

Parameters

None

Description

Use the `display patch information` command to display the hotfix information.

Examples

# Display hotfix information.

<Sysname> display patch information

The location of patches: flash:/

<table>
<thead>
<tr>
<th>Slot</th>
<th>Version</th>
<th>Temporary</th>
<th>Common</th>
<th>Current</th>
<th>Active</th>
<th>Running</th>
<th>Start-Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>XXX002</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0x4accf74</td>
</tr>
<tr>
<td>2</td>
<td>XXX</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0x4accf74</td>
</tr>
</tbody>
</table>

**Table 17-1 display patch information command output description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The location of patches</td>
<td>Patch file location. You can configure it using the <code>patch location</code> command.</td>
</tr>
<tr>
<td>Slot</td>
<td>Member ID</td>
</tr>
<tr>
<td>Version</td>
<td>Patch version. The first three characters represent the suffix of the PATCH-FLAG. For example, if the PATCH-FLAG of the a device is PATCH-RPE, “RPE” is displayed. The following three digits, if any, represent the patch number. (The patch number can be read after the patch is loaded.)</td>
</tr>
<tr>
<td>Temporary</td>
<td>Number of temporary patches</td>
</tr>
<tr>
<td>Common</td>
<td>Number of common patches</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Current</td>
<td>Total number of patches</td>
</tr>
<tr>
<td>Running</td>
<td>Number of patches in the RUNNING state</td>
</tr>
<tr>
<td>Active</td>
<td>Number of patches in the ACTIVE state</td>
</tr>
<tr>
<td>Start-Address</td>
<td>Starting address of the memory patch area in the memory</td>
</tr>
</tbody>
</table>

### patch active

**Syntax**

```
patch active patch-number slot slot-number
```

**View**

System view

**Default Level**

3: Manage level

**Parameters**

- `patch-number`: Sequence number of a patch. The valid values of this argument depend on the patch file used.
- `slot slot-number`: Specifies a member device by its member ID. The value range of this argument varies with the device model and can be displayed through the `display irf` command.

**Description**

Use the `patch active` command to activate the specified patch, namely, the system will run the patch. After you execute the command, all the DEACTIVE patches before the specified patch number are activated.

Note that:

- The command is not applicable to patches in the DEACTIVE state.
- After a system reboot, the original ACTIVE patches change to DEACTIVE and become invalid. To make them effective, you need to activate them again.

**Examples**

```
Activate patch 3 and all the DEACTIVE patches before patch 3 on the device with member ID being 1.
<Sysname> system-view
[Sysname] patch active 3 slot 1
```

### patch deactive

**Syntax**

```
patch deactive patch-number slot slot-number
```
**View**

System view

**Default Level**

3: Manage level

**Parameters**

*patch-number*: Sequence number of a patch. The valid values of this argument depend on the patch file used.

*slot slot-number*: Specifies a member device by its member ID. The value range of this argument varies with the device model and can be displayed through the `display irf` command.

**Description**

Use the `patch deactive` command to stop running the specified patch and all the ACTIVE patches before the specified patch number, and the system will run at the original software version. All the ACTIVE patches (including the specified patch) turn to DEACTIVE state.

This command is not applicable to the patches in the RUNNING state.

**Examples**

```
Stop running patch 3 and all the ACTIVE patches before patch 3 on the device with member ID being 1.
<Sysname> system-view
[Sysname] patch deactive 3 slot 1
```

**patch delete**

**Syntax**

```
patch delete patch-number slot slot-number
```

**View**

System view

**Default Level**

3: Manage level

**Parameters**

*patch-number*: Sequence number of a patch. The valid values of this argument depend on the patch file used.

*slot slot-number*: Specifies a member device by its member ID. The value range of this argument varies with the device model and can be displayed through the `display irf` command.

**Description**

Use the `patch delete` command to delete the specified patch and all the patches before the specified patch number.

This command only removes the patches from the memory patch area, and it does not delete them from the storage medium. The patches are in the IDLE state after execution of this command.
Examples

# Delete patch 3 and all the patches before patch 3 on the device with member ID being 1.
</Sysname> system-view
[Sysname] patch delete 3 slot 1

patch install

Syntax

patch install patch-location

undo patch install

View

System view

Default Level

3: Manage level

Parameters

patch-location: A string consisting of 1 to 64 characters. About the switch 4210G, the location is “flash:”.

Description

Use the patch install command to install all the patches in one step.

Use the undo patch install to remove the patches.

After you execute the patch install command, a message "Do you want to continue running patches after reboot? [Y/N]:" is displayed.

- Entering y or Y: All the specified patches are installed, and turn to the RUNNING state from IDLE. This equals execution of the commands patch location, patch load, patch active, and patch run. The patches remain RUNNING after system reboot.
- Entering n or N: All the specified patches are installed and turn to the ACTIVE state from IDLE. This equals execution of the commands patch location, patch load and patch active. The patches turn to the DEACTIVE state after system reboot.

Note that:

- Before executing the command, save the patch files to root directories of the member devices' storage media.
- The patch install command changes the patch file location specified with the patch location command to the directory specified by the patch-file argument of the patch install command. For example, if you execute the patch location xxx command and then the patch install yyy command, the patch file location automatically changes from xxx to yyy.

Examples

# Install the patches located on the flash.
</Sysname> system-view
[Sysname] patch-install flash:
Patches will be installed. Continue? [Y/N]:y
Do you want to run patches after reboot? [Y/N]:y
Installing patches...
Installation completed, and patches will continue to run after reboot.

patch load

Syntax

```
patch load slot slot-number
```

View

System view

Default Level

3: Manage level

Parameters

```
slot slot-number: Specifies a member device by its member ID. The value range of this argument varies with the device model and can be displayed through the display irf command.
```

Description

Use the `patch load` command to load the patch file on the storage medium. Before using the command, save the patch files to the root directories of the member devices' storage media.

Examples

```
Load the patch files for the device with member ID being 1.
<Sysname> system-view
<Sysname> patch load slot 1
```

patch location

Syntax

```
patch location patch-location
```

View

System view

Default Level

3: Manage level

Parameters

```
patch-location: Specifies the patch file location. It is a string consisting of 1 to 64 characters. About the switch 4210G, the location is “flash:”.
```

Description

Use the `patch location` command to configure the patch file location. By default, the patch file location is `flash:`.
Note that the `patch install` command changes the patch file location specified with the `patch location` command to the directory specified by the `patch-location` argument of the `patch install` command. For example, if you execute the `patch location xxx` command and then the `patch install yyy` command, the patch file location automatically changes from xxx to yyy.

**Examples**

```
Configure the root directory of the flash as the patch file location.
<Sysname> system-view
[Sysname] patch location flash:
```

### patch run

**Syntax**

```
patch run patch-number [slot slot-number]
```

**View**

```
System view
```

**Default Level**

```
3: Manage level
```

**Parameters**

- `patch-number`: Sequence number of a patch. The valid values of this argument depend on the patch file used.
- `slot slot-number`: Specifies a member device by its member ID. The value range of this argument varies with the device model and can be displayed through the `display irf` command.

**Description**

Use the `patch run` command to confirm the running of the specified patch and all the ACTIVE patches before the specified patch number.

With the `slot` keyword specified, the command confirms the running state of all the qualified patches on a member device. If the keyword is not specified, the command confirms the running state of all the qualified patches on all the member devices.

This command is applicable to patches in the ACTIVE state only.

If the running of a patch is confirmed, after the system reboots, the patch will still be effective.

**Examples**

```
Confirm the running of patch 3 and all the ACTIVE patches before patch 3 on the device with member ID being 1.
<Sysname> system-view
[Sysname] patch run 3 slot 1
```
NQA Configuration Commands

NQA Client Configuration Commands

advantage-factor

Syntax

    advantage-factor factor
    undo advantage-factor

View

Voice test type view

Default Levels

2: System level

Parameter

factor: Advantage factor, used to count Mean Opinion Scores (MOS) and Calculated Planning Impairment Factor (ICPIF) values. It is in the range 0 to 20.

Description

Use the advantage-factor command to configure the advantage factor which is used to count MOS and ICPIF values.

Use the undo advantage-factor command to restore the default.

By default, the advantage factor is 0.

The evaluation of voice quality depends on users' tolerance to voice quality, and this factor should be taken into consideration. For users with higher tolerance to voice quality, you can use the advantage-factor command to configure the advantage factor. When the system calculates the ICPIF value, this advantage factor is subtracted to modify ICPIF and MOS values and thus both the objective and subjective factors are considered when you evaluate the voice quality.

Example

    # Configure the advantage factor for a voice test as 10.
    <Sysname> system-view
    [Sysname] nqa entry admin test
    [Sysname-nqa-admin-test] type voice
    [Sysname-nqa-admin-test-voice] advantage-factor 10

codec-type

Syntax

    codec-type { g711a | g711u | g729a }
undo codec-type

View

Voice test type view

Default Level

2: System level

Parameters

- **g711a**: G.711 A-law codec type.
- **g711u**: G.711 µ-law codec type
- **g729a**: G.729 A-law codec type.

Description

Use the **codec-type** command to configure the codec type for a voice test.

Use the **undo codec-type** command to restore the default.

By default, the codec type for a voice test is G.711 A-law.

Examples

```bash
Configure the codec type for a voice test as g729a.
<Sysname> system-view
<Sysname> nqa entry admin test
<Sysname-nqa-admin-test> type voice
<Sysname-nqa-admin-test-voice> codec-type g729a
```

**data-fill**

Syntax

```
data-fill string
undo data-fill
```

View

ICMP echo, UDP echo, UDP jitter, voice test type view

Default Level

2: System level

Parameters

- **string**: String used to fill a probe packet, in the range 1 to 200. It is case sensitive.

Description

Use the **data-fill** command to configure the string used to fill a probe packet.

Use the **undo data-fill** command to restore the default.

By default, the string used to fill a probe packet is the hexadecimal number 00010203040506070809.
If the data field of a probe packet is smaller than the fill data, the system uses only the first part of the character string to encapsulate the packet.

If the data field of a probe packet is larger than the fill data, the system fills the character string cyclically to encapsulate the packet until it is full.

For example, when the fill data is \texttt{abcd} and the size of the data field of a probe packet is 3 byte, \texttt{abc} is used to fill the packet. When the data field of a probe packet is 6 byte, \texttt{abcdab} is used to fill the packet.

- In an ICMP echo test, the configured character string is used to fill the data field in an ICMP echo message.
- In a UDP echo test, because the first five bytes of the data field of a UDP packet have some specific usage, the configured character string is used to fill the remaining bytes in the UDP packet.
- In a UDP jitter test, because the first 68 bytes of the data field of a UDP packet have some specific usage, the configured character string is used to fill the remaining bytes in the UDP packet.
- In a voice test, because the first 16 bytes of the data field of a UDP packet have some specific usage, the configured character string is used to fill the remaining bytes in the UDP packet.

\textbf{Examples}

\begin{verbatim}
# Configure the string used to fill an ICMP echo probe packet as \texttt{abcd}.
<Sysname> system-view
<Sysname> nqa entry admin test
<Sysname-nqa-admin-test> type icmp-echo
<Sysname-nqa-admin-test-icmp-echo> data-fill abcd
\end{verbatim}

\textbf{data-size}

\textbf{Syntax}

\begin{verbatim}
data-size size
undo data-size
\end{verbatim}

\textbf{View}

ICMP echo, UDP echo, UDP jitter, voice test type view

\textbf{Default Level}

2: System level

\textbf{Parameters}

\begin{verbatim}
size: Size of a probe packet in bytes, in the range 20 to 8100 for an ICMP echo or a UDP echo test, in the range 68 to 8100 for a UDP jitter test and in the range 16 to 1500 for a voice test.
\end{verbatim}

\textbf{Description}

Use the \texttt{data-size} command to configure the size of a probe packet to be sent.

Use the \texttt{undo data-size} command to restore the default.

The default values are as shown in Table 18-1.
### Table 18-1 Default values of the size of test packets sent

<table>
<thead>
<tr>
<th>Test Type</th>
<th>Codec Type</th>
<th>Default Value (in bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICMP</td>
<td>None</td>
<td>100</td>
</tr>
<tr>
<td>UDP echo</td>
<td>None</td>
<td>100</td>
</tr>
<tr>
<td>UDP jitter</td>
<td>None</td>
<td>100</td>
</tr>
<tr>
<td>Voice</td>
<td>G.711 A-law</td>
<td>172</td>
</tr>
<tr>
<td>Voice</td>
<td>G.711 µ-law</td>
<td>172</td>
</tr>
<tr>
<td>Voice</td>
<td>G.729 A-law</td>
<td>32</td>
</tr>
</tbody>
</table>

- For an ICMP echo test, the size of a probe packet is the length of the data field in an ICMP echo message.
- For a UDP echo test, UDP jitter test and voice test, the size of a probe packet is the length of the data field in a UDP packet.

#### Examples

```plaintext
Configure the size of an ICMP echo probe packet as 80 bytes.
<Sysname> system-view
<Sysname> nqa entry admin test
<Sysname-nqa-admin-test> type icmp-echo
<Sysname-nqa-admin-test-icmp-echo> data-size 80
```

**description (any NQA test type view)**

**Syntax**

```
description text
undo description
```

**View**

Any NQA test type view

**Default Level**

2: System level

**Parameters**

`text`: Descriptive string of a test group, in the range 1 to 200. It is case sensitive.

**Description**

Use the `description` command to give a brief description of a test group, usually, the test type or test purpose of a test group.

Use the `undo description` command to remove the configured description information.

By default, no descriptive string is available for a test group.

**Examples**

```plaintext
Configure the descriptive string for a test group as icmp-probe.
```
destination ip

Syntax

    destination ip ip-address
    undo destination ip

View

    DLSw, FTP, HTTP, ICMP echo, SNMP, TCP, UDP echo, UDP jitter, voice test type view

Default Level

    2: System level

Parameters

    ip-address: Destination IP address of a test operation.

Description

    Use the destination ip command to configure a destination IP address for a test operation.
    Use the undo destination ip command to remove the configured destination IP address.
    By default, no destination IP address is configured for a test operation.

Examples

    # Configure the destination IP address of an ICMP echo test operation as 10.1.1.1.
    <Sysname> system-view
    [Sysname] nqa entry admin test
    [Sysname-nqa-admin-test] type icmp-echo
    [Sysname-nqa-admin-test-icmp-echo] destination ip 10.1.1.1

destination port

Syntax

    destination port port-number
    undo destination port

View

    TCP, UDP echo, UDP jitter, voice test type view

Default Level

    2: System level

Parameters

    port-number: Destination port number of a test operation, in the range 1 to 65535.
Description

Use the **destination port** command to configure a destination port number for a test operation.

Use the **undo destination port** command to remove the configured destination port number.

By default, no destination port number is configured for a test operation.

Note that you are not recommended to perform a UDP jitter test and a voice test on ports from 1 to 1023 (known ports). Otherwise, the NQA test will fail or the corresponding services of this port will be unavailable.

Examples

# Configure the destination port number of a test operation as 9000.

```
<Sysname> system-view
<Sysname> nqa entry admin test
<Sysname-nqa-admin-test] type udp-echo
[Sysname-nqa-admin-test-udp-echo] destination port 9000
```

display nqa history

Syntax

```
display nqa history [admin-name operation-tag]
```

View

Any view

Default Level

2: System level

Parameters

```
admin-name operation-tag: Displays history records of a test group. If these two arguments are not specified, history records of all test groups are displayed. admin-name represents the name of the administrator who creates the NQA operation. It is a string of 1 to 32 characters, case-insensitive. operation-tag represents the test operation tag. It is a string of 1 to 32 characters, case-insensitive.
```

Description

Use the **display nqa history** command to display history records of NQA tests.

The **display nqa history** command cannot show you the results of voice tests and UDP jitter tests. Therefore, to know the result of a voice test or a UDP jitter test, you are recommended to use the **display nqa result** command to view the probe results of the latest NQA test, or use the **display nqa statistics** command to view the statistics of NQA tests.

Examples

# Display the history records of the NQA test in which the administrator name is administrator, and the operation tag is test.

```
<Sysname> display nqa history administrator test
NQA entry(admin administrator, tag test) history record(s):
 Index Response Status Time
```
Table 18-2 display nqa history command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>History record number</td>
</tr>
<tr>
<td>Response</td>
<td>Roundtrip delay of a test packet in the case of a successful test, timeout time in the case of timeout, or 0 in the case that a test cannot be completed (in milliseconds)</td>
</tr>
<tr>
<td>Status</td>
<td>Status value of test results, including:</td>
</tr>
<tr>
<td></td>
<td>- Succeeded</td>
</tr>
<tr>
<td></td>
<td>- Unknown error</td>
</tr>
<tr>
<td></td>
<td>- Internal error</td>
</tr>
<tr>
<td></td>
<td>- Timeout</td>
</tr>
<tr>
<td>Time</td>
<td>Time when the test is completed</td>
</tr>
</tbody>
</table>

display nqa result

Syntax

display nqa result [ admin-name operation-tag ]

View

Any view

Default Level

2: System level

Parameters

admin-name operation-tag: Displays results of the last test of a test group. If this argument is not specified, results of the last tests of all test groups are displayed. admin-name represents the name of the administrator who creates the NQA operation. It is a string of 1 to 32 characters, case-insensitive. operation-tag represents the test operation tag. It is a string of 1 to 32 characters, case-insensitive.

Description

Use the display nqa result command to display results of the last NQA test.

Examples

# Display the results of the last UDP jitter test.
<Sysname> display nqa result admin test
Extended results:
Packet lost in test: 0%
Failures due to timeout: 0
Failures due to disconnect: 0
Failures due to no connection: 0
Failures due to sequence error: 0
Failures due to internal error: 0
Failures due to other errors: 0
Packet(s) arrived late: 0
UDP-jitter results:
RTT number: 10
Min positive SD: 8  Min positive DS: 8
Max positive SD: 18  Max positive DS: 8
Positive SD number: 5  Positive DS number: 2
Positive SD sum: 75  Positive DS sum: 32
Positive SD average: 15  Positive DS average: 16
Positive SD square sum: 1189  Positive DS square sum: 640
Min negative SD: 8  Min negative DS: 1
Max negative SD: 24  Max negative DS: 30
Negative SD number: 4  Negative DS number: 7
Negative SD sum: 56  Negative DS sum: 99
Negative SD average: 14  Negative DS average: 14
Negative SD square sum: 946  Negative DS square sum: 1495
One way results:
Max SD delay: 22  Max DS delay: 23
Min SD delay: 7  Min DS delay: 7
Number of SD delay: 10  Number of DS delay: 10
Sum of SD delay: 125  Sum of DS delay: 132
Square sum of SD delay: 1805  Square sum of DS delay: 1988
SD lost packet(s): 0  DS lost packet(s): 0
Lost packet(s) for unknown reason: 0

# Display the results of the last voice test.
< Sysname > display nqa result admin test
NQA entry(admin admin, tag test) test results:
Destination IP address: 192.168.1.42
Send operation times: 1000  Receive response times: 0
Min/Max/Average round trip time: 0/0/0
Square-Sum of round trip time: 0
Last succeeded probe time: 0-00-00 00:00:00.0
Extended results:
Packet lost in test: 100%
Failures due to timeout: 1000
Failures due to disconnect: 0
Failures due to no connection: 0
Failures due to sequence error: 0
Failures due to internal error: 0
Failures due to other errors: 0
Packet(s) arrived late: 0

Voice results:
RTT number: 0
Min positive SD: 0 Min positive DS: 0
Max positive SD: 0 Max positive DS: 0
Positive SD number: 0 Positive DS number: 0
Positive SD sum: 0 Positive DS sum: 0
Positive SD average: 0 Positive DS average: 0
Positive SD square sum: 0 Positive DS square sum: 0
Min negative SD: 0 Min negative DS: 0
Max negative SD: 0 Max negative DS: 0
Negative SD number: 0 Negative DS number: 0
Negative SD sum: 0 Negative DS sum: 0
Negative SD average: 0 Negative DS average: 0
Negative SD square sum: 0 Negative DS square sum: 0

One way results:
Max SD delay: 0 Max DS delay: 0
Min SD delay: 0 Min DS delay: 0
Number of SD delay: 0 Number of DS delay: 0
Sum of SD delay: 0 Sum of DS delay: 0
Square sum of SD delay: 0 Square sum of DS delay: 0
SD lost packet(s): 0 DS lost packet(s): 0
Lost packet(s) for unknown reason: 1000

Voice scores:
MOS value: 0.99 ICPIF value: 87

Table 18-3 display nqa result command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination IP address</td>
<td>IP address of the destination</td>
</tr>
<tr>
<td>Send operation times</td>
<td>Number of probe packets sent</td>
</tr>
<tr>
<td>Receive response times</td>
<td>Number of response packets received</td>
</tr>
<tr>
<td>Min/Max/Average round trip time</td>
<td>Minimum/maximum/average roundtrip time, in milliseconds</td>
</tr>
<tr>
<td>Square-Sum of round trip time</td>
<td>Square sum of roundtrip time</td>
</tr>
<tr>
<td>Last succeeded probe time</td>
<td>Time when the last successful probe was finished</td>
</tr>
<tr>
<td>Packet lost in test</td>
<td>Average packet loss ratio</td>
</tr>
<tr>
<td>Failures due to timeout</td>
<td>Number of timeout occurrences in a test</td>
</tr>
<tr>
<td>Failures due to disconnect</td>
<td>Number of disconnections by the peer</td>
</tr>
<tr>
<td>Failures due to no connection</td>
<td>Number of failures to connect with the peer</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Failures due to sequence error</td>
<td>Number of failures owing to out-of-sequence packets</td>
</tr>
<tr>
<td>Failures due to internal error</td>
<td>Number of failures owing to internal errors</td>
</tr>
<tr>
<td>Failures due to other errors</td>
<td>Failures due to other errors</td>
</tr>
<tr>
<td>Packet(s) arrived late</td>
<td>Number of packets that arrived late</td>
</tr>
<tr>
<td>UDP-jitter results</td>
<td>UDP jitter test results, available only in UDP jitter tests.</td>
</tr>
<tr>
<td>Voice results</td>
<td>Voice test results, available only in voice tests.</td>
</tr>
<tr>
<td>RTT number</td>
<td>Number of response packets received</td>
</tr>
<tr>
<td>Min positive SD</td>
<td>Minimum positive jitter delay from source to destination</td>
</tr>
<tr>
<td>Min positive DS</td>
<td>Minimum positive jitter delay from destination to source</td>
</tr>
<tr>
<td>Max positive SD</td>
<td>Maximum positive jitter delay from source to destination</td>
</tr>
<tr>
<td>Max positive DS</td>
<td>Maximum positive jitter delay from destination to source</td>
</tr>
<tr>
<td>Positive SD number</td>
<td>Number of positive jitter delays from source to destination</td>
</tr>
<tr>
<td>Positive DS number</td>
<td>Number of positive jitter delays from destination to source</td>
</tr>
<tr>
<td>Positive SD sum</td>
<td>Sum of positive jitter delays from source to destination</td>
</tr>
<tr>
<td>Positive DS sum</td>
<td>Sum of positive jitter delays from destination to source</td>
</tr>
<tr>
<td>Positive SD average</td>
<td>Average of positive jitter delays from source to destination</td>
</tr>
<tr>
<td>Positive DS average</td>
<td>Average of positive jitter delays from destination to source</td>
</tr>
<tr>
<td>Positive SD square sum</td>
<td>Square sum of positive jitter delays from source to destination</td>
</tr>
<tr>
<td>Positive DS square sum</td>
<td>Square sum of positive jitter delays from destination to source</td>
</tr>
<tr>
<td>Min negative SD</td>
<td>Minimum absolute value among negative jitter delays from source to destination</td>
</tr>
<tr>
<td>Min negative DS</td>
<td>Minimum absolute value among negative jitter delays from destination to source</td>
</tr>
<tr>
<td>Max negative SD</td>
<td>Maximum absolute value among negative jitter delays from source to destination</td>
</tr>
<tr>
<td>Max negative DS</td>
<td>Maximum absolute value among negative jitter delays from destination to source</td>
</tr>
<tr>
<td>Negative SD number</td>
<td>Number of negative jitter delays from source to destination</td>
</tr>
<tr>
<td>Negative DS number</td>
<td>Number of negative jitter delays from destination to source</td>
</tr>
<tr>
<td>Negative SD sum</td>
<td>Sum of absolute values of negative jitter delays from source to destination</td>
</tr>
<tr>
<td>Negative DS sum</td>
<td>Sum of absolute values of negative jitter delays from destination to source</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Negative SD average</td>
<td>Average absolute value of negative jitter delays from source to destination</td>
</tr>
<tr>
<td>Negative DS average</td>
<td>Average absolute value of negative jitter delays from destination to source</td>
</tr>
<tr>
<td>Negative SD square sum</td>
<td>Square sum of negative jitter delays from source to destination</td>
</tr>
<tr>
<td>Negative DS square sum</td>
<td>Square sum of negative jitter delays from destination to source</td>
</tr>
<tr>
<td>One way results</td>
<td>Uni-direction delay test result, displayed in a UDP jitter or voice test</td>
</tr>
<tr>
<td>Max SD delay</td>
<td>Maximum delay from source to destination</td>
</tr>
<tr>
<td>Max DS delay</td>
<td>Maximum delay from destination to source</td>
</tr>
<tr>
<td>Min SD delay</td>
<td>Minimum delay from source to destination</td>
</tr>
<tr>
<td>Min DS delay</td>
<td>Minimum delay from destination to source</td>
</tr>
<tr>
<td>Number of SD delay</td>
<td>Number of delays from source to destination</td>
</tr>
<tr>
<td>Number of DS delay</td>
<td>Number of delays from destination to source</td>
</tr>
<tr>
<td>Sum of SD delay</td>
<td>Sum of delays from source to destination</td>
</tr>
<tr>
<td>Sum of DS delay</td>
<td>Sum of delays from destination to source</td>
</tr>
<tr>
<td>Square sum of SD delay</td>
<td>Square sum of delays from source to destination</td>
</tr>
<tr>
<td>Square sum of DS delay</td>
<td>Square sum of delays from destination to source</td>
</tr>
<tr>
<td>SD lost packet(s)</td>
<td>Number of lost packets from the source to the destination</td>
</tr>
<tr>
<td>DS lost packet(s)</td>
<td>Number of lost packets from the destination to the source</td>
</tr>
<tr>
<td>Lost packet(s) for unknown reason</td>
<td>Number of lost packets for unknown reasons</td>
</tr>
<tr>
<td>Voice scores</td>
<td>Voice parameters, displayed only in a voice test</td>
</tr>
<tr>
<td>MOS value</td>
<td>MOS value calculated for a voice test</td>
</tr>
<tr>
<td>ICPIF value</td>
<td>ICPIF value calculated for a voice test</td>
</tr>
</tbody>
</table>

**display nqa statistics**

**Syntax**

`display nqa statistics [ admin-name operation-tag ]`

**View**

Any view

**Default Level**

2: System level
Parameters

admin-name operation-tag: Displays statistics of the specified test group. If this argument is not specified, statistics of all test groups are displayed. admin-name represents the name of the administrator who creates the NQA operation. It is a string of 1 to 32 characters, case-insensitive. operation-tag represents the test operation tag. It is a string of 1 to 32 characters, case-insensitive.

Description

Use the display nqa statistics command to display statistics of NQA test or tests.

After the test operation begins, if not all the probes in the first test have been finished, statistics cannot be generated. In this case, if you display the statistics using this command, the statistics is displayed as all 0s.

Examples

# Display statistics of UDP jitter tests.

<sysname> display nqa statistics admin test
NQA entry(admin admin, tag test) test statistics:
  NO. : 1
  Destination IP address: 192.168.1.42
  Start time: 2008-05-29 11:33:29.9
  Life time: 8
  Send operation times: 70         Receive response times: 70
  Min/Max/Average round trip time: 1/63/19
  Square-Sum of round trip time: 36330
Extended results:
  Packet lost in test: 0%
  Failures due to timeout: 0
  Failures due to disconnect: 0
  Failures due to no connection: 0
  Failures due to sequence error: 0
  Failures due to internal error: 0
  Failures due to other errors: 0
  Packet(s) arrived late: 0
UDP-jitter results:
  RTT number: 70
  Min positive SD: 1     Min positive DS: 1
  Max positive SD: 24    Max positive DS: 22
  Positive SD number: 34 Positive DS number: 27
  Positive SD sum: 415   Positive DS sum: 362
  Positive SD average: 12 Positive DS average: 13
  Positive SD square sum: 6593 Positive DS square sum: 6450
  Min negative SD: 1     Min negative DS: 1
  Max negative SD: 40    Max negative DS: 64
  Negative SD number: 28 Negative DS number: 35
  Negative SD sum: 28    Negative DS sum: 35
  Negative SD average: 13 Negative DS average: 12
  Negative SD square sum: 7814 Negative DS square sum: 420
One way results:
Max SD delay: 31                      Max DS delay: 31
Min SD delay: 7                       Min DS delay: 7
Number of SD delay: 70                Number of DS delay: 70
Sum of SD delay: 628                  Sum of DS delay: 656
Square sum of SD delay: 8156          Square sum of DS delay: 8704
SD lost packet(s): 0                  DS lost packet(s): 0
Lost packet(s) for unknown reason: 0

# Display statistics of voice tests.
<Sysname> display nqa statistics admin test
NQA entry(admin admin, tag test) test statistics:
NO. : 1
Destination IP address: 192.168.1.42
Start time: 2008-05-29 11:00:03.6
Life time: 638
Send operation times: 10000          Receive response times: 0
Min/Max/Average round trip time: 0/0/0
Square-Sum of round trip time: 0
Extended results:
Packet lost in test: 100%
Failures due to timeout: 10000
Failures due to disconnect: 0
Failures due to no connection: 0
Failures due to sequence error: 0
Failures due to internal error: 0
Failures due to other errors: 0
Packet(s) arrived late: 0
Voice results:
RTT number: 0
Min positive SD: 0                     Min positive DS: 0
Max positive SD: 0                      Max positive DS: 0
Positive SD number: 0                   Positive DS number: 0
Positive SD sum: 0                      Positive DS sum: 0
Positive SD average: 0                  Positive DS average: 0
Positive SD square sum: 0               Positive DS square sum: 0
Min negative SD: 0                      Min negative DS: 0
Max negative SD: 0                      Max negative DS: 0
Negative SD number: 0                   Negative DS number: 0
Negative SD sum: 0                      Negative DS sum: 0
Negative SD average: 0                  Negative DS average: 0
Negative SD square sum: 0               Negative DS square sum: 0
One way results:
Max SD delay: 0                         Max DS delay: 0
Min SD delay: 0                         Min DS delay: 0
Number of SD delay: 0                   Number of DS delay: 0
Sum of SD delay: 0                      Sum of DS delay: 0
Square sum of SD delay: 0               Square sum of DSdelay: 0
SD lost packet(s): 0                    DS lost packet(s): 0
Lost packet(s) for unknown reason: 10000

Voice scores:
Max MOS value: 0.99      Min MOS value: 0.99
Max ICPIF value: 87      Min ICPIF value: 87

Table 18-4 display nqa statistics command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Statistics group number</td>
</tr>
<tr>
<td>Destination IP address</td>
<td>IP address of the destination</td>
</tr>
<tr>
<td>Start time</td>
<td>Test start time</td>
</tr>
<tr>
<td>Life time</td>
<td>Duration of the test, in seconds</td>
</tr>
<tr>
<td>Send operation times</td>
<td>Number of probe packets sent</td>
</tr>
<tr>
<td>Receive response times</td>
<td>Number of response packets received</td>
</tr>
<tr>
<td>Min/Max/Average round trip time</td>
<td>Minimum/maximum/average roundtrip time, in milliseconds</td>
</tr>
<tr>
<td>Square-Sum of round trip time</td>
<td>Square sum of roundtrip time</td>
</tr>
<tr>
<td>Packet lost in test</td>
<td>Average packet loss ratio</td>
</tr>
<tr>
<td>Failures due to timeout</td>
<td>Number of timeout occurrences in a test</td>
</tr>
<tr>
<td>Failures due to disconnect</td>
<td>Number of disconnections by the peer</td>
</tr>
<tr>
<td>Failures due to no connection</td>
<td>Number of failures to connect with the peer</td>
</tr>
<tr>
<td>Failures due to sequence error</td>
<td>Number of failures owing to out-of-sequence packets</td>
</tr>
<tr>
<td>Failures due to internal error</td>
<td>Number of failures owing to internal errors</td>
</tr>
<tr>
<td>Failures due to other errors</td>
<td>Failures due to other errors</td>
</tr>
<tr>
<td>Packet(s) arrived late</td>
<td>Number of response packets received after a probe times out</td>
</tr>
<tr>
<td>UDP-jitter results</td>
<td>UDP jitter test results, available only in UDP jitter tests.</td>
</tr>
<tr>
<td>Voice results</td>
<td>Voice test results, available only in voice tests.</td>
</tr>
<tr>
<td>RTT number</td>
<td>Number of response packets received</td>
</tr>
<tr>
<td>Min positive SD</td>
<td>Minimum positive jitter delay from source to destination</td>
</tr>
<tr>
<td>Min positive DS</td>
<td>Minimum positive jitter delay from destination to source</td>
</tr>
<tr>
<td>Max positive SD</td>
<td>Maximum positive jitter delay from source to destination</td>
</tr>
<tr>
<td>Max positive DS</td>
<td>Maximum positive jitter delay from destination to source</td>
</tr>
<tr>
<td>Positive SD number</td>
<td>Number of positive jitter delays from source to destination</td>
</tr>
<tr>
<td>Positive DS number</td>
<td>Number of positive jitter delays from destination to source</td>
</tr>
<tr>
<td>Positive SD sum</td>
<td>Sum of positive jitter delays from source to destination</td>
</tr>
<tr>
<td>Positive DS sum</td>
<td>Sum of positive jitter delays from destination to source</td>
</tr>
<tr>
<td>Positive SD average</td>
<td>Average of positive jitter delays from source to destination</td>
</tr>
<tr>
<td>Positive DS average</td>
<td>Average of positive jitter delays from destination to source</td>
</tr>
<tr>
<td>Positive SD square sum</td>
<td>Square sum of positive jitter delays from source to destination</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Positive DS square sum</td>
<td>Square sum of positive jitter delays from destination to source</td>
</tr>
<tr>
<td>Min negative SD</td>
<td>Minimum absolute value among negative jitter delays from source to destination</td>
</tr>
<tr>
<td>Min negative DS</td>
<td>Minimum absolute value among negative jitter delays from destination to source</td>
</tr>
<tr>
<td>Max negative SD</td>
<td>Maximum absolute value among negative jitter delays from source to destination</td>
</tr>
<tr>
<td>Max negative DS</td>
<td>Maximum absolute value among negative jitter delays from destination to source</td>
</tr>
<tr>
<td>Negative SD number</td>
<td>Number of negative jitter delays from source to destination</td>
</tr>
<tr>
<td>Negative DS number</td>
<td>Number of negative jitter delays from destination to source</td>
</tr>
<tr>
<td>Negative SD sum</td>
<td>Sum of absolute values of negative jitter delays from source to destination</td>
</tr>
<tr>
<td>Negative DS sum</td>
<td>Sum of absolute values of negative jitter delays from destination to source</td>
</tr>
<tr>
<td>Negative SD average</td>
<td>Average absolute value of negative jitter delays from source to destination</td>
</tr>
<tr>
<td>Negative DS average</td>
<td>Average absolute value of negative jitter delays from destination to source</td>
</tr>
<tr>
<td>Negative SD square sum</td>
<td>Square sum of negative jitter delays from source to destination</td>
</tr>
<tr>
<td>Negative DS square sum</td>
<td>Square sum of negative jitter delays from destination to source</td>
</tr>
<tr>
<td>One way results</td>
<td>Uni-direction delay test result, displayed on in a UDP-Jitter or voice test</td>
</tr>
<tr>
<td>Max SD delay</td>
<td>Maximum delay from source to destination</td>
</tr>
<tr>
<td>Max DS delay</td>
<td>Maximum delay from destination to source</td>
</tr>
<tr>
<td>Min SD delay</td>
<td>Minimum delay from source to destination</td>
</tr>
<tr>
<td>Min DS delay</td>
<td>Minimum delay from destination to source</td>
</tr>
<tr>
<td>Number of SD delay</td>
<td>Number of delays from source to destination</td>
</tr>
<tr>
<td>Number of DS delay</td>
<td>Number of delays from destination to source</td>
</tr>
<tr>
<td>Sum of SD delay</td>
<td>Sum of delays from source to destination</td>
</tr>
<tr>
<td>Sum of DS delay</td>
<td>Sum of delays from destination to source</td>
</tr>
<tr>
<td>Square sum of SD delay</td>
<td>Square sum of delays from source to destination</td>
</tr>
<tr>
<td>Square sum of DS delay</td>
<td>Square sum of delays from destination to source</td>
</tr>
<tr>
<td>SD lost packet(s)</td>
<td>Number of lost packets from the source to the destination</td>
</tr>
<tr>
<td>DS lost packet(s)</td>
<td>Number of lost packets from the destination to the source</td>
</tr>
<tr>
<td>Lost packet(s) for unknown reason</td>
<td>Number of lost packets for unknown reasons</td>
</tr>
<tr>
<td>Voice scores</td>
<td>Voice parameters, displayed only in a voice test</td>
</tr>
</tbody>
</table>
filename

Syntax

filename filename
undo filename

View

FTP test type view

Default Level

2: System level

Parameters

filename: Name of the file transferred between the FTP server and the FTP client, a string of 1 to 200 characters. It is case sensitive.

Description

Use the filename command to specify a file to be transferred between the FTP server and the FTP client.

Use the undo filename command to restore the default.

By default, no file is specified.

Examples

# Specify the file to be transferred between the FTP server and the FTP client as config.txt.

<Sysname> system-view
[Sysname] nqa entry admin test
[Sysname-nqa-admin-test] type ftp
[Sysname-nqa-admin-test-ftp] filename config.txt

frequency

Syntax

frequency interval
undo frequency

View

Any NQA test type view

Default Level

2: System level

Parameters

interval: Interval between two consecutive tests, in milliseconds, in the range 0 to 604800000. If the interval is 0, it indicates that only one test is performed, and no statistics are generated.
**Description**

Use the `frequency` command to configure the interval between two consecutive tests for a test group.

Use the `undo frequency` command to restore the default.

By default, the interval between two consecutive voice tests is 60000 milliseconds, and the interval between two consecutive tests of other types is 0 milliseconds, that is, only one test is performed.

After you use the `nqa schedule` command to start an NQA test, one test is started at `interval`.

If the last test is not completed when the interval specified by the `frequency` command is reached, a new test is not started.

**Examples**

```
Configure the interval between two consecutive tests as 1000 milliseconds.

<Sysname> system-view
[Sysname] nqa entry admin test
[Sysname-nqa-admin-test] type icmp-echo
[Sysname-nqa-admin-test-icmp-echo] frequency 1000
```

**history-records**

**Syntax**

```
history-records number
undo history-records
```

**View**

Any NQA test type view

**Default Level**

2: System level

**Parameters**

`number`: Maximum number of history records that can be saved in a test group, in the range 0 to 50.

**Description**

Use the `history-records` command to configure the maximum number of history records that can be saved in a test group.

Use the `undo history-records` command to restore the default.

By default, the maximum number of records that can be saved in a test group is 50.

If the number of history records exceeds the maximum number, the earliest history record for a probe will be discarded.

**Examples**

```
Configure the maximum number of history records that can be saved in a test group as 10.

<Sysname> system-view
[Sysname] nqa entry admin test
[Sysname-nqa-admin-test] type icmp-echo
[Sysname-nqa-admin-test-icmp-echo] history-records 10
```
http-version

Syntax

http-version v1.0
undo http-version

View

HTTP test type view

Default Level

2: System level

Parameters

v1.0: The HTTP version is 1.0 in an HTTP test.

Description

Use the http-version command to configure the HTTP version used in an HTTP test.
Use the undo http-version command to restore the default.
By default, HTTP 1.0 is used in an HTTP test.

Examples

# Configure the HTTP version as 1.0 in an HTTP test.
<Sysname> system-view
<Sysname> nqa entry admin test
<Sysname-nqa-admin-test> type http
<Sysname-nqa-admin-test-http> http-version v1.0

next-hop

Syntax

next-hop ip-address
undo next-hop

View

ICMP echo test type view

Default Level

2: System level

Parameters

ip-address: IP address of the next hop.

Description

Use the next-hop command to configure the next hop IP address for an IP packet.
Use the undo next-hop command to remove the configured next hop IP address.
By default, no next hop IP address is configured.
Examples

# Configure the next hop IP address as 10.1.1.1.
<Sysname> system-view
[Sysname] nqa entry admin test
[Sysname-nqa-admin-test] type icmp-echo
[Sysname-nqa-admin-test-icmp-echo] next-hop 10.1.1.1

nqa

Syntax

nqa entry admin-name operation-tag
undo nqa { all | entry admin-name operation-tag }

View

System view

Default Level

2: System level

Parameters

admin-name: Specifies the name of the administrator who creates the NQA test operation, a string of 1 to 32 characters, with “-” excluded. It is case-insensitive.
operation-tag: Specifies the tag of a test operation, a string of 1 to 32 characters, with “-” excluded. It is case-insensitive.
all: All NQA test groups.

Description

Use the nqa command to create an NQA test group and enter NQA test group view.
Use the undo nqa command to remove the test group.
Note that if the test type has been configured for the test group, you will directly enter NQA test type view when you execute the nqa command.

Examples

# Create an NQA test group whose administrator name is admin and whose operation tag is test and enter NQA test group view.
<Sysname> system-view
[Sysname] nqa entry admin test
[Sysname-nqa-admin-test]

nqa agent enable

Syntax

nqa agent enable
undo nqa agent enable
View
System view

Default Level
2: System level

Parameters
None

Description
Use the **nqa agent enable** command to enable the NQA client.
Use the **undo nqa agent enable** command to disable the NQA client and stop all the tests being performed.
By default, the NQA client is enabled.
Related commands: **nqa server enable**.

Examples
# Enable the NQA client.
<Sysname> system-view
[Sysname] nqa agent enable

**nqa agent max-concurrent**

Syntax

```
nqa agent max-concurrent number
undo nqa agent max-concurrent
```

View
System view

Default Level
2: System level

Parameters

*number*: Maximum number of the tests that the NQA client can simultaneously perform, in the range 1 to 5. The default value is 2.

Description
Use the **nqa agent max-concurrent** command to configure the maximum number of tests that the NQA client can simultaneously perform.
Use the **undo nqa agent max-concurrent** command to restore the default.
From the beginning to the end of a test, the NQA test is in the test status; from the end of a test to the beginning of the next test, the NQA test is in the waiting status.
Examples

# Configure the maximum number of the tests that the NQA client can simultaneously perform as 3.

<Sysname> system-view
[Sysname] nqa agent max-concurrent 3

nqa schedule

Syntax

nqa schedule admin-name operation-tag start-time { hh:mm:ss [ yyyy/mm/dd ] | now } lifetime
{ lifetime | forever }
undo nqa schedule admin-name operation-tag

View

System view

Default Level

2: System level

Parameters

admin-name: Specifies the name of the administrator who creates the NQA test operation, a string of 1 to 32 characters. It is case-insensitive.

operation-tag: Specifies the test operation tag, a string of 1 to 32 characters. It is case-insensitive.

start-time: Specifies the start time and date of a test.

hh:mm:ss: Start time of a test.

yyyy/mm/dd: Start date of a test. The default value is the current system time, and yyyy ranges from 2000 to 2035.

now: Starts the tests for a test group immediately.

lifetime: Specifies the duration of the test operation.

lifetime: Duration of the test operation in seconds, in the range 1 to 2147483647.

forever: Specifies that the tests are performed for a test group forever.

Description

Use the nqa schedule command to configure the test start time and test duration for a test group.

Use the undo nqa schedule command to stop the test for the test group.

Note that:

- It is not allowed to enter test group view or test type view after a test group is scheduled.
- A test group performs a test when the system time is between the start time and the end time (the start time plus test duration). If the system time is behind the start time when you execute the nqa schedule command, a test is started when the system time reaches the start time; if the system time is between the start time and the end time, a test is started at once; if the system time is ahead of the end time, no test is started. You can use the display clock command to view the current system time.

For the related configurations, refer to the display clock command in Basic System Configuration Commands in the System Volume.
Examples

# Start the tests for the test group with the administrator name admin and operation tag test. The start time and duration of the tests are 08:08:08 2008/08/08 and 1000 seconds respectively.

<Sysname> system-view
[Sysname] nqa schedule admin test start-time 08:08:08 2008/08/08 lifetime 1000

operation (FTP test type view)

Syntax

operation { get | put }
undo operation

View

FTP test type view

Default Level

2: System level

Parameters

get: Obtains a file from the FTP server.
put: Transfers a file to the FTP server.

Description

Use the operation command to configure the FTP operation type.
Use the undo operation command to restore the default.
By default, the FTP operation type is get.

Examples

# Configure the FTP operation type as put.

<Sysname> system-view
[Sysname] nqa entry admin test
[Sysname-nqa-admin-test] type ftp
[Sysname-nqa-admin-test-ftp] operation put

operation (HTTP test type view)

Syntax

operation { get | post }
undo operation

View

HTTP test type view

Default Level

2: System level
Parameters

**get**: Obtains data from the HTTP server.

**post**: Transfers data to the HTTP server.

Description

Use the **operation** command to configure the HTTP operation type.

Use the **undo operation** command to restore the default.

By default, the HTTP operation type is **get**.

Examples

```bash
Configure the HTTP operation type as **post**.
<Sysname> system-view
[Sysname] nqa entry admin test
[Sysname-nqa-admin-test] type http
[Sysname-nqa-admin-test-http] operation post
```

### operation interface

**Syntax**

```bash
operation interface interface-type interface-number
undo operation interface
```

**View**

DHCP test type view

**Default Level**

2: System level

**Parameters**

`interface-type interface-number`: Type and number of the interface that is performing a DHCP test.

**Description**

Use the **operation interface** command to specify the interface to perform a DHCP test.

Use the **undo operation interface** command to restore the default.

By default, no interface is specified to perform a DHCP test.

Note that the specified interface must be up; otherwise, the test will fail.

**Examples**

```bash
Specify the interface to perform a DHCP test as VLAN-interface 2.
<Sysname> system-view
[Sysname] nqa entry admin test
[Sysname-nqa-admin-test] type dhcp
[Sysname-nqa-admin-test-dhcp] operation interface vlan-interface 2
```
password (FTP test type view)

Syntax

password password
undo password

View

FTP test type view

Default Level

2: System level

Parameters

password: Password used to log onto the FTP server, a string of 1 to 32 characters. It is case sensitive.

Description

Use the password command to configure a password used to log onto the FTP server.
Use the undo password command to remove the configured password.
By default, no password is configured for logging onto the FTP server.
Related commands: username, operation.

Examples

# Configure the password used for logging onto the FTP server as ftpuser.
<Sysname> system-view
[Sysname] nqa entry admin test
[Sysname-nqa-admin-test] type ftp
[Sysname-nqa-admin-test-ftp] password ftpuser

probe count

Syntax

probe count times
undo probe count

View

DHCP, DLSw, FTP, HTTP, ICMP echo, SNMP, TCP, UDP echo, UDP jitter test type view

Default Level

2: System level

Parameters

times: Number of probes in an NQA test, in the range 1 to 15.

Description

Use the probe count command to configure the number of probes in an NQA test.
Use the `undo probe count` command to restore the default.

By default, one probe is performed in an NQA test.

- For a TCP or DLSw test, one probe means one connection;
- For a UDP jitter test or a voice test, the number of packets sent in one probe depends on the `probe packet-number` command;
- For an FTP, HTTP or DHCP test, one probe means to carry out a corresponding function;
- For an ICMP echo or UDP echo test, one packet is sent in one probe;
- For an SNMP test, three packets are sent in a probe.

If the number of probes in a test is greater than 1, the system performs a second probe after it performs the first probe and receives a response packet. If the system does not receive a response packet, it waits for the test timer to expire before performing a second probe. The process is repeated until the specified probes are completed.

Note that this command is not supported in a voice test. Only one probe can be made in a voice test.

**Examples**

```
Configure the number of probes in an ICMP echo test as 10.
<Sysname> system-view
<Sysname> nqa entry admin-test
<Sysname-nqa-admin-test> type icmp-echo
<Sysname-nqa-admin-test-icmp-echo> probe count 10
```

**probe packet-interval**

**Syntax**

```
probe packet-interval packet-interval
undo probe packet-interval
```

**View**

UDP jitter, voice test type view

**Default Level**

2: System level

**Parameters**

`packet-interval`: Interval for packets sent in a probe in a test, in milliseconds, in the range 10 to 60000.

**Description**

Use the `probe packet-interval` command to configure the interval for sending packets in a probe in a test.

Use the `undo probe-interval` command to restore the default.

By default, the interval is 20 milliseconds.

**Examples**

```
Configure the interval for sending packets in a probe in a UDP jitter test as 100 milliseconds.
<Sysname> system-view
```
probe packet-number

Syntax

probe packet-number packet-number
undo probe packet-number

View

UDP jitter, voice test type view

Default Level

2: System level

Parameters

packet-number: Number of packets sent in a UDP jitter probe or a voice probe. For a UDP jitter test, it is in the range 10 to 1000; for a voice test, it is in the range 10 to 60000.

Description

Use the probe packet-number command to configure the number of packets sent in a UDP jitter probe or a voice probe.

Use the undo probe packet-number command to restore the default.

By default, the number of packets sent in a probe is 10 in a UDP jitter test and 1000 in a voice test.

Examples

# Configure the number of packets sent in a UDP jitter probe as 100.
<Sysname> system-view
<Sysname> nqa entry admin test
<Sysname-nqa-admin-test] type udp-jitter
<Sysname-nqa-admin-test-udp-jitter] probe packet-number 100

probe packet-timeout

Syntax

probe packet-timeout packet-timeout
undo probe packet-timeout

View

UDP jitter, voice test type view

Default Level

2: System level
Parameters

packet-timeout: Timeout time for waiting for responses in a UDP jitter or voice test, in the range 10 to 3600000 milliseconds.

Description

Use the probe packet-timeout command to configure the timeout time for waiting for responses in a UDP jitter or voice test.

Use the undo probe packet-timeout command to restore the default.

By default, the timeout time in a UDP jitter and a voice test is 3000 and 5000 milliseconds respectively.

Examples

# Configure the timeout time for waiting for responses in a UDP jitter test as 100 milliseconds.
<Sysname> system-view
[Sysname] nqa entry admin test
[Sysname-nqa-admin-test] type udp-jitter
[Sysname-nqa-admin-test-udp-jitter] probe packet-timeout 100

probe timeout

Syntax

probe timeout timeout
undo probe timeout

View

DHCP, DLSw, FTP, HTTP, ICMP echo, SNMP, TCP, UDP echo test type view

Default Level

2: System level

Parameters

timeout: Timeout time in a probe except UDP jitter probe, in milliseconds. For an FTP or HTTP probe, the value range is 10 to 86400000; for a DHCP, DLSw, ICMP echo, SNMP, TCP or UDP echo probe, the value range is 10 to 3600000.

Description

Use the probe timeout command to configure the timeout time in a probe.

Use the undo probe timeout command to restore the default.

By default, the timeout time is 3000 milliseconds.

After an NQA probe begins, if the NQA probe is not finished within the time specified in the probe timeout command, then the probe times out.

Examples

# Configure the timeout time in a DHCP probe as 10000 milliseconds.
<Sysname> system-view
[Sysname] nqa entry admin test
**reaction**

**Syntax**

```
reaction item-num checked-element probe-fail threshold-type consecutive occurrences
[action-type { none | trigger-only }]
```

`undo reaction item-num`

**View**

DHCP, DLSw, FTP, HTTP, ICMP echo, SNMP, TCP, UDP echo test type view

**Default Level**

2: System level

**Parameters**

- `item-num`: Number of the reaction entry, in the range 1 to 10.
- `checked-element`: Type of the monitored element in collaboration. At present, the type of the monitored element can be probe failure only.
- `probe-fail`: The type of the monitored element is probe failure.
- `threshold-type consecutive`: Threshold type is consecutive probe failures.
- `occurrences`: Number of consecutive probe failures, in the range 1 to 16.
- `action-type`: Triggered action type, defaulting to `none`.
  - `none`: No actions.
  - `trigger-only`: Triggers collaboration between other modules only.

**Description**

Use the `reaction` command to establish a collaboration entry to monitor the probe results of the current test group. If the number of consecutive probe failures reaches the threshold, collaboration with other modules is triggered.

Use the `undo reaction` command to remove the collaboration entry.

By default, no collaboration entries are configured.

Note that:

- You cannot modify the content of a collaboration object using the `reaction` command after the collaboration object is created.
- The collaboration function is not supported in a UDP jitter or voice test.

**Related commands:** `track` in the *Track Commands* in the *High Availability Volume*.

**Examples**

```
Create collaboration object 1. If the number of consecutive probe failures reaches 3, collaboration with other modules is triggered.
<Sysname> system-view
[Sysname] nqa entry admin test
```
reaction trap

Syntax

```
reaction trap { probe-failure consecutive-probe-failures | test-complete | test-failure cumulate-probe-failures }
undo reaction trap { probe-failure | test-complete | test-failure }
```

View

Any NQA test type view

Default Level

2: System level

Parameters

- **probe-failure consecutive-probe-failures**: Specifies to send a trap indicating a probe failure to the network management server after consecutive probe failures in an NQA test. **consecutive-probe-failures** is the number of consecutive probe failures in a test, in the range 1 to 15.
- **test-complete**: Specifies to send a trap to indicate that the test is completed.
- **test-failure cumulate-probe-failures**: Specifies to send a trap indicating a probe failure to the network management server if the total number of probe failures in an NQA test is larger than or equal to **cumulate-probe-failures**. For one test, the trap is sent only when the test is completed. **cumulate-probe-failures** is the total number of consecutive probe failures in a test, in the range 1 to 15.

Description

Use the **reaction trap** command to configure to send traps to network management server under specified conditions.

Use the **undo reaction trap** command to restore the default.

By default, no traps are sent to the network management server.

Note that only the **reaction trap test-complete** command is supported in a voice test, namely, in a voice test, traps are sent to the NMS only if the test succeeds.

Examples

```
Configure to send a trap indicating a probe failure after five consecutive probe failures in an ICMP echo test.
<Sysname> system-view
<Sysname> nqa entry admin test
<Sysname-nqa-admin-test] type icmp-echo
<Sysname-nqa-admin-test-icmp-echo] reaction trap probe-failure 5
```
route-option bypass-route

Syntax

    route-option bypass-route
    undo route-option bypass-route

View

    DLSw, FTP, HTTP, ICMP echo, SNMP, TCP, UDP echo, UDP jitter, voice test type view

Default Level

    2: System level

Parameters

    None

Description

Use the `route-option bypass-route` command to enable the routing table bypass function to test the direct connectivity to the direct destination.

Use the `undo route-option bypass-route` command to disable the routing table bypass function.

By default, the routing table bypass function is disabled.

Note that after this function is enabled, the routing table is not searched, and the packet is directly sent to the destination in a directly connected network.

Examples

    # Enable the routing table bypass function.
    <Sysname> system-view
    [Sysname] nqa entry admin test
    [Sysname-nqa-admin-test] type icmp-echo
    [Sysname-nqa-admin-test-icmp-echo] route-option bypass-route

source interface

Syntax

    source interface interface-type interface-number
    undo source interface

View

    ICMP echo test type view

Default Level

    2: System level

Parameters

    `interface-type interface-number`: Interface type and the interface number of the source interface of a probe packet.
Description

Use the **source interface** command to specify the IP address of an interface as the source IP address of ICMP echo probe requests.

Use the **undo source interface** command to remove the IP address of an interface as the source IP address of ICMP echo probe requests.

By default, no interface address is specified as the source IP address of ICMP test request packets.

Note that:

- If you use the **source ip** command to configure the source IP address of ICMP probe requests, the **source interface** command is invalid.
- The interface specified by the **source interface** command must be up; otherwise, the probe fails.

Related commands: **source ip**.

Examples

```
Specify the IP address of interface VLAN-interface 2 as the source IP address of ICMP echo probe requests.
<Sysname> system-view
[Sysname] nqa entry admin test
[Sysname-nqa-admin-test] type icmp-echo
[Sysname-nqa-admin-test-icmp-echo] source interface vlan-interface 2
```

**source ip**

Syntax

```
source ip ip-address
undo source ip
```

View

DLSw, FTP, HTTP, ICMP echo, SNMP, TCP, UDP echo, UDP jitter, voice test type view

Default Level

2: System level

Parameters

- **ip-address**: Source IP address of a test operation.

Description

Use the **source ip** command to configure the source IP address of ICMP probe requests in a test operation.

Use the **undo source ip** command to remove the configured source address. That is, the IP address of the interface sending a probe request serves as the source IP address of the probe request.

By default, no source IP address is specified.

Note that:

- For an ICMP echo test, if no source IP address is specified, but the source interface is specified, the IP address of the source interface is taken as the source IP address of ICMP probe requests.
• The source IP address specified by the **source ip** command must be the IP address of an interface on the device, and the interface must be up; otherwise, the test fails.

Related commands: **source interface**.

**Examples**

```shell
Configure the source IP address of an ICMP echo probe request as 10.1.1.1.
<Sysname> system-view
 [Sysname] nqa entry admin test
 [Sysname-nqa-admin-test] type icmp-echo
 [Sysname-nqa-admin-test-icmp-echo] source ip 10.1.1.1
```

**source port**

**Syntax**

```
source port port-number
undo source port
```

**View**

SNMP, UDP echo, UDP jitter, voice test type view

**Default Level**

2: System level

**Parameters**

`port-number`: Source port number for a test operation, in the range 1 to 50000.

**Description**

Use the **source port** command to configure the source port of ICMP probe requests in a test operation.

Use the **undo source port** command to remove the configured port number.

By default, no source port number is specified.

**Examples**

```shell
Configure the source port number of a probe request as 8000.
<Sysname> system-view
 [Sysname] nqa entry admin test
 [Sysname-nqa-admin-test] type udp-echo
 [Sysname-nqa-admin-test-udp-echo] source port 8000
```

**statistics hold-time**

**Syntax**

```
statistics hold-time hold-time
undo statistics hold-time
```
View

DLSw, FTP, HTTP, ICMP echo, SNMP, TCP, UDP echo, UDP jitter, voice test type view

Default Levels

2: System level

Parameters

hold-time: Hold time of a statistics group in minutes, in the range 1 to 1440.

Description

Use the statistics hold-time command to configure the hold time of a statistics group.

Use the undo statistics hold-time command to restore the default.

By default, the hold time of a statistics group is 120 minutes.

A statistics group has the aging mechanism. A statistics group will be deleted after it is kept for a period of time so that information of a new statistics group will be recorded.

Note that this command is supported on all types of tests except DHCP tests.

Examples

# Configure the hold time of a statistics group as 3 minutes.

```
<Sysname> system-view
[Sysname] nqa entry admin test
[Sysname-nqa-admin-test] type icmp-echo
[Sysname-nqa-admin-test-icmp-echo] statistics hold-time 3
```

statistics max-group

Syntax

```
statistics max-group number
undo statistics max-group
```

View

DLSw, FTP, HTTP, ICMP echo, SNMP, TCP, UDP echo, UDP jitter, voice test type view

Default Levels

2: System level

Parameters

number: Maximum number of statistics groups that can be kept, in the range 0 to 100.

Description

Use the statistics max-group command to configure the maximum number of statistics groups that can be kept.

Use the undo statistics max-group command to restore the default.

By default, the maximum number of statistics groups that can be kept is 2.
When the number of statistics groups kept reaches the upper limit, if a new statistics group is generated, the statistics group that is kept the longest is deleted.

Note that:

- This command is supported in all tests except DHCP tests.
- The value of 0 indicates that no statistics are collected.

Examples

# Configure the maximum number of statistics groups that can be kept as 5.

```plaintext
<Sysname> system-view
[Sysname] nqa entry admin test
[Sysname-nqa-admin-test] type icmp-echo
[Sysname-nqa-admin-test-icmp-echo] statistics max-group 5
```

**statistics interval**

**Syntax**

```
statistics interval interval
undo statistics interval
```

**View**

DLSw, FTP, HTTP, ICMP echo, SNMP, TCP, UDP echo, UDP jitter, voice test type view

**Default Levels**

2: System level

**Parameters**

`interval`: Interval for collecting statistics of the test results in minutes, in the range 1 to 35791394.

**Description**

Use the `statistics interval` command to configure the interval for collecting statistics of the test results.

Use the `undo statistics interval` command to restore the default.

By default, the interval is 60 minutes.

NQA puts the NQA tests completed in a certain interval into one group, and calculates the statistics of the test results of the group. These statistics form a statistics group. You can use the `display nqa statistics` command to display information of the statistics group.

Note that this command is supported on all types of tests except DHCP tests.

**Examples**

# Configure the interval for collecting statistics of the test results as 2 minutes.

```plaintext
<Sysname> system-view
[Sysname] nqa entry admin test
[Sysname-nqa-admin-test] type icmp-echo
[Sysname-nqa-admin-test-icmp-echo] statistics interval 2
```
tos

Syntax

tos value
undo tos

View

DLSw, FTP, HTTP, ICMP echo, SNMP, TCP, UDP echo, UDP jitter, voice test type view

Default Level

2: System level

Parameters

value: Value of the ToS field in the IP header in an NQA probe packet, in the range 0 to 255.

Description

Use the tos command to configure the value of the ToS field in the IP header in an NQA probe packet.
Use the undo tos command to restore the default.
By default, the ToS field in the IP header of an NQA probe packet is 0.

Examples

# Configure the ToS field in a IP packet header in an NQA probe packet as 1.
<Sysname> system-view
[Sysname] nqa entry admin test
[Sysname-nqa-admin-test] type icmp-echo
[Sysname-nqa-admin-test-icmp-echo] tos 1

ttl

Syntax

 ttl value
undo ttl

View

DLSw, FTP, HTTP, ICMP echo, SNMP, TCP, UDP echo, UDP jitter, voice test type view

Default Level

2: System level

Parameters

value: Maximum number of hops a probe packet traverses in the network, in the range 1 to 255.

Description

Use the ttl command to configure the maximum number of hops a probe packet traverses in the network.
Use the undo ttl command to restore the default.
By default, the maximum number of hops that a probe packet can traverse in a network is 20. Note that after you configure the route-option bypass-route command, the maximum number of hops a probe packet traverses in the network is 1, and the ttl command does not take effect.

**Examples**

```
Configure the maximum number of hops that a probe request can traverse in a network as 16.
<Sysname> system-view
[Sysname] nqa entry admin test
[Sysname-nqa-admin-test] type icmp-echo
[Sysname-nqa-admin-test-icmp-echo] ttl 16
```

**type**

**Syntax**

```
type { dhcp | dlsw | ftp | http | icmp-echo | snmp | tcp | udp-echo | udp-jitter | voice }
```

**View**

- NQA test group view

**Default Level**

- 2: System level

**Parameters**

- **dhcp**: DHCP test.
- **dlsw**: DLSw test.
- **ftp**: FTP test.
- **http**: HTTP test.
- **icmp-echo**: ICMP echo test.
- **snmp**: SNMP test.
- **tcp**: TCP test.
- **udp-echo**: UDP echo test.
- **udp-jitter**: UDP jitter test.
- **voice**: Voice test.

**Description**

Use the `type` command to configure the test type of the current test group and enter test type view. By default, no test type is configured.

**Examples**

```
Configure the test type of a test group as FTP and enter test type view.
<Sysname> system-view
[Sysname] nqa entry admin test
[Sysname-nqa-admin-test] type ftp
[Sysname-nqa-admin-test-ftp]
```
url

Syntax

url url
undo url

View

HTTP test type view

Default Level

2: System level

Parameters

url: Website that an HTTP test visits, a string of 1 to 185 characters. It is case sensitive.

Description

Use the url command to configure the website an HTTP test visits.
Use the undo url command to remove the configured website an HTTP test visits.
Note that the character string of the configured URL cannot contain spaces.

Examples

# Configure the website that an HTTP test visits as /index.htm.
<Sysname> system-view
<Sysname> nqa entry admin test
<Sysname-nqa-admin-test] type http
<Sysname-nqa-admin-test-http] url /index.htm

username (FTP test type view)

Syntax

username username
undo username

View

FTP test type view

Default Level

2: System level

Parameters

username: Username used to log onto the FTP server, a string of 1 to 32 characters. It is case sensitive.

Description

Use the username command to configure a username used to log onto the FTP server.
Use the undo username command to remove the configured username.
By default, no username is configured for logging onto the FTP server.

Related commands: `password`, `operation`.

**Examples**

# Configure the login username as **administrator**.

```
<Sysname> system-view
[Sysname] nqa entry admin test
[Sysname-nqa-admin-test] type ftp
[Sysname-nqa-admin-test-ftp] username administrator
```

**vpn-instance (ICMP echo test type view)**

**Syntax**

```
vpn-instance instance
undo vpn-instance
```

**View**

ICMP echo test type view

**Default Level**

2: System level

**Parameters**

`instance`: VPN instance name, a string of 1 to 31 characters. It is case sensitive.

**Description**

Use the `vpn-instance` command to specify a VPN instance.

Use the `undo vpn-instance` command to restore the default.

By default, no VPN instance is specified.

After you specify a VPN instance, NQA will test the connectivity of the specified VPN tunnel.

**Examples**

# Specify the VPN instance **vpn1**.

```
<Sysname> system-view
[Sysname] nqa entry admin test
[Sysname-nqa-admin-test] type icmp-echo
[Sysname-nqa-admin-test-icmp-echo] vpn-instance vpn1
```

**NQA Server Configuration Commands**

---

**Note**

You only need to configure the NQA server for UDP jitter, TCP, UDP echo and voice tests.
display nqa server status

Syntax

display nqa server status

View

Any view

Default Level

2: System level

Parameters

None

Description

Use the `display nqa server status` command to display NQA server status.

Examples

```bash
Display NQA server status.
<Sysname> display nqa server status
nqa server is: enabled
tcp-connect:
 IP Address Port Status
2.2.2.2 2000 active
udp-echo:
 IP Address Port Status
3.3.3.3 3000 inactive
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tcp-connect</td>
<td>NQA server status in the NQA TCP test</td>
</tr>
<tr>
<td>udp-echo</td>
<td>NQA server status in the NQA UDP test</td>
</tr>
<tr>
<td>IP Address</td>
<td>IP address specified for the TCP/UDP listening service on the NQA server</td>
</tr>
<tr>
<td>Port</td>
<td>Port number of the TCP/UDP listening service on the NQA server</td>
</tr>
<tr>
<td>Status</td>
<td>Listening service status:</td>
</tr>
<tr>
<td></td>
<td><strong>active</strong>: Listening service is ready;</td>
</tr>
<tr>
<td></td>
<td><strong>inactive</strong>: Listening service is not ready.</td>
</tr>
</tbody>
</table>

nqa server enable

Syntax

nqa server enable
undo nqa server enable

View

System view

Default Level

2: System level

Parameters

None

Description

Use the nqa server enable command to enable the NQA server.
Use the undo nqa server enable command to disable the NQA server.
By default, the NQA server is disabled.
Related commands: nqa server tcp-connect, nqa server udp-echo and display nqa server status.

Examples

# Enable the NQA server.
<Sysname> system-view
<Sysname> nqa server enable

nqa server tcp-connect

Syntax

nqa server tcp-connect ip-address port-number
undo nqa server tcp-connect ip-address port-number

View

System view

Default Level

2: System level

Parameters

ip-address: IP address specified for the TCP listening service on the NQA server.
port-number: Port number specified for the TCP listening service on the NQA server, in the range 1 to 50000.-

Description

Use the nqa-server tcp-connect command to create a TCP listening service on the NQA server.
Use the undo nqa-server tcp-connect command to remove the TCP listening service created.
Note that:

- You need to configure the command on the NQA server for TCP tests only.
The IP address and port number must be consistent with those on the NQA client and must be different from those for an existing listening service.

The IP address must be that of an interface on the NQA server. Otherwise, the configuration will be invalid.

Related commands: nqa server enable and display nqa server status.

Examples

# Create a TCP listening service by using the IP address 169.254.10.2 and port 9000.
< Sysname > system-view
[ Sysname ] nqa server tcp-connect 169.254.10.2 9000

nqa server udp-echo

Syntax

nqa server udp-echo ip-address port-number
undo nqa server udp-echo ip-address port-number

View

System view

Default Level

2: System level

Parameters

ip-address: IP address specified for the UDP listening service on the NQA server.
port-number: Port number specified for the UDP listening service on the NQA server, in the range 1 to 50000.

Description

Use the nqa-server udp-echo command to create a UDP listening service on the NQA server.

Use the undo nqa-server udp-echo command to remove the UDP listening service created.

Note that:

- You need to configure the command on the NQA server for UDP jitter, UDP echo and voice tests only.
- The IP address and port number must be consistent with those configured on the NQA client and must be different from those of an existing listening service.
- The IP address must be that of an interface on the NQA server. Otherwise, the configuration will be invalid.

Related commands: nqa server enable and display nqa server status.

Examples

# Create a UDP listening service by using the IP address 169.254.10.2 and port 9000.
< Sysname > system-view
[ Sysname ] nqa server udp-echo 169.254.10.2 9000
NTP Configuration Commands

display ntp-service sessions

Syntax

display ntp-service sessions [ verbose ]

View

Any view

Default Level

1: Monitor level

Parameters

verbose: Displays the detailed information of all NTP sessions. If you do not specify this keyword, only the brief information of the NTP sessions will be displayed.

Description

Use the display ntp-service sessions command to view the information of all NTP sessions.

Examples

# View the brief information of NTP sessions.
<Sysname> display ntp-service sessions
   source  reference  stra  reach  poll  now  offset  delay  disper
************************************************************************
[12345]1.1.1.1  127.127.1.0  3  377   64  178   0.0   40.1   22.8
note: 1 source(master), 2 source(peer), 3 selected, 4 candidate, 5 configured
Total associations : 1
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>IP address of the clock source</td>
</tr>
<tr>
<td>reference</td>
<td>Reference clock ID of the clock source</td>
</tr>
<tr>
<td></td>
<td>1) If the reference clock is the local clock, the value of this field is</td>
</tr>
<tr>
<td></td>
<td>related to the value of the stra field:</td>
</tr>
<tr>
<td></td>
<td>• When the value of the stra field is 0 or 1, this field will be “LOCL”;</td>
</tr>
<tr>
<td></td>
<td>• When the stra field has another value, this field will be the IP</td>
</tr>
<tr>
<td></td>
<td>address of the local clock.</td>
</tr>
<tr>
<td></td>
<td>2) If the reference clock is the clock of another device on the network,</td>
</tr>
<tr>
<td></td>
<td>the value of this field will be the IP address of that device.</td>
</tr>
<tr>
<td>stra</td>
<td>Stratum level of the clock source, which determines the clock precision.</td>
</tr>
<tr>
<td></td>
<td>The value range is 1 to 16. The clock precision decreases from stratum 1 to</td>
</tr>
<tr>
<td></td>
<td>stratum 16. A stratum 1 clock has the highest precision, and a stratum 16</td>
</tr>
<tr>
<td></td>
<td>clock is not synchronized and cannot be used as a reference clock.</td>
</tr>
<tr>
<td>reach</td>
<td>Reachability count of the clock source. 0 indicates that the clock source</td>
</tr>
<tr>
<td></td>
<td>in unreachable.</td>
</tr>
<tr>
<td>poll</td>
<td>Poll interval in seconds, namely, the maximum interval between successive</td>
</tr>
<tr>
<td></td>
<td>NTP messages.</td>
</tr>
<tr>
<td>now</td>
<td>The length of time from when the last NTP message was received or when the</td>
</tr>
<tr>
<td></td>
<td>local clock was last updated to the current time</td>
</tr>
<tr>
<td></td>
<td>The time is in second by default. If the time length is greater than 2048</td>
</tr>
<tr>
<td></td>
<td>seconds, it is displayed in minute; if greater than 300 minutes, in hour;</td>
</tr>
<tr>
<td></td>
<td>if greater than 96 hours, in day.</td>
</tr>
<tr>
<td>offset</td>
<td>The offset of the system clock relative to the reference clock, in</td>
</tr>
<tr>
<td></td>
<td>milliseconds</td>
</tr>
<tr>
<td>delay</td>
<td>The roundtrip delay from the local device to the clock source, in</td>
</tr>
<tr>
<td></td>
<td>milliseconds</td>
</tr>
<tr>
<td>disper</td>
<td>The maximum error of the system clock relative to the reference source.</td>
</tr>
<tr>
<td></td>
<td>[12345]</td>
</tr>
<tr>
<td></td>
<td>1: Clock source selected by the system, namely, the current reference</td>
</tr>
<tr>
<td></td>
<td>source, with a system clock stratum level less than or equal to 15</td>
</tr>
<tr>
<td></td>
<td>2: Stratum level of the clock source is less than or equal to 15.</td>
</tr>
<tr>
<td></td>
<td>3: This clock source has passed the clock selection process.</td>
</tr>
<tr>
<td></td>
<td>4: This clock source is a candidate clock source.</td>
</tr>
<tr>
<td></td>
<td>5: This clock source was created by a configuration command.</td>
</tr>
<tr>
<td>Total associations</td>
<td>Total number of associations</td>
</tr>
</tbody>
</table>

**Note**

When a device is working in the NTP broadcast/multicast server mode, the **display ntp-service sessions** command executed on the device will not display the NTP session information corresponding to the broadcast/multicast server, but the sessions will be counted in the total number of associations.
display ntp-service status

Syntax

display ntp-service status

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the `display ntp-service status` command to view the NTP service status information.

Examples

# View the NTP service status information.

```bash
<Sysname> display ntp-service status
Clock status: unsynchronized
Clock stratum: 16
Reference clock ID: none
Nominal frequency: 100.0000 Hz
Actual frequency: 100.0000 Hz
Clock precision: 2^18
Clock offset: 0.0000 ms
Root delay: 0.00 ms
Root dispersion: 0.00 ms
Peer dispersion: 0.00 ms
Reference time: 00:00:00.000 UTC Jan 1 1900(00000000.00000000)
```

Table 19-2 display ntp-service status command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock status</td>
<td>Status of the system clock, including</td>
</tr>
<tr>
<td></td>
<td>● Synchronized: The system clock has been synchronized.</td>
</tr>
<tr>
<td></td>
<td>● Unsynchronized: The system clock has not been synchronized.</td>
</tr>
<tr>
<td>Clock stratum</td>
<td>Stratum level of the system clock</td>
</tr>
<tr>
<td>Reference clock ID</td>
<td>After the system clock is synchronized to a remote time server, this field</td>
</tr>
<tr>
<td></td>
<td>indicates the address of the remote time server; after the system clock</td>
</tr>
<tr>
<td></td>
<td>is synchronized to a local reference source, this field indicates the</td>
</tr>
<tr>
<td></td>
<td>address of the local clock source:</td>
</tr>
<tr>
<td></td>
<td>● When the local clock has a stratum level of 1, the value of this field</td>
</tr>
<tr>
<td></td>
<td>is “LOCL”;</td>
</tr>
<tr>
<td></td>
<td>● When the stratum of the local clock has another value, the value of this</td>
</tr>
<tr>
<td></td>
<td>field is the IP address of the local clock.</td>
</tr>
<tr>
<td>Nominal frequency</td>
<td>The nominal frequency of the local system hardware clock, in Hz</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Actual frequency</td>
<td>The actual frequency of the local system hardware clock, in Hz</td>
</tr>
<tr>
<td>Clock precision</td>
<td>The precision of the system clock</td>
</tr>
<tr>
<td>Clock offset</td>
<td>The offset of the system clock relative to the reference source, in milliseconds</td>
</tr>
<tr>
<td>Root delay</td>
<td>The roundtrip delay from the local device to the primary reference source, in milliseconds</td>
</tr>
<tr>
<td>Root dispersion</td>
<td>The maximum error of the system clock relative to the primary reference source, in milliseconds</td>
</tr>
<tr>
<td>Peer dispersion</td>
<td>The maximum error of the system clock relative to the reference source, in milliseconds</td>
</tr>
<tr>
<td>Reference time</td>
<td>Reference timestamp</td>
</tr>
</tbody>
</table>

display ntp-service trace

Syntax

display ntp-service trace

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the `display ntp-service trace` command to view the brief information of each NTP server along the NTP server chain from the local device back to the primary reference source.

The `display ntp-service trace` command takes effect only if routes are available between the local device and all the devices on the NTP server chain; otherwise, this command will fail to display all the NTP servers on the NTP chain due to timeout.

Examples

# View the brief information of each NTP server from the local device back to the primary reference source.

```
<Sysname> display ntp-service trace
server 127.0.0.1,stratum 2, offset -0.013500, synch distance 0.03154
server 133.1.1.1,stratum 1, offset -0.506500, synch distance 0.03429
refid LOCL
```

The information above shows an NTP server chain for the server 127.0.0.1: The server 127.0.0.1 is synchronized to the server 133.1.1.1, and the server 133.1.1.1 is synchronized to the local clock source.
### Table 19-3 display ntp-service trace command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>server</td>
<td>IP address of the NTP server</td>
</tr>
<tr>
<td>stratum</td>
<td>The stratum level of the corresponding system clock</td>
</tr>
<tr>
<td>offset</td>
<td>The clock offset relative to the upper-level clock, in seconds</td>
</tr>
<tr>
<td>synch distance</td>
<td>The synchronization distance relative to the upper-level clock, in seconds, and calculated from dispersion and roundtrip delay values.</td>
</tr>
<tr>
<td>refid</td>
<td>Identifier of the primary reference source. When the stratum level of the primary reference clock is 0, it is displayed as LOCL; otherwise, it is displayed as the IP address of the primary reference clock.</td>
</tr>
</tbody>
</table>

### ntp-service access

**Syntax**

```
ntp-service access { peer | query | server | synchronization } acl-number
undo ntp-service access { peer | query | server | synchronization }
```

**View**

- **System view**

**Default Level**

- **2**: System level

**Parameters**

- **peer**: Specifies to permit full access. This level of right permits the peer devices to perform synchronization and control query to the local device and also permits the local device to synchronize its clock to that of a peer device. Control query refers to query of NTP status information, such as alarm information, authentication status, and clock source information.

- **query**: Specifies to permit control query. This level of right permits the peer devices to perform control query to the NTP service on the local device but does not permit a peer device to synchronize its clock to that of the local device.

- **server**: Specifies to permit server access and query. This level of right permits the peer devices to perform synchronization and control query to the local device but does not permit the local device to synchronize its clock to that of a peer device.

- **synchronization**: Specifies to permit server access only. This level of right permits a peer device to synchronize its clock to that of the local device but does not permit the peer devices to perform control query.

- **acl-number**: Basic ACL number, in the range of 2000 to 2999

**Description**

Use the **ntp-service access** command to configure the access-control right for the peer devices to access the NTP services of the local device.

Use the **undo ntp-service access** command to remove the configured NTP service access-control right to the local device.
By default, the access-control right for the peer devices to access the NTP services of the local device is set to peer.

From the highest NTP service access-control right to the lowest one are peer, server, synchronization, and query. When a device receives an NTP request, it will match against the access-control right in this order and will use the first matched right.

Note that:
- The ntp-service access command provides only a minimum degree of security protection. A more secure method is identity authentication. The related command is ntp-service authentication enable.
- Before specifying an ACL number in the ntp-service access command, make sure you have already created and configured this ACL.

Examples

# Configure the peer devices on subnet 10.10.0.0/16 to have the full access right to the local device.

```<Sysname> system-view
[Sysname] acl number 2001
[Sysname-acl-basic-2001] rule permit source 10.10.0.0 0.0.255.255
[Sysname-acl-basic-2001] quit
[Sysname] ntp-service access peer 2001
```

**ntp-service authentication enable**

**Syntax**

```
ntp-service authentication enable
undo ntp-service authentication enable
```

**View**

System view

**Default Level**

2: System level

**Parameters**

None

**Description**

Use the ntp-service authentication enable command to enable NTP authentication.

Use the undo ntp-service authentication enable command to disable NTP authentication.

By default, NTP authentication is disabled.

Related commands: ntp-service authentication-keyid, ntp-service reliable authentication-keyid.

**Examples**

# Enable NTP authentication.

```
<Sysname> system-view
[Sysname] ntp-service authentication enable
```
ntp-service authentication-keyid

Syntax

ntp-service authentication-keyid keyid authentication-mode md5 value
undo ntp-service authentication-keyid keyid

View

System view

Default Level

2: System level

Parameters

keyid: Authentication key ID, in the range of 1 to 4294967295.
authentication-mode md5 value: Specifies to use the MD5 algorithm for key authentication, where value represents authentication key and is a string of 1 to 32 characters.

Description

Use the ntp-service authentication-keyid command to set the NTP authentication key. Use the undo ntp-service authentication-keyid command to remove the set NTP authentication key.
By default, no NTP authentication key is set.
In a network where there is a high security demand, the NTP authentication feature should be enabled for a system running NTP. This feature enhances the network security by means of the client-server key authentication, which prohibits a client from synchronizing with a device that has failed authentication.
After the NTP authentication key is configured, you need to configure the key as a trusted key by using the ntp-service reliable authentication-keyid command.

Caution

- Presently the system supports only the MD5 algorithm for key authentication.
- You can set a maximum of 1,024 keys for each device.
- If an NTP authentication key is specified as a trusted key, the key automatically changes to untrusted after you delete the key. In this case, you do not need to execute the undo ntp-service reliable authentication-keyid command.

Related commands: ntp-service reliable authentication-keyid.

Examples

# Set an MD5 authentication key, with the key ID of 10 and key value of BetterKey.
<Sysname> system-view
<Sysname> ntp-service authentication enable
<Sysname> ntp-service authentication-keyid 10 authentication-mode md5 BetterKey
**ntp-service broadcast-client**

**Syntax**

```plaintext
ntp-service broadcast-client
undo ntp-service broadcast-client
```

**View**

Interface view

**Default Level**

2: System level

**Parameters**

None

**Description**

Use the `ntp-service broadcast-client` command to configure the device to work in the NTP broadcast client mode and use the current interface to receive NTP broadcast packets.

Use the `undo ntp-service broadcast-client` command to remove the configuration.

By default, the device does not work in the NTP broadcast client mode.

**Examples**

```
Configure the device to work in the broadcast client mode and receive NTP broadcast messages on VLAN-interface 1.
<Sysname> system-view
[Sysname] interface vlan-interface 1
[Sysname-Vlan-interface1] ntp-service broadcast-client
```

**ntp-service broadcast-server**

**Syntax**

```plaintext
ntp-service broadcast-server [authentication-keyid keyid | version number] *
undo ntp-service broadcast-server
```

**View**

Interface view

**Default Level**

2: System level

**Parameters**

- **authentication-keyid keyid**: Specifies the key ID to be used for sending broadcast messages to broadcast clients, where `keyid` is in the range of 1 to 4294967295. This parameter is not meaningful if authentication is not required.

- **version number**: Specifies the NTP version, where `number` is in the range of 1 to 3 and defaults to 3.
Description

Use the `ntp-service broadcast-server` command to configure the device to work in the NTP broadcast server mode and use the current interface to send NTP broadcast packets.

Use the `undo ntp-service broadcast-server` command to remove the configuration.

By default, the device does not work in the NTP broadcast server mode.

Examples

# Configure the device to work in the broadcast server mode and send NTP broadcast messages on VLAN-interface 1, using key 4 for encryption, and set the NTP version to 3.

```plaintext
<Sysname> system-view
[Sysname] interface vlan-interface 1
[Sysname-Vlan-interface1] ntp-service broadcast-server authentication-keyid 4 version 3
```

ntp-service in-interface disable

Syntax

```plaintext
ntp-service in-interface disable
```

undo ntp-service in-interface disable

View

Interface view

Default Level

2: System level

Parameters

None

Description

Use the `ntp-service in-interface disable` command to disable an interface from receiving NTP messages.

Use the `undo ntp-service in-interface disable` command to restore the default.

By default, all interfaces are enabled to receive NTP messages.

Examples

# Disable VLAN-interface 1 from receiving NTP messages.

```plaintext
<Sysname> system-view
[Sysname] interface vlan-interface 1
[Sysname-Vlan-interface1] ntp-service in-interface disable
```

ntp-service max-dynamic-sessions

Syntax

```plaintext
ntp-service max-dynamic-sessions number
undo ntp-service max-dynamic-sessions
```
View

System view

Default Level

2: System level

Parameters

number: Maximum number of dynamic NTP sessions that are allowed to be established, in the range of 0 to 100.

Description

Use the ntp-service max-dynamic-sessions command to set the maximum number of dynamic NTP sessions that are allowed to be established locally.

Use the undo ntp-service max-dynamic-sessions command to restore the maximum number of dynamic NTP sessions to the system default.

By default, the number is 100.

A single device can have a maximum of 128 associations at the same time, including static associations and dynamic associations. A static association refers to an association that a user has manually created by using an NTP command, while a dynamic association is a temporary association created by the system during operation. A dynamic association will be removed if the system fails to receive messages from it over a specific long time. In the client/server mode, for example, when you carry out a command to synchronize the time to a server, the system will create a static association, and the server will just respond passively upon the receipt of a message, rather than creating an association (static or dynamic). In the symmetric mode, static associations will be created at the symmetric-active peer side, and dynamic associations will be created at the symmetric-passive peer side; in the broadcast or multicast mode, static associations will be created at the server side, and dynamic associations will be created at the client side.

Examples

# Set the maximum number of dynamic NTP sessions allowed to be established to 50.

<Sysname> system-view
[Sysname] ntp-service max-dynamic-sessions 50

ntp-service multicast-client

Syntax

ntp-service multicast-client [ ip-address ]
undo ntp-service multicast-client [ ip-address ]

View

Interface view

Default Level

2: System level
Parameters

*ip-address*: Multicast IP address, defaulting to 224.0.1.1.

Description

Use the `ntp-service multicast-client` command to configure the device to work in the NTP multicast client mode and use the current interface to receive NTP multicast packets.

Use the `undo ntp-service multicast-client` command to remove the configuration.

By default, the device does not work in the NTP multicast client mode.

Examples

```
Configure the device to work in the multicast client mode and receive NTP multicast messages on VLAN-interface 1, and set the multicast address to 224.0.1.1.
<Sysname> system-view
[Sysname] interface vlan-interface 1
[Sysname-Vlan-interface1] ntp-service multicast-client 224.0.1.1
```

ntp-service multicast-server

Syntax

```
ntp-service multicast-server [ip-address] [authentication-keyid keyid | ttl ttl-number | version number] *
undo ntp-service multicast-server [ip-address]
```

View

Interface view

Default Level

2: System level

Parameters

*ip-address*: Multicast IP address, defaulting to 224.0.1.1.

*authentication-keyid keyid*: Specifies the key ID to be used for sending multicast messages to multicast clients, where `keyid` is in the range of 1 to 4294967295. This parameter is not meaningful if authentication is not required.

*ttl ttl-number*: Specifies the TTL of NTP multicast messages, where `ttl-number` is in the range of 1 to 255 and defaults to 16.

*version number*: Specifies the NTP version, where `number` is in the range of 1 to 3 and defaults to 3.

Description

Use the `ntp-service multicast-server` command to configure the device to work in the NTP multicast server mode and use the current interface to send NTP multicast packets.

Use the `undo ntp-service multicast-server` command to remove the configuration.

By default, the device does not work in the NTP multicast server mode.
Examples

# Configure the device to work in the multicast server mode and send NTP multicast messages on
VLAN-interface 1 to the multicast address 224.0.1.1, using key 4 for encryption, and set the NTP
version to 3.

<Sysname> system-view
<Sysname> interface vlan-interface 1
<Sysname-Vlan-interface1> ntp-service multicast-server 224.0.1.1 version 3
authentication-keyid 4

ntp-service reliable authentication-keyid

Syntax

ntp-service reliable authentication-keyid keyid
undo ntp-service reliable authentication-keyid keyid

View

System view

Default Level

2: System level

Parameters

keyid: Authentication key number, in the range of 1 to 4294967295.

Description

Use the ntp-service reliable authentication-keyid command to specify that the created
authentication key is a trusted key. When NTP authentication is enabled, a client can be synchronized
only to a server that can provide a trusted authentication key.

Use the undo ntp-service reliable authentication-keyid command to remove the configuration.
No authentication key is configured to be trusted by default.

Examples

# Enable NTP authentication, specify to use MD5 encryption algorithm, with the key ID of 37 and key
value of BetterKey.

<Sysname> system-view
<Sysname> ntp-service authentication enable
<Sysname> ntp-service authentication-keyid 37 authentication-mode md5 BetterKey

# Specify this key as a trusted key.

<Sysname> ntp-service reliable authentication-keyid 37

ntp-service source-interface

Syntax

ntp-service source-interface interface-type interface-number
undo ntp-service source-interface
**View**

System view

**Default Level**

2: System level

**Parameters**

*interface-type interface-number*: Specifies an interface by its interface type and interface number.

**Description**

Use the `ntp-service source-interface` command to specify the source interface for NTP messages. Use the `undo ntp-service source-interface` command to restore the default.

By default, no source interface is specified for NTP messages, and the system uses the IP address of the interface determined by the matched route as the source IP address of NTP messages.

If you do not wish the IP address of a certain interface on the local device to become the destination address of response messages, you can use this command to specify the source interface for NTP messages, so that the source IP address in NTP messages is the primary IP address of this interface.

**Examples**

```
Specify the source interface of NTP messages as VLAN-interface 1.
<Sysname> system-view
<Sysname> ntp-service source-interface vlan-interface 1
```

**ntp-service unicast-peer**

**Syntax**

```
ntp-service unicast-peer [vpn-instance vpn-instance-name] { ip-address | peer-name }
[authentication-keyid keyid | priority | source-interface interface-type interface-number | version number] *
undo ntp-service unicast-peer [vpn-instance vpn-instance-name] { ip-address | peer-name }
```

**View**

System view

**Default Level**

2: System level

**Parameters**

*vpn-instance vpn-instance-name*: Specifies a VPN instance by its name, where `vpn-instance-name` is a string of 1 to 31 characters.

*ip-address*: IP address of the symmetric-passive peer. It must be a unicast address, rather than a broadcast address, a multicast address or the IP address of the local clock.

*peer-name*: Host name of the symmetric-passive peer, a string of 1 to 20 characters.

*authentication-keyid keyid*: Specifies the key ID to be used for sending NTP messages to the peer, where `keyid` is in the range of 1 to 4294967295.
priority: Specifies the peer designated by ip-address or peer-name as the first choice under the same condition.

source-interface interface-type interface-number: Specifies the source interface for NTP messages. In an NTP message the local device sends to its peer, the source IP address is the primary IP address of this interface. interface-type interface-number represents the interface type and number.

version number: Specifies the NTP version, where number is in the range of 1 to 3 and defaults to 3.

Description

Use the ntp-service unicast-peer command to designate a symmetric-passive peer for the device.

Use the undo ntp-service unicast-peer command to remove the symmetric-passive peer designated for the device.

No symmetric-passive peer is designated for the device by default.

Note

- To synchronize the switch to another device in a VPN, you need to provide vpn-instance vpn-instance-name in your command.
- If you include vpn-instance vpn-instance-name in the undo ntp-service unicast-peer command, the command will remove the symmetric-passive peer with the IP address of ip-address in the specified VPN; if you do not include vpn-instance vpn-instance-name in this command, the command will remove the symmetric-passive peer with the IP address of ip-address in the public network.

Examples

# Designate the device with the IP address of 10.1.1.1 as the symmetric-passive peer of the device, configure the device to run NTP version 3, and specify the source interface of NTP messages as VLAN-interface 1.

<Sysname> system-view

[Sysname] ntp-service unicast-peer 10.1.1.1 version 3 source-interface vlan-interface 1

ntp-service unicast-server

Syntax

ntp-service unicast-server [ vpn-instance vpn-instance-name ] { ip-address | server-name } [ authentication-keyid keyid | priority | source-interface interface-type interface-number | version number ]
undo ntp-service unicast-server [ vpn-instance vpn-instance-name ] { ip-address | server-name }

View

System view

Default Level

2: System level
Parameters

`vpn-instance vpn-instance-name`: Specifies a VPN instance by its name, where `vpn-instance-name` is a string of 1 to 31 characters.

`ip-address`: IP address of the NTP server. It must be a unicast address, rather than a broadcast address, a multicast address or the IP address of the local clock.

`server-name`: Host name of the NTP server, a string of 1 to 20 characters.

`authentication-keyid keyid`: Specifies the key ID to be used for sending NTP messages to the NTP server, where `keyid` is in the range of 1 to 4294967295.

`priority`: Specifies this NTP server as the first choice under the same condition.

`source-interface interface-type interface-number`: Specifies the source interface for NTP messages. In an NTP message the local device sends to the NTP server, the source IP address is the primary IP address of this interface. `interface-type interface-number` represents the interface type and number.

`version number`: Specifies the NTP version, where `number` is in the range of 1 to 3 and defaults to 3.

Description

Use the `ntp-service unicast-server` command to designate an NTP server for the device.

Use the `undo ntp-service unicast-server` command to remove an NTP server designated for the device.

No NTP server is designated for the device by default.

Note

- To synchronize the switch to another device in a VPN, you need to provide `vpn-instance vpn-instance-name` in your command.
- If you include `vpn-instance vpn-instance-name` in the `undo ntp-service unicast-server` command, the command will remove the NTP server with the IP address of `ip-address` in the specified VPN; if you do not include `vpn-instance vpn-instance-name` in this command, the command will remove the NTP server with the IP address of `ip-address` in the public network.

Examples

```
Designate NTP server 10.1.1.1 for the device, and configure the device to run NTP version 3.

<Sysname> system-view
[Sysname] ntp-service unicast-server 10.1.1.1 version 3
```
NDP Configuration Commands

**display ndp**

**Syntax**

```
display ndp [interface interface-list]
```

**View**

Any view

**Default Level**

1: Monitor level

**Parameters**

- `interface interface-list`: Specifies an Ethernet port list, which can contain multiple Ethernet ports. The `interface-list` argument is in the format of `interface-list = { interface-type interface-number [ to interface-type interface-number ] } & <1-10>`, where, `interface-type` is port type and `interface-number` is port number, and `&<1-10>` means that you can provide up to 10 port indexes/port index lists for this argument.

**Description**

Use the `display ndp` command to display NDP configuration information, which includes the interval to send NDP packets, the time for the receiving device to hold NDP information and the information about the neighbors of all ports.

**Examples**

```
Display NDP configuration information.
<Sysname> display ndp
Neighbor Discovery Protocol is enabled.
Neighbor Discovery Protocol Ver: 1, Hello Timer: 60(s), Aging Timer: 180(s)
Interface: GigabitEthernet1/0/1
 Status: Enabled, Pkts Snd: 0, Pkts Rvd: 0, Pkts Err: 0

Interface: GigabitEthernet1/0/2
 Status: Enabled, Pkts Snd: 0, Pkts Rvd: 0, Pkts Err: 0

Interface: GigabitEthernet1/0/3
 Status: Enabled, Pkts Snd: 0, Pkts Rvd: 0, Pkts Err: 0

Interface: GigabitEthernet1/0/4
 Status: Enabled, Pkts Snd: 28440, Pkts Rvd: 27347, Pkts Err: 0
```
Neighbor 1: Aging Time: 122(s)
MAC Address : 000f-e200-2579
Host Name : Sysname
Port Name : GigabitEthernet1/0/4
Software Ver: ESS 2200
Device Name : Switch 4210G PWR 48-Port
Port Duplex : AUTO
Product Ver : Switch 4210G PWR 48-Port-Release2202
BootROM Ver : 505

Interface: GigabitEthernet1/0/5
  Status: Enabled, Pkts Snd: 0, Pkts Rvd: 0, Pkts Err: 0

Interface: GigabitEthernet1/0/6
  Status: Enabled, Pkts Snd: 0, Pkts Rvd: 0, Pkts Err: 0

Interface: GigabitEthernet1/0/7
  Status: Enabled, Pkts Snd: 0, Pkts Rvd: 0, Pkts Err: 0

Interface: GigabitEthernet1/0/8
  Status: Enabled, Pkts Snd: 0, Pkts Rvd: 0, Pkts Err: 0

Interface: GigabitEthernet1/0/9
  Status: Enabled, Pkts Snd: 0, Pkts Rvd: 0, Pkts Err: 0

Interface: GigabitEthernet1/0/10
  Status: Enabled, Pkts Snd: 0, Pkts Rvd: 0, Pkts Err: 0

Interface: GigabitEthernet1/0/11
  Status: Enabled, Pkts Snd: 0, Pkts Rvd: 0, Pkts Err: 0

Interface: GigabitEthernet1/0/12
  Status: Enabled, Pkts Snd: 0, Pkts Rvd: 0, Pkts Err: 0

Interface: GigabitEthernet1/0/13
  Status: Enabled, Pkts Snd: 0, Pkts Rvd: 0, Pkts Err: 0

Interface: GigabitEthernet1/0/14
  Status: Enabled, Pkts Snd: 0, Pkts Rvd: 0, Pkts Err: 0

Interface: GigabitEthernet1/0/15
  Status: Enabled, Pkts Snd: 0, Pkts Rvd: 0, Pkts Err: 0

Interface: GigabitEthernet1/0/16
  Status: Enabled, Pkts Snd: 0, Pkts Rvd: 0, Pkts Err: 0

Interface: GigabitEthernet1/0/17
Status: Enabled, Pkts Snd: 0, Pkts Rvd: 0, Pkts Err: 0

Interface: GigabitEthernet1/0/18
  Status: Enabled, Pkts Snd: 0, Pkts Rvd: 0, Pkts Err: 0

Interface: GigabitEthernet1/0/19
  Status: Enabled, Pkts Snd: 0, Pkts Rvd: 0, Pkts Err: 0

Interface: GigabitEthernet1/0/20
  Status: Enabled, Pkts Snd: 0, Pkts Rvd: 0, Pkts Err: 0

Interface: GigabitEthernet1/0/21
  Status: Enabled, Pkts Snd: 0, Pkts Rvd: 0, Pkts Err: 0

Interface: GigabitEthernet1/0/22
  Status: Enabled, Pkts Snd: 0, Pkts Rvd: 0, Pkts Err: 0

Interface: GigabitEthernet1/0/23
  Status: Enabled, Pkts Snd: 0, Pkts Rvd: 0, Pkts Err: 0

Interface: GigabitEthernet1/0/24
  Status: Enabled, Pkts Snd: 0, Pkts Rvd: 0, Pkts Err: 0

Interface: GigabitEthernet1/0/1
  Status: Enabled, Pkts Snd: 28438, Pkts Rvd: 54160, Pkts Err: 0
  Neighbor 1: Aging Time: 176(s)
    MAC Address : 000f-cbb8-9528
    Host Name : Sysname
    Port Name : GigabitEthernet1/0/2
    Software Ver: V600R006B02D076SP03
    Device Name : 3Com S7902E
    Port Duplex : AUTO
    Product Ver : 005

Interface: GigabitEthernet1/0/2
  Status: Enabled, Pkts Snd: 1, Pkts Rvd: 1, Pkts Err: 0

Table 20-1 display ndp command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neighbor Discovery Protocol is enabled</td>
<td>NDP is enabled globally on the current device.</td>
</tr>
<tr>
<td>Neighbor Discovery Protocol Ver</td>
<td>Version of NDP</td>
</tr>
<tr>
<td>Hello Timer</td>
<td>Interval to send NDP packets</td>
</tr>
<tr>
<td>Aging Timer</td>
<td>The time for the receiving device to hold NDP information</td>
</tr>
<tr>
<td>Interface</td>
<td>A specified port</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Status</td>
<td>NDP state of a port</td>
</tr>
<tr>
<td>Pkts Snd</td>
<td>Number of the NDP packets sent through the port</td>
</tr>
<tr>
<td>Pkts Rvd</td>
<td>Number of the NDP packets received on the port</td>
</tr>
<tr>
<td>Pkts Err</td>
<td>Number of the error NDP packets received</td>
</tr>
<tr>
<td>Neighbor 1: Aging Time</td>
<td>Aging time of the NDP information of a neighbor device</td>
</tr>
<tr>
<td>MAC Address</td>
<td>MAC address of a neighbor device</td>
</tr>
<tr>
<td>Host Name</td>
<td>Host name of a neighbor device</td>
</tr>
<tr>
<td>Port Name</td>
<td>Port name of a neighbor device</td>
</tr>
<tr>
<td>Software Ver</td>
<td>Software version of the neighbor device</td>
</tr>
<tr>
<td>Device Name</td>
<td>Device name of a neighbor device</td>
</tr>
<tr>
<td>Port Duplex</td>
<td>Port duplex mode of a neighbor device</td>
</tr>
<tr>
<td>Product Ver</td>
<td>Product version of a neighbor device</td>
</tr>
<tr>
<td>BootROM Ver</td>
<td>Boot ROM version of a neighbor device</td>
</tr>
</tbody>
</table>

**ndp enable**

**Syntax**

In Ethernet interface view or Layer 2 aggregate interface view:

```
ndp enable
undo ndp enable
```

In system view:

```
ndp enable [interface interface-list]
undo ndp enable [interface interface-list]
```

**View**

System view, Ethernet interface view, Layer 2 aggregate interface view

**Default Level**

2: System level

**Parameters**

`interface interface-list`: Specifies an Ethernet port list, which can contain multiple Ethernet ports. The `interface-list` argument is in the format of `interface-list = { interface-type interface-number [ to interface-type interface-number ] } & <1-10>`, where `interface-type` represents the port type, `interface-number` represents the port number, and `& <1-10>` means that you can provide up to 10 port indexes/port index lists for this argument.

**Description**

Use the **ndp enable** command to enable NDP.
Use the `undo ndp enable` command to disable this feature.

By default, NDP is enabled globally and also on all ports.

Note that:
- When being executed in system view, the `ndp enable` command enables NDP globally if you do not specify the `interface` keyword; if you specify the `interface` keyword, the command enables NDP for the specified Ethernet port(s).
- When being executed in interface view, this command enables NDP for the current port only.
- Configured in Layer 2 aggregate interface view, the configuration will not take effect on the member ports of the aggregation group that corresponds to the aggregate interface; configured on a member port of an aggregation group, the configuration will take effect only after the member port quit the aggregation group. For description of aggregation configurations, refer to `Link Aggregation Configuration` in the `Access Volume`.

Examples

```
Enable NDP globally.
<Sysname> system-view
 [Sysname] ndp enable

Enable NDP for port GigabitEthernet 1/0/1.
<Sysname> system-view
 [Sysname] interface gigabitethernet 1/0/1
 [Sysname-GigabitEthernet1/0/1] ndp enable
```

**ndp timer aging**

**Syntax**

```
ndp timer aging aging-time
undo ndp timer aging
```

**View**

System view

**Default Level**

2: System level

**Parameters**

- `aging-time`: Time for a device to keep the NDP packets it receives, in the range 5 to 255 seconds.

**Description**

Use the `ndp timer aging` command to specify the time that a device should keep the NDP packets it received from the adjacent device.

Use the `undo timer aging` command to restore the default.

By default, the time that a receiving device should keep the NDP packets is 180 seconds.

Note that the time for the receiving device to hold NDP packets cannot be shorter than the interval to send NDP packets; otherwise, the NDP table may become instable.

Related commands: `ndp timer hello`. 20-5
Examples

# Configure the time that a receiving device should keep the NDP packets as 60 seconds.

<Sysname> system-view
[Sysname] ndp timer aging 60

**ndp timer hello**

**Syntax**

```plaintext
ndp timer hello hello-time
undo ndp timer hello
```

**View**

System view

**Default Level**

2: System level

**Parameters**

`hello-time`: Interval to send NDP packets, in the range 5 to 254 seconds.

**Description**

Use the `ndp timer hello` command to set the interval to send NDP packets.

Use the `undo ndp timer hello` command to restore the default.

By default, the interval to send NDP packets is 60 seconds.

Note that the interval for sending NDP packets cannot be longer than the time for the receiving device to hold NDP packets; otherwise, the NDP table may become unstable.

Related commands: `ndp timer aging`.

**Examples**

# Set the interval to send NDP packets to 80 seconds.

<Sysname> system-view
[Sysname] ndp timer hello 80

**reset NDP statistics**

**Syntax**

```plaintext
reset ndp statistics [interface interface-list]
```

**View**

User view

**Default Level**

2: System level
Parameters

interface interface-list: Specifies an Ethernet port list, which can contain multiple Ethernet ports. The interface-list argument is in the format of interface-list = { interface-type interface-number [ to interface-type interface-number ] } & <1-10>, where interface-type represents the port type, interface-number represents the port number, and & <1-10> means that you can provide up to 10 port indexes/port index lists for this argument.

Description

Use the reset ndp statistics command to clear NDP statistics.

If no interface interface-list is specified, NDP statistics of all ports are cleared; otherwise, NDP statistics of a specified port are cleared.

Examples

# Clear NDP statistics of all ports.
<Sysname> reset ndp statistics

NTDP Configuration Commands

display ntdp

Syntax

display ntdp

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the display ntdp command to display NTDP configuration information.

Examples

# Display the global NTDP information.
<Sysname> display ntdp
NTDP is running.
Hops    : 4
Timer   : 1 min(disable)
Hop Delay : 100 ms
Port Delay: 10 ms
Last collection total time: 92ms
Table 20-2 display ntdp command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTDP is running</td>
<td>NTDP is enabled globally on the local device.</td>
</tr>
<tr>
<td>Hops</td>
<td>Hop count for topology collection</td>
</tr>
<tr>
<td>Timer</td>
<td>Interval to collect topology information (after the cluster is created)</td>
</tr>
<tr>
<td>disable</td>
<td>Indicates the device is not a management device and unable to perform periodical topology collection</td>
</tr>
<tr>
<td>Hop Delay</td>
<td>Delay time for the device to forward topology collection requests</td>
</tr>
<tr>
<td>Port Delay</td>
<td>Delay time for a topology-collection request to be forwarded through a port</td>
</tr>
<tr>
<td>Last collection total time</td>
<td>Time cost during the last collection</td>
</tr>
</tbody>
</table>

display ntdp device-list

Syntax

display ntdp device-list [ verbose ]

View

Any view

Default Level

1: Monitor level

Parameters

verbose: Displays the detailed device information.

Description

Use the display ntdp device-list command to display the device information collected through NTDP.

Note that the information displayed may not be that of the latest device if you do not execute the ntdp explore command before using this command.

Examples

# Display the device list collected through NTDP.

<Sysname> display ntdp device-list

<table>
<thead>
<tr>
<th>MAC</th>
<th>HOP</th>
<th>IP</th>
<th>Device</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>000f-e200-3133 2</td>
<td></td>
<td></td>
<td>Switch 4200G</td>
<td></td>
</tr>
<tr>
<td>000f-e20f-c415 2 31.31.31.5/24</td>
<td></td>
<td></td>
<td>Switch 4200G</td>
<td></td>
</tr>
<tr>
<td>000f-e200-2579 1</td>
<td></td>
<td></td>
<td>Switch 4200G</td>
<td></td>
</tr>
<tr>
<td>000f-e200-1751 0 31.31.31.1/24</td>
<td></td>
<td></td>
<td>Switch 4200G</td>
<td></td>
</tr>
<tr>
<td>00e0-fd00-0043 2</td>
<td></td>
<td></td>
<td>Sysname S3528P</td>
<td></td>
</tr>
<tr>
<td>000f-e200-3199 3</td>
<td></td>
<td></td>
<td>Switch 4200G</td>
<td></td>
</tr>
</tbody>
</table>
**Table 20-3 display ntdp device-list command output description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC</td>
<td>MAC address of a device</td>
</tr>
<tr>
<td>HOP</td>
<td>Hops to the collecting device</td>
</tr>
<tr>
<td>IP</td>
<td>IP address and mask length of the management VLAN interface on the device</td>
</tr>
<tr>
<td>Device</td>
<td>Device name</td>
</tr>
</tbody>
</table>

# Display the detailed device information collected through NTDP.

```bash
<00bcb_0.3Com> display ntdp device-list verbose

Hostname : 4210G
MAC : 000f-e268-8322
Device : Switch 4210G 24-Port
IP : 192.168.0.1/16
Version :
3Com Corporation
3Com OS Software Version 5.20 Release 2202P17 Release 2202P17
Copyright (c) 2004-2009 3Com Corp. and its licensors. All rights reserved.
Switch 4210G 24-Port V300R001B01D021

Hop : 2
Cluster : Independent device

Peer MAC Peer Port ID Native Port ID Speed Duplex
00e0-fc00-5111 GigabitEthernet1/0/12 GigabitEthernet1/0/22 1000 FULL

Table 20-4 display ntdp device-list verbose command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname</td>
<td>System name of the device</td>
</tr>
<tr>
<td>MAC</td>
<td>MAC address of the device</td>
</tr>
<tr>
<td>Hop</td>
<td>Hops from the current device to the device that collect topology information</td>
</tr>
<tr>
<td>Device</td>
<td>Device name</td>
</tr>
<tr>
<td>IP</td>
<td>IP address and subnet mask length of the management VLAN interface on the device</td>
</tr>
<tr>
<td>Version</td>
<td>Version information</td>
</tr>
<tr>
<td>Cluster</td>
<td>Role of the device in the cluster</td>
</tr>
<tr>
<td>Cluster : Member switch of cluster aabbcc</td>
<td>The device is a member device of the cluster aabbcc</td>
</tr>
<tr>
<td>Administrator MAC</td>
<td>MAC address of the management device</td>
</tr>
<tr>
<td>Administrator switch of cluster aabbcc</td>
<td>The device is the management device of the cluster aabbcc</td>
</tr>
</tbody>
</table>
Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peer MAC</td>
<td>MAC address of a neighbor device</td>
</tr>
<tr>
<td>Peer Port ID</td>
<td>Name of the peer port connected to the local port</td>
</tr>
<tr>
<td>Native Port ID</td>
<td>Name of the local port to which a neighbor device is connected</td>
</tr>
<tr>
<td>Speed</td>
<td>Speed of the local port to which a neighbor device is connected</td>
</tr>
<tr>
<td>Duplex</td>
<td>Duplex mode of the local port to which a neighbor device is connected</td>
</tr>
</tbody>
</table>

display ntdp single-device mac-address

Syntax

```
display ntdp single-device mac-address mac-address
```

View

Any view

Default Level

1: Monitor level

Parameters

- `mac-address`: MAC address of the device, in the format of H-H-H.

Description

Use the `display ntdp single-device mac-address` command to view the detailed NTDP information of a specified device.

Examples

```bash
# Display the detailed NTDP information of the device with a MAC address of 000f-e200-5111.
<Sysname> display ntdp single-device mac-address 000f-e200-5111

Hostname : test_2.Sysname
MAC      : 000f-e234-5678
Device   : 3Com S7902E
IP       : 192.168.0.71/24
Version  :
  3Com Corporation
  3Com OS Software Version 3ComComware Release 520 Test 6610
  Copyright (c) 2004-2009 3Com Corp. and its licensors. All rights reserved.
  3Com S7902E V600R006B02D076SP03, Test 6610

-----------------------------------
Hop : 2
Cluster : Member device of cluster test, Administrator MAC: 000f-e2d2-58fb

Peer MAC  Peer Port ID  Native Port ID  Speed  Duplex
```
Refer to Table 20-4 for the description of the above prompt information.

ntdp enable

Syntax

```
ntdp enable
undo ntdp enable
```

View

System view, Ethernet interface view, Layer 2 aggregate interface view

Default Level

2: System level

Parameters

None

Description

Use the `ntdp enable` command to enable NTDP.
Use the `undo ntdp enable` command to disable NTDP.
By default, NTDP is enabled globally and on all ports.

Note that:
- Execution of the command in system view enables the global NTDP; execution of the command in interface view enables NTDP of the current port.
- Configured in Layer 2 aggregate interface view, the configuration will not take effect on the member ports of the aggregation group that corresponds to the aggregate interface; configured on a member port of an aggregation group, the configuration will take effect only after the member port quit the aggregation group. For description of aggregation configurations, refer to Link Aggregation Configuration in the Access Volume.

Examples

```
# Enable NTDP globally.
<Sysname> system-view
[Sysname] ntdp enable

# Enable NTDP for port GigabitEthernet 1/0/1.
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] ntdp enable
```

ntdp explore

Syntax

```
ntdp explore
```
View

User view

Default Level

2: System level

Parameters

None

Description

Use the ntdp explore command to start topology information collection manually.

Examples

Start the topology information collection.

<Sysname> ntdp explore

ntdp hop

Syntax

ntdp hop hop-value
undo ntdp hop

View

System view

Default Level

2: System level

Parameters

hop-value: Maximum hop for collecting topology information, in the range 1 to 16.

Description

Use the ntdp hop command to set maximum hop for collecting topology information.

Use the undo ntdp hop command to restore the default.

By default, the value is 3.

Note that this command is only applicable to the topology-collecting device. A bigger number of hops requires more memory of the topology-collecting device.

Examples

Set the hop count for topology information collection to 5.

<Sysname> system-view
[Sysname] ntdp hop 5
ntdp timer

Syntax

 ntdp timer interval-time
 undo ntdp timer

View

 System view

Default Level

 2: System level

Parameters

 interval-time: Interval (in minutes) to collect topology information, in the range 0 to 65,535. The value 0 means not to collect topology information.

Description

 Use the ntdp timer command to configure the interval to collect topology information.
 Use the undo ntdp timer command to restore the default.
 By default, the interval to collect topology information is 1 minute.
 Note that the management device can start to collect the topology information only after the cluster is set up.

Examples

 # Set the interval to collect the topology information to 30 minutes.
 <Sysname> system-view
 [Sysname] ntdp timer 30

ntdp timer hop-delay

Syntax

 ntdp timer hop-delay time
 undo ntdp timer hop-delay

View

 System view

Default Level

 2: System level

Parameters

 time: Delay time (in milliseconds) for a device receiving topology-collection requests to forward them through its first port. This argument ranges from 1 to 1,000.
Description

Use the `ntdp timer hop-delay` command to set the delay time for the device to forward topology-collection requests through the first port.

Use the `undo ntdp timer hop-delay` command to restore the default delay time, which is 200 ms.

Examples

```
# Set the delay time for the device to forward topology-collection requests through the first port to 300 ms.
<Sysname> system-view
[Sysname] ntdp timer hop-delay 300
```

ntdp timer port-delay

Syntax

```
ntdp timer port-delay time
undo ntdp timer port-delay
```

View

System view

Default Level

2: System level

Parameters

- `time`: Delay time (in milliseconds) for a device to forward a topology-collection request through its successive ports, in the range 1 to 100.

Description

Use the `ntdp timer port-delay` command to set the delay time for a device to forward a received topology-collection request through its successive ports.

Use the `undo ntdp timer port-delay` command to restore the default delay time, or 20 ms.

Examples

```
# Set the delay time for the device to forward topology-collection requests through the successive ports to 40 ms.
<Sysname> system-view
[Sysname] ntdp timer port-delay 40
```

Cluster Configuration Commands

add-member

Syntax

```
add-member [ member-number ] mac-address mac-address [ password password ]
```
View
Cluster view

Default Level
2: System level

Parameters

member-number: Member number assigned to the candidate device to be added to a cluster, ranging from 1 to 31.

mac-address: MAC address of the candidate device (in hexadecimal form of H-H-H).

password: Password of the candidate device, a string of 1 to 16 characters. The password is required when you add a candidate device to a cluster. However, this argument is not needed if the candidate device is not configured with a super password.

Description

Use the `add-member` command to add a candidate device to a cluster.

Note that:
- You must add a cluster member through the management device.
- When adding a member device to a cluster, you need not assign a number to the device. The management device will automatically assign a usable number to the newly added member device.
- After a candidate device joins the cluster, its level 3 password is replaced by the super password of the management device in cipher text.

Examples

```bash
# Add a candidate device to the cluster, setting the member number to 6. (Assume that the MAC address and user password of the candidate device are 000f-e200-35E7 and 123456 respectively.)

<aabbcc_0.Sysname> system-view
[aabbcc_0.Sysname] cluster
[aabbcc_0.Sysname-cluster] add-member 6 mac-address 000f-e200-35e7 password 123456
```

administrator-address

Syntax

```
administrator-address mac-address name cluster-name
undo administrator-address
```

View
Cluster view

Default Level
2: System level

Parameters

mac-address: MAC address of the management device (in hexadecimal form of H-H-H).
cluster-name: Name of an existing cluster, a string of 1 to 8 characters, which can only be letters, numbers, subtraction sign (-), and underline (_).

Description

Use the **administrator-address** command to add a candidate device to a cluster.

Use the **undo administrator-address** command to remove a member device from the cluster.

By default, a device belongs to no cluster.

Note that:

- The **administrator-address** command is applicable on candidate devices only, while the **undo administrator-address** command is applicable on member devices only.
- You are recommended to use the **delete-member** command on the management device to remove a cluster member from a cluster.

Examples

Remove a member device from the cluster.

```
<aabbcc_1.Sysname> system-view
[aabbcc_1.Sysname] cluster
[aabbcc_1.Sysname-cluster] undo administrator-address
```

auto-build

Syntax

```
auto-build [ recover ]
```

View

Cluster view

Default Level

2: System level

Parameters

- **recover**: Automatically reestablishes communication with all the member devices.

Description

Use the **auto-build** command to establish a cluster automatically.

Note that:

- This command can be executed on a candidate device or the management device.
- If you execute this command on a candidate device, you will be required to enter the cluster name to build a cluster. Then the system will collect candidates and add the collected candidates into the cluster automatically.
- If you execute this command on the management device, the system will collect candidates directly and add them into the cluster automatically.
- The **recover** keyword is used to recover a cluster. Using the **auto-build recover** command, you can find the members that are currently not in the member list and add them to the cluster again.
- Ensure that NTDP is enabled, because it is the basis of candidate and member collection. The collection range is also decided through NTDP. You can use the `ntdp hop` command in system view to modify the collection range.
- If a member is configured with a super password different from the super password of the management device, it cannot be added to the cluster automatically.

Examples

```bash
# Establish a cluster automatically.
<Sysname> system-view
<Sysname> cluster
<Sysname-cluster> auto-build
There is no base topology, if set up from local flash file?(Y/N) y
Begin get base topology file from local flash......
Get file error, can not finish base topology recover
Please input cluster name:aabbcc
Collecting candidate list, please wait...

#Jul 22 14:35:18:841 2006 Sysname CLST/5/Cluster_Trap:
OID:1.3.6.1.4.1.2011.6.7.1.0.3: member 0.0.0.0.0.224.252.0.0.0 role change, NTDP
Index:0.0.0.0.0.0.224.252.0.0.0, Role:1
Candidate list:

<table>
<thead>
<tr>
<th>Name</th>
<th>Hops</th>
<th>MAC Address</th>
<th>Device</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Processing...please wait
Cluster auto-build Finish!
0 member(s) added successfully.
```

black-list add-mac

Syntax

```
black-list add-mac mac-address
```

View

Cluster view

Default Level

2: System level

Parameters

`mac-address`: MAC address of the device to be added into the blacklist, in the form of H-H-H.

Description

Use the `black-list add-mac` command to add a device to the blacklist.

Note that this command can be executed on the management device only.
Examples

Add a device with the MAC address of 0ec0-fc00-0001 to the blacklist.
<aabbcc_0.Sysname> system-view
[aabbcc_0.Sysname] cluster
[aabbcc_0.Sysname-cluster] black-list add-mac 0ec0-fc00-0001

black-list delete-mac

Syntax

black-list delete-mac { all | mac-address }

View

Cluster view

Default Level

2: System level

Parameters

all: Deletes all devices from the blacklist.
mac-address: MAC address of the device to be deleted from the blacklist, in the form of H-H-H.

Description

Use the black-list delete-mac command to delete a device from the blacklist.

Note that this command can be executed on the management device only.

Examples

Delete a device with the MAC address of 0EC0-FC00-0001 from the blacklist.
<aabbcc_0.Sysname> system-view
[aabbcc_0.Sysname] cluster
[aabbcc_0.Sysname-cluster] black-list delete-mac 0ec0-fc00-0001

Delete all devices in the blacklist.
[aabbcc_0.Sysname-cluster] black-list delete-mac all

build

Syntax

build name
undo build

View

Cluster view

Default Level

2: System level
Parameters

name: Cluster name, a string of 1 to 8 characters, which can only be letters, numbers, subtraction sign (-), and underline (_).

Description

Use the **build** command to configure the current device as the management device and specify a name for it.

Use the **undo build** command to configure the current management device as a candidate device.

By default, the device is not a management device.

Note that:

- When executing this command, you will be asked whether to create a standard topology map or not.
- This command can only be applied to devices that are capable of being a management device and are not members of other clusters. The command takes no effect if you execute the command on a device which is already a member of another cluster. If you execute this command on a management device, you will replace the cluster name with the one you specify.
- The member number of the management device is 0.

Examples

```bash
# Configure the current device as a management device and specify the cluster name as aabbcc.
<Sysname> system-view
[Sysname] cluster
[Sysname-cluster] build aabbcc
[Sysname-cluster] ip-pool 172.16.0.1 255.255.255.248
Restore topology from local flash file, for there is no base topology.
(Please confirm in 30 seconds, default No). (Y/N)
Y
Begin get base topology file from local flash......
Get file error, can not finish base topology recover
```

```
# Sep 18 19:56:03:804 2006 Sysname IFNET/4/INTERFACE UPDOWN:
Trap 1.3.6.1.6.3.1.1.5.4: Interface 3276899 is Up, ifAdminStatus is 1, ifOperStatus is 1
# Sep 18 19:56:03:804 2006 Sysname CLST/4/Cluster_Trap:
OID:1.3.6.1.4.1.2011.6.7.1.0.3: member 0.0.0.0.224.252.0.29.0 role change, NTD
PIndex:0.0.0.0.0.0.224.252.0.29.0, Role:1
# Sep 18 19:56:03:804 2006 Sysname IFNET/4/UPDOWN:
Line protocol on the interface Vlan-interface100 is UP
[aabbcc_0.Sysname-cluster]
# Sep 18 19:56:18:782 2006 Sysname CLST/4/LOG:
Member 00f-e200-1e00 is joined in cluster aabbcc.
[aabbcc_0.Sysname-cluster]
```
cluster

Syntax

```
cluster
```

View

System view

Default Level

2: System level

Parameters

None

Description

Use the `cluster` command to enter cluster view.

Examples

```
# Enter cluster view
<Sysname> system-view
<Sysname> cluster
<Sysname-cluster>
```

cluster enable

Syntax

```
cluster enable
undo cluster enable
```

View

System view

Default Level

2: System level

Parameters

None

Description

Use the `cluster enable` command to enable the cluster function.

Use the `undo cluster enable` command to disable the cluster function.

By default, the cluster function is enabled.

Note that:

- When you execute the `undo cluster enable` command on a management device, you remove the cluster and its members, and the device stops operating as a management device.
When you execute the \texttt{undo cluster enable} command on a member device, you disable the cluster function on the device, and the device leaves the cluster.

When you execute the \texttt{undo cluster enable} command on a device that belongs to no cluster, you disable the cluster function on the device.

\textbf{Examples}

\begin{verbatim}
Enable the cluster function.
<Sysname> system-view
Sysname] cluster enable
\end{verbatim}

\textbf{cluster switch-to}

\textbf{Syntax}

\begin{verbatim}
cluster switch-to { member-number | mac-address mac-address | administrator | sysname member-sysname }
\end{verbatim}

\textbf{View}

User view

\textbf{Default Level}

0: Visit level

\textbf{Parameters}

\begin{itemize}
 \item \texttt{member-number}: Number of a member device in a cluster, in the range 1 to 31.
 \item \texttt{mac-address mac-address}: MAC address of a member device, in the format of H-H-H.
 \item \texttt{administrator}: Switches from a member device to the management device.
 \item \texttt{sysname member-sysname}: System name of a member device, a string of 1 to 32 characters.
\end{itemize}

\textbf{Description}

Use the \texttt{cluster switch-to} command to switch between the management device and member devices.

\textbf{Examples}

\begin{verbatim}
Switch from the operation interface of the management device to that of the member device numbered 6 and then switch back to the operation interface of the management device.
<aaa_0.Sysname> cluster switch-to 6
<aaa_6.Sysname> quit
<aaa_0.Sysname>

Enter the member device numbered 5 with the system name of \texttt{switcha}.
<aaa_0.Sysname> cluster switch-to sysname switcha
\end{verbatim}

<table>
<thead>
<tr>
<th>SN</th>
<th>Device</th>
<th>MAC Address</th>
<th>Status</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Switch 4200G</td>
<td>000f-e200-5101</td>
<td>UP</td>
<td>test_5.switch</td>
</tr>
<tr>
<td>6</td>
<td>Switch 4200G</td>
<td>000f-e200-5102</td>
<td>UP</td>
<td>test_6.switch</td>
</tr>
</tbody>
</table>

press SN number to switch to the device, other number will quit the command: 5

<aaa_5.switcha>
cluster-local-user

Syntax

```
cluster-local-user username password { cipher | simple } password
undo cluster-local-user username
```

View

Cluster view

Default Level

1: Monitor level

Parameters

- `cipher`: Indicates that the password is in cipher text.
- `simple`: Indicates that the password is in plain text.
- `username`: Username used for logging onto the devices within a cluster through Web, a string of 1 to 55 characters.
- `password`: Password used for logging onto the devices within a cluster through Web. This password is a string of 1 to 63 characters when the `simple` keyword is specified, and can be in either plain text or cipher text when the `cipher` keyword is specified. A plain text password must be a string of 1 to 63 characters. The cipher text password must have a fixed length of 24 or 88 characters. The password is case sensitive.

Description

Use the `cluster-local-user` command to configure Web user accounts in batches.

Use the `undo cluster-local-user` command to remove the configuration.

Note that the command can be configured once on the management device only.

Examples

```
# Configure Web user accounts for the devices within a cluster, with username being abc, password being 123456 and displayed in plain text.
<aaa_0.Sysname> system-view
[aaa_0.Sysname] cluster
[aaa_0.Sysname-cluster] cluster-local-user abc password simple 123456
```

cluster-mac

Syntax

```
cluster-mac mac-address
undo cluster-mac
```

View

Cluster view
Default Level

2: System level

Parameters

mac-address: Multicast MAC address (in hexadecimal in the format of H-H-H), which can be 0180-c200-0000, 0180-c200-000a, 0180-c200-0020 through 0180-c200-002f, or 010f-e200-0002.

Description

Use the `cluster-mac` command to configure the destination MAC address for cluster management protocol packets.

Use the `undo cluster-mac` command to restore the default.

By default, the destination MAC address is 0180-c200-000a.

Note that this command can be executed on the management device only.

Examples

```
# Set the multicast MAC address of the cluster management protocol packets to 0180-c200-0000.
<Sysname> system-view
[Sysname] cluster
[Sysname-cluster] ip-pool 10.1.1.1 24
[Sysname-cluster] build aaa
[aaa_0.Sysname-cluster] cluster-mac 0180-c200-0000
```

cluster-mac syn-interval

Syntax

`cluster-mac syn-interval interval-time`

View

Cluster view

Default Level

2: System level

Parameters

interval-time: Interval (in minutes) to send broadcast packets, in the range 0 to 30. If the interval is set to 0, the management device does not send broadcast packets to the member devices.

Description

Use the `cluster-mac syn-interval` command to set the interval for a management device to send MAC address negotiation broadcast packets for cluster management.

By default, the interval is set to one minute.

Note that this command can be executed on the management device only.

Examples

```
# Set the interval for the management device to send MAC address negotiation broadcast packets for cluster management to two minutes.
```
<Sysname> system-view
[Sysname] cluster
[Sysname-cluster] ip-pool 10.1.1.1 24
[Sysname-cluster] build aaa
[aaa_0.Sysname-cluster] cluster-mac syn-interval 2

cluster-snmp-agent community

Syntax

```
cluster-snmp-agent community { read | write } community-name [ mib-view view-name ]
undo cluster-snmp-agent community community-name
```

View

Cluster view

Default Level

1: Monitor level

Parameters

- **read**: Indicates to allow the community’s read-only access to MIB objects. The community with read-only authority can only query the device information.
- **write**: Indicates to allow the community’s read-write access to MIB objects. The community with read-write authority can configure the device information.
- **community-name**: Community name, a string of 1 to 26 characters.
- **view-name**: MIB view name, a string of 1 to 32 characters.

Description

Use the `cluster-snmp-agent community` command to configure an SNMP community shared by a cluster and set its access authority.

Use the `undo cluster-snmp-agent community` command to remove a specified community name.

Note that:

- The command used to configure the SNMP community with read or read-only authority can only be executed once on the management device. This configuration will be synchronized to the member devices in the whitelist, which is equal to configuring multiple member devices at one time.
- SNMP community name will be retained if a cluster is dismissed or a member device is removed from the whitelist.
- If the same community name as the current one has been configured on a member device, the current community name will replace the original one.

Examples

```
# Configure the SNMP community name shared by a cluster as comaccess and allow the community’s read-only access to MIB objects.
<aaa_0.Sysname> system-view
[aaa_0.Sysname] cluster
[aaa_0.Sysname-cluster] cluster-snmp-agent community read comaccess
```
Configure the SNMP community name shared by a cluster as comaccesswr and allow the community’s read-write access to MIB objects.

```bash
[aaa_0.Sysname-cluster] cluster-snmp-agent community write comaccesswr
```

cluster-snmp-agent group v3

Syntax

```bash
cluster-snmp-agent group v3 group-name [ authentication | privacy ] [ read-view read-view ] [ write-view write-view ] [ notify-view notify-view ]
undo cluster-snmp-agent group v3 group-name [ authentication | privacy ]
```

View

Cluster view

Default Level

1: Monitor level

Parameters

- `group-name`: Group name, a string of 1 to 32 characters.
- `authentication`: Specifies to authenticate a packet but not to encrypt it.
- `privacy`: Specifies to authenticate and encrypt a packet.
- `read-view`: Read-only view name, a string of 1 to 32 characters.
- `write-view`: Read-write view name, a string of 1 to 32 characters.
- `notify-view`: View name in which Trap messages can be sent, a string of 1 to 32 characters.

Description

Use the `cluster-snmp-agent group` command to configure the SNMPv3 group shared by a cluster and set its access rights.

Use the `undo cluster-snmp-agent group` command to remove the SNMPv3 group shared by a cluster.

Note that:

- The command can be executed once on the management device only. This configuration will be synchronized to the member devices in the whitelist, which is equal to configuring multiple member devices at one time.
- SNMPv3 group name will be retained if a cluster is dismissed or a member device is deleted from the whitelist.
- If the same group name as the current one has been configured on a member device, the current group name will replace the original one.

Examples

```bash
# Create an SNMP group snmpgroup.
<aaa_0.Sysname> system-view
[aaa_0.Sysname] cluster
[aaa_0.Sysname-cluster] cluster-snmp-agent group v3 snmpgroup
```
cluster-snmp-agent mib-view included

Syntax

```
cluster-snmp-agent mib-view included view-name oid-tree

undo cluster-snmp-agent mib-view view-name
```

View

Cluster view

Default Level

1: Monitor level

Parameters

- **view-name**: MIB view name, a string of 1 to 32 characters.
- **oid-tree**: MIB subtree, a string of 1 to 255 characters, which can only be a variable OID string or variable name string. OID is composed of a series of integers, indicating where a node is in the MIB tree. It can uniquely identify an object in a MIB.

Description

Use the `cluster-snmp-agent mib-view included` command to create or update the MIB view information shared by a cluster.

Use the `undo cluster-snmp-agent mib-view` command to delete the MIB view information shared by a cluster.

By default, the MIB view name shared by a cluster is ViewDefault, in which the cluster can access ISO subtree.

Note that:
- This command can be executed once on the management device only. This configuration will be synchronized to member devices on the whitelist, which is equal to configuring multiple member devices at one time.
- The MIB view will be retained if a cluster is dismissed or a member device is deleted from the whitelist.
- If the same view name as the current one has been configured on a member device, the current view will replace the original one on the member device.

Examples

```
# Create a view including all objects of mib2.
<aaa_0.Sysname> system-view
[aaa_0.Sysname] cluster
[aaa_0.Sysname-cluster] cluster-snmp-agent mib-view included mib2 1.3.6.1.2.1
```

class-snmp-agent usm-user v3

Syntax

```
cluster-snmp-agent usm-user v3 user-name group-name [ authentication-mode { md5 | sha } auth-password ] [ privacy-mode des56 priv-password ]
```
undo cluster-snmp-agent usm-user v3 user-name group-name

View

Cluster view

Default Level

1: Monitor level

Parameters

user-name: User name, a string of 1 to 32 characters.
group-name: Group name, a string of 1 to 32 characters.
authentication-mode: Specifies the security level to be authentication needed.
md5: Specifies the authentication protocol to be HMAC-MD5-96.
sha: Specifies the authentication protocol to be HMAC-SHA-96.
auth-password: Authentication password, a string of 1 to 16 characters if in plain text; it can only be a string of 24 characters if in cipher text.
privacy-mode: Specifies the security level to be encrypted.
des56: Specifies the encryption protocol to be DES (data encryption standard).
priv-password: Encryption password, a string of 1 to 16 characters in plain text; it can only be a string of 24 characters in cipher text.

Description

Use the `cluster-snmp-agent usm-user v3` command to add a new user to the SNMP v3 group shared by a cluster.

Use the `undo cluster-snmp-agent usm-user v3` command to delete the SNMP v3 group user shared by the cluster.

Note that:

- The command can be executed once on the management device only. This configuration will be synchronized to member devices on the whitelist, which is equal to configuring multiple member devices at one time.
- SNMPv3 group user will be retained if a cluster is dismissed or a member device is deleted from the whitelist.
- If the same username as the current one has been configured on a member device, the current username will replace the original one on the member device.

Examples

Add a user wang to the SNMP group snmpgroup, set the security level to authentication-needed and specify the authentication protocol as HMAC-MD5-96 and authentication password as pass.
<aaa_0.Sysname> system-view
[aaa_0.Sysname] cluster
[aaa_0.Sysname-cluster] cluster-snmp-agent usm-user v3 wang snmpgroup authentication-mode md5 pass
delete-member

Syntax

```
delete-member member-number [ to-black-list ]
```

View

Cluster view

Default Level

2: System level

Parameters

- `member-number`: Number of a member device in a cluster, in the range 1 to 31.
- `to-black-list`: Adds the device removed from a cluster to the blacklist to prevent it from being added to the cluster.

Description

Use the `delete-member` command to remove a member device from the cluster.

Note that you should perform the operation to remove a member device from a cluster on the management device only.

Examples

```
# Remove the member device numbered 2 from the cluster.
<Sysname> system-view
[Sysname] cluster
[Sysname-cluster] ip-pool 10.1.1.1 24
[Sysname-cluster] build aaa
[aaa_0.Sysname-cluster] delete-member 2

# Remove the member device numbered 3 from the cluster, and add it to the blacklist.
[aaa_0.Sysname-cluster] delete-member 3 to-black-list
```

display cluster

Syntax

```
display cluster
```

View

Any view

Default Level

1: Monitor level

Parameters

None
Description

Use the `display cluster` command to display the state and statistics of the cluster to which the current device belongs.

Note that this command can be executed on the management device and member devices only.

Examples

Display cluster information on the management device.

```bash
<aaa_0.Sysname> display cluster
Cluster name:"aaa"
Role:Administrator
Management-vlan:100
Handshake timer:10 sec
Handshake hold-time:60 sec
IP-Pool:1.1.1.1/16
cluster-mac:0180-c200-000a
No logging host configured
No SNMP host configured
No FTP server configured
No TFTP server configured

2 member(s) in the cluster, and 0 of them down.
```

Display cluster information on a member device.

```bash
<aaa_1.Sysname> display cluster
Cluster name:"aaa"
Role:Member
Member number:1
Management-vlan:100
cluster-mac:0180-c200-000a
Handshake timer:10 sec
Handshake hold-time:60 sec

Administrator device IP address:1.1.1.1
Administrator device mac address:000f-e200-1d00
Administrator status:Up
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster name</td>
<td>Name of the cluster</td>
</tr>
<tr>
<td>Role</td>
<td>Role of the switch in the cluster, Administrator means the current device is a management device and Member means the current device is a member device.</td>
</tr>
<tr>
<td>Member number</td>
<td>Member number of the switch in the cluster</td>
</tr>
<tr>
<td>Management-vlan</td>
<td>Management VLAN of the cluster</td>
</tr>
<tr>
<td>Handshake timer</td>
<td>Interval to send handshake packets</td>
</tr>
<tr>
<td>Handshake hold-time</td>
<td>Value of handshake timer</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>IP-Pool</td>
<td>Private IP addresses of the member devices in the cluster</td>
</tr>
<tr>
<td>cluster-mac</td>
<td>Multicast MAC address of cluster management packets</td>
</tr>
<tr>
<td>Administrator device IP address</td>
<td>IP address of the management device</td>
</tr>
<tr>
<td>Administrator device mac address</td>
<td>MAC address of the management device</td>
</tr>
<tr>
<td>Administrator status</td>
<td>State of the management device</td>
</tr>
</tbody>
</table>

display cluster base-topology

Syntax

display cluster base-topology [mac-address mac-address | member-id member-number]

View

Any view

Default Level

2: System level

Parameters

mac-address: Specifies a device by its MAC address. The system will display the standard topology with the device as the root.

member-number: Specifies a device by its number. The system will display the standard topology with the device as the root.

Description

Use the display cluster topology command to display the standard topology of a cluster.

You can create a standard topology map when executing the build or auto-build command, or you can use the topology accept command to save the current topology map as the standard topology map.

Note that this command can be executed on the management device only.

Examples

Display the standard topology of a cluster.
<aaa_0.Sysname> display cluster base-topology

--
(PeerPort) ConnectFlag (NativePort) [SysName:DeviceMac]
--
[aaa_0.Sysname:000f-e200-1400]
 |- (P_4/1) <-- (P_1/7) [Sysname:000f-e200-3333]
 | |- (P_1/7) <-- (P_4/1) [aaa_3.Sysname:000f-e200-0000]
 | | |- (P_4/1) <-- (P_4/1) [aaa_0.Sysname:000f-e200-1400]
Table 20-6 display cluster base-topology command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PeerPort</td>
<td>Peer port</td>
</tr>
<tr>
<td>ConnectFlag</td>
<td>Connection flag: <---></td>
</tr>
<tr>
<td>NativePort</td>
<td>Local port</td>
</tr>
<tr>
<td>SysName</td>
<td>System name of the peer device</td>
</tr>
<tr>
<td>DeviceMac</td>
<td>MAC address of the peer device</td>
</tr>
</tbody>
</table>

20-31
display cluster black-list

Syntax

display cluster black-list

View

Any view

Default Level

2: System level

Parameters

None

Description

Use the `display cluster black-list` command to display the current blacklist of a cluster.

Note that this command can be executed on the management device only.

Examples

```bash
# View the current blacklist of the cluster.
<aaa_0.Sysname> display cluster black-list
```

<table>
<thead>
<tr>
<th>Device ID</th>
<th>Access Device ID</th>
<th>Access port</th>
</tr>
</thead>
<tbody>
<tr>
<td>000f-e200-0010</td>
<td>000f-e200-3550</td>
<td>GigabitEthernet1/0/1</td>
</tr>
</tbody>
</table>

Table 20-7 display cluster black-list command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device ID</td>
<td>ID of the blacklist device, indicated by its MAC address.</td>
</tr>
<tr>
<td>Access Device ID</td>
<td>ID of the device connected to the blacklist device, indicated by its MAC address.</td>
</tr>
<tr>
<td>Access port</td>
<td>Port connected to the blacklist device.</td>
</tr>
</tbody>
</table>

display cluster candidates

Syntax

```bash
display cluster candidates [ mac-address mac-address | verbose ]
```

View

Any view

Default Level

1: Monitor level
Parameters

mac-address mac-address: Specifies the MAC address of a candidate device, in the format of H-H-H.
verbose: Displays the detailed information about a candidate device.

Description

Use the display cluster candidates command to display the information about the candidate devices of a cluster.

Note that the command can be executed on the management device only.

Examples

Display the information about all the candidate devices.
<aaa_0.Sysname> display cluster candidates

<table>
<thead>
<tr>
<th>MAC</th>
<th>HOP</th>
<th>IP</th>
<th>Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>000f-e200-3199</td>
<td>3</td>
<td></td>
<td>Switch 4200G</td>
</tr>
<tr>
<td>000f-cbb8-9528</td>
<td>1</td>
<td>31.31.31.56/24</td>
<td>Switch 4200G</td>
</tr>
</tbody>
</table>

Table 20-8 display cluster candidates command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC</td>
<td>MAC address of a candidate device</td>
</tr>
<tr>
<td>HOP</td>
<td>Hops from a candidate device to the management device</td>
</tr>
<tr>
<td>IP</td>
<td>IP address of a candidate device</td>
</tr>
<tr>
<td>Device</td>
<td>Platform information of a device</td>
</tr>
</tbody>
</table>

Display the information about a specified candidate device.
<aaa_0.Sysname> display cluster candidates mac-address 000f-e261-c4c0

Hostname : LSW1
MAC : 000f-e261-c4c0
Hop : 1
Device : Sysname Switch 4200G
IP : 1.5.6.9/16

Display the detailed information about all the candidate devices.
<aaa_0.Sysname> display cluster candidates verbose

Hostname : 3100_4
MAC : 000f-e200-3199
Hop : 3
Device : Switch 4200G
IP :

Hostname : Sysname
MAC : 000f-cbb8-9528
Hop : 1
Device : Switch 4200G
IP : 31.31.31.56/24
Table 20-9 display cluster candidates verbose command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname</td>
<td>Name of a candidate device</td>
</tr>
<tr>
<td>MAC</td>
<td>MAC address of a candidate device</td>
</tr>
<tr>
<td>Hop</td>
<td>Hops from a candidate device to the management device</td>
</tr>
<tr>
<td>IP</td>
<td>IP address of a candidate device</td>
</tr>
<tr>
<td>Device</td>
<td>Platform information of a candidate device</td>
</tr>
</tbody>
</table>

display cluster current-topology

Syntax

```
display cluster current-topology [ mac-address mac-address [ to-mac-address mac-address ] | member-id member-number [ to-member-id member-number ] ]
```

View

Any view

Default Level

2: System level

Parameters

- `member-number`: Number of the devices in a cluster (including the management device and member devices).
- `mac-address`: MAC addresses of the devices in a cluster (including the management device and member devices).

Description

Use the `display cluster current-topology` command to display the current topology information of the cluster.

- If you specify both the `mac-address mac-address` and `to-mac-address mac-address` arguments, the topology information of the devices that are in a cluster and form the connection between two specified devices is displayed.
- If you specify both the `member-id member-number` and `to-member-id member-number` arguments, the topology information of the devices that are in a cluster and form the connection between two specified devices is displayed.
- If you specify only the `mac-address mac-address` or `member-id member-number` argument, the topology information of all the devices in a cluster is displayed, with a specified device as the root node.

Note that this command can be executed on the management device only.

Examples

```
# Display the information of the current topology of a cluster.
<aaa_0.Sysname> display cluster current-topology
```
(PeerPort) ConnectFlag (NativePort) [SysName:DeviceMac]

ConnectFlag:

<--> normal connect ---> odd connect **** in blacklist
???? lost device ++++ new device -||- STP discarding

[aaa_0.Sysname:000f-e200-7016]
|
L-(P_1/12)++++(P_1/8)[Sysname:000f-e200-7000]
|
|-(P_1/11)++++(P_1/9)[Sysname:000f-e200-4510]
|
| |-(P_1/9)++++(P_4/1)[aaa_2.Sysname:000f-e200-0000]
|
| | |-(P_1/9)++++(P_1/7)[Sysname:000f-e200-3333]
|
| |-(P_1/11)++++(P_4/1)[bbb_2.3Com:000f-e200-0000]
|
| | |-(P_4/1)++++(P_1/7)[Sysname:000f-e200-3333]
|
| |L-(P_1/11)++++(P_1/7)[Sysname:000f-e200-3333]

Table 20-10 display cluster current-topology command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PeerPort</td>
<td>Peer port</td>
</tr>
<tr>
<td>ConnectFlag</td>
<td>Connection flag</td>
</tr>
<tr>
<td>NativePort</td>
<td>Local port</td>
</tr>
<tr>
<td>SysName:DeviceMac</td>
<td>System name of the device</td>
</tr>
<tr>
<td><--> normal connect</td>
<td>Indicates a normal connection between the device and the management device</td>
</tr>
<tr>
<td>---> odd connect</td>
<td>Indicates a unidirectional connection between the device and the management device</td>
</tr>
<tr>
<td>**** in blacklist</td>
<td>Indicates the device is in the blacklist</td>
</tr>
<tr>
<td>???? lost device</td>
<td>Indicates a lost connection between the device and the management device</td>
</tr>
<tr>
<td>++++ new device</td>
<td>Indicates this is a new device, whose identity is to be recognized by the administrator</td>
</tr>
<tr>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
A new device in the topology information is identified based on the standard topology. After you add a device into a cluster, if you do not use the `topology accept` command to confirm the current topology and save it as the standard topology, this device is still regarded as a new device.

display cluster members

Syntax

```plaintext
display cluster members [ member-number | verbose ]
```

View

Any view

Default Level

1: Monitor level

Parameters

- `member-number`: Number of the member device, in the range 0 to 31.
- `verbose`: Displays the detailed information about all the devices in a cluster.

Description

Use the `display cluster members` command to display the information about cluster members.

Note that this command can be executed on the management device only.

Examples

```
# Display the information about all the devices in a cluster.
<aaa_0.Sysname> display cluster members
```

<table>
<thead>
<tr>
<th>SN</th>
<th>Device</th>
<th>MAC Address</th>
<th>Status</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Switch 4200G</td>
<td>000f-e200-1751</td>
<td>Admin</td>
<td>123_0.3100_1</td>
</tr>
<tr>
<td>2</td>
<td>Switch 4200G</td>
<td>000f-e200-3199</td>
<td>Up</td>
<td>123_2.3100_4</td>
</tr>
<tr>
<td>3</td>
<td>Sysname S3628P</td>
<td>00e0-fd00-0043</td>
<td>Up</td>
<td>123_3.S3528P</td>
</tr>
<tr>
<td>4</td>
<td>Switch 4200G</td>
<td>00f-e200-2579</td>
<td>Up</td>
<td>123_4.3100_2</td>
</tr>
<tr>
<td>5</td>
<td>Switch 4200G</td>
<td>00f-e20f-c415</td>
<td>Up</td>
<td>123_5.3100_5</td>
</tr>
</tbody>
</table>

Table 20-11 display cluster members command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN</td>
<td>Member number</td>
</tr>
<tr>
<td>Device</td>
<td>Device type</td>
</tr>
<tr>
<td>MAC Address</td>
<td>MAC address of a device</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>Status</td>
<td>State of a device:</td>
</tr>
<tr>
<td></td>
<td>- up: The member device which is up</td>
</tr>
<tr>
<td></td>
<td>- down: The member device which is down</td>
</tr>
<tr>
<td></td>
<td>- deleting: The member device which is being deleted</td>
</tr>
<tr>
<td></td>
<td>- admin: The management device</td>
</tr>
<tr>
<td>Name</td>
<td>Name of a device</td>
</tr>
</tbody>
</table>

Display the detailed information about the management device and all member devices.

```bash
<aaa_0.Sysname> display cluster members verbose
Member number:0
Name:aaa_0.Sysname
Device:Switch 4210G PWR 48-Port
MAC Address:000f-e2d2-58fb
Member status:Admin
Hops to administrator device:0
IP: 192.168.0.88/24
Version:
  3Com Corporation
  3Com OS Software Version 5.20 Release 2202P17 Release 2202P17
  Copyright (c) 2004-2009 3Com Corp. and its licensors. All rights reserved.
  Switch 4210G PWR 48-Port V300R001B01D021

Member number:2
Name:aaa_2.Sysname
Device:3Com S7902E
MAC Address:000f-e234-5678
Member status:Up
Hops to administrator device:2
IP: 192.168.0.71/24
Version:
  3Com Corporation
  3Com OS Software Version 3ComComware Release 520 Test 6610
  Copyright (c) 2004-2009 3Com Corp. and its licensors. All rights reserved.
  3Com S7902E V600R006B02D076SP03, Test 6610

Member number:3
Name:aaa_3.Sysname
Device:Switch 4210G 24-Port
MAC Address:00e0-fc00-5502
Member status:Up
Hops to administrator device:2
IP: 192.168.0.86/24
Version:
  3Com Corporation
```
Table 20-12 display cluster members verbose command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Member number</td>
<td>Device member number</td>
</tr>
<tr>
<td>Name</td>
<td>Name of a member device, composed of the cluster name and the host name of the member device, in the format of cluster name.hostname. When the management device type is not consistent with the member device type, if a user modifies the cluster name on the management device continuously, the cluster name may appear twice in the cluster member name, for example, “clustername.clustername.hostname”. This abnormal case can restore in a period of time.</td>
</tr>
<tr>
<td>Device</td>
<td>Device type</td>
</tr>
<tr>
<td>MAC Address</td>
<td>MAC address of a device</td>
</tr>
<tr>
<td>Member status</td>
<td>State of a device</td>
</tr>
<tr>
<td>Hops to administrator device</td>
<td>Hops from the current device to the management device</td>
</tr>
<tr>
<td>IP</td>
<td>IP address of a device</td>
</tr>
<tr>
<td>Version</td>
<td>Software version of the current device</td>
</tr>
</tbody>
</table>

ftp-server

Syntax

```
ftp-server ip-address [ user-name username password { simple | cipher } password ]
undo ftp-server
```

View

Cluster view

Default Level

3: Manage level

Parameters

- `ip-address`: IP address of the FTP server.
- `username`: Username used to log onto the FTP server, a string of 1 to 32 characters.
- `simple`: Indicates that the password is in plain text.
- `cipher`: Indicates that the password is in cipher text.
- `password`: Password used to log onto the FTP server. This password must be in plain text when the `simple` keyword is specified, and can be in either plain text or cipher text when the `cipher` keyword is specified. A plain text password must be a string of no more than 16 characters, such as “aabbcc”. The cipher text password must have a fixed length of 24 characters, such as `_{TT8F}Y\5SQ=^Q`MAF4<1!`.

20-38
Description

Use the **ftp-server** command to configure a public FTP server (by setting its IP address, username, and password) on the management device for the member devices in the cluster.

Use the **undo ftp-server** command to remove the FTP server configured for the member devices in the cluster.

By default, a cluster is not configured with a public FTP server.

Note that the command can be executed on the management device only.

Examples

Set the IP address, username and password of an FTP server shared by the cluster on the management device to be 1.0.0.9, ftp, and in plain text respectively.

```bash
<Sysname> system-view
[Sysname] cluster
[Sysname-cluster] ip-pool 10.1.1.1 24
[Sysname-cluster] build aaa
[aaa_0.Sysname-cluster] ftp-server 1.0.0.9 user-name ftp password simple ftp
```

holdtime

Syntax

```
holdtime seconds
undo holdtime
```

View

Cluster view

Default Level

2: System level

Parameters

```
seconds: Holdtime in seconds, in the range 1 to 255.
```

Description

Use the **holdtime** command to configure the holdtime of a device.

Use the **undo holdtime** command to restore the default.

By default, the holdtime of a device is 60 seconds.

Note that this command can be executed on the management device only. The configuration is valid on all member devices in a cluster.

Examples

Set the holdtime to 30 seconds.

```bash
<Sysname> system-view
[Sysname] cluster
[Sysname-cluster] ip-pool 10.1.1.1 24
[Sysname-cluster] build aaa
```
ip-pool

Syntax

ip-pool administrator-ip-address { mask | mask-length }
undo ip-pool

View

Cluster view

Default Level

2: System level

Parameters

administrator-ip-address: Private IP address of the management device in a cluster.

mask | mask-length: Mask of the IP address pool of a cluster. It is an integer or in dotted decimal notation. When it is an integer, it ranges from 1 to 30. A network address can be obtained by ANDing this mask with administrator-ip-address. The private IP addresses of all member devices in a cluster belong to this network segment.

Description

Use the **ip-pool** command to configure a private IP address range for cluster members.

Use the **undo ip-pool** command to remove the IP address range configuration.

By default, no private IP address range is configured for cluster members.

Note that:

- You must configure the IP address range on the management device only and before establishing a cluster. If a cluster has already been established, you are not allowed to change the IP address range.
- For a cluster to work normally, the IP addresses of the VLAN interfaces of the management device and member devices must not be in the same network segment as that of the cluster address pool.

Examples

```
# Configure the IP address range of a cluster.
<Sysname> system-view
<Sysname> cluster
<Sysname-cluster> ip-pool 10.200.0.1 20
```

logging-host

Syntax

logging-host ip-address
undo logging-host
View

Cluster view

Default Level

2: System level

Parameters

ip-address: IP address of the logging host.

Description

Use the `logging-host` command to configure a logging host shared by a cluster.

Use the `undo logging-host` command to remove the logging host configuration.

By default, no logging host is configured for a cluster.

Note that:

- This command can be executed on the management device only.
- You have to execute the `info-center loghost` command in system view first for the logging host you configured to take effect.

For related configuration, refer to the `info-center loghost` command in *Information Center Commands* in the *System Volume*.

Examples

```
# Configure the IP address of the logging host shared by a cluster on the management device as 10.10.10.9.
<Sysname> system-view
<Sysname> cluster
<Sysname-cluster> ip-pool 10.1.1.1 24
<Sysname-cluster> build aaa
<aaa_0.Sysname-cluster> logging-host 10.10.10.9
```

management-vlan

Syntax

```
management-vlan vlan-id
undo management-vlan
```

View

System view

Default Level

2: System level

Parameters

vlan-id: ID of the management VLAN, in the range 1 to 4094.
Description

Use the `management-vlan` command to specify the management VLAN.

Use the `undo management-vlan` command to restore the default.

By default, VLAN 1 is the management VLAN.

Note that:

- The management VLAN must be specified before a cluster is created. Once a member device is added to a cluster, the management VLAN configuration cannot be modified. To modify the management VLAN for a device belonging to a cluster, you need to cancel the cluster-related configurations on the device, specify the desired VLAN to be the management VLAN, and then re-create the cluster.

- For the purpose of security, you are not recommended to configure the management VLAN as the default VLAN ID of the port connecting the management device and the member devices.

- Only when the default VLAN ID of all cascade ports and the port connecting the management device and the member device is the management VLAN, can the packets in the management VLAN packets be passed without a tag. Otherwise, you must configure the packets from a management VLAN to pass these ports. For the configuration procedure, refer to **VLAN Configuration** in the *Access Volume*.

Examples

```
# Specify VLAN 2 as the management VLAN.
<Sysname> system-view
[Sysname] management-vlan 2
```

management-vlan synchronization enable

Syntax

```
management-vlan synchronization enable
undo management-vlan synchronization enable
```

View

Cluster view

Default Level

1: Monitor level

Parameters

None

Description

Use the `management-vlan synchronization enable` command to enable the management VLAN auto-negotiation function.

Use the `undo management-vlan synchronization enable` command to disable the management VLAN auto-negotiation function.

By default, the management VLAN auto-negotiation function is disabled.
Examples

Enable the management VLAN auto-negotiation function on the management device.

```bash
<aaa_0.Sysname> system-view
[aaa_0.Sysname] cluster
[aaa_0.Sysname-cluster] management-vlan synchronization enable
```

nm-interface vlan-interface

Syntax

```bash
nm-interface vlan-interface vlan-interface-id
```

View

Cluster view

Default Level

2: System level

Parameters

vlan-interface-id: ID of the VLAN interface. The value range is the same as that of the existing VLAN interface ID.

Description

Use the `nm-interface vlan-interface` command to configure the VLAN interface of the access management device (including FTP/TFTP server, management host and log host) as the network management interface of the management device.

Examples

Configure VLAN-interface 2 as the network management interface.

```bash
<aaa_0.Sysname> system-view
[aaa_0.Sysname] cluster
[aaa_0.Sysname-cluster] nm-interface vlan-interface 2
```

reboot member

Syntax

```bash
reboot member { member-number | mac-address mac-address } [ eraseflash ]
```

View

Cluster view

Default Level

2: System level

Parameters

member-number: Number of the member device, in the range 1 to 31.
mac-address *mac-address*: MAC address of the member device to be rebooted, in the format of H-H-H.

eraseflash: Deletes the configuration file when the member device reboots.

Description

Use the **reboot member** command to reboot a specified member device on the management device.

Examples

```
# Reboot the member device numbered 2.
<Sysname> system-view
[Sysname] cluster
[Sysname-cluster] ip-pool 10.1.1.1 24
[Sysname-cluster] build aaa
[aaa_0.Sysname-cluster] reboot member 2
```

snmp-host

Syntax

```
snmp-host ip-address [ community-string read string1 write string2 ]
undo snmp-host
```

View

Cluster view

Default Level

3: Manage level

Parameters

- **ip-address**: IP address of an SNMP host.
- **string1**: Community name of read-only access, a string of 1 to 26 characters.
- **string2**: Community name of read-write access, a string of 1 to 26 characters.

Description

Use the **snmp-host** command to configure a shared SNMP host for a cluster.

Use the **undo snmp-host** command to cancel the SNMP host configuration.

By default, no SNMP host is configured for a cluster.

Note that this command can be executed on the management device only.

Examples

```
# Configure a shared SNMP host for the cluster on the management device.
<Sysname> system-view
[Sysname] cluster
[Sysname-cluster] ip-pool 10.1.1.1 24
[Sysname-cluster] build aaa
[aaa_0.Sysname-cluster] snmp-host 1.0.0.9 community-string read 123 write 456
```
tftp-server

Syntax

 tftp-server ip-address
 undo tftp-server

View

 Cluster view

Default Level

 2: System level

Parameters

 ip-address: IP address of a TFTP server.

Description

 Use the tftp-server command to configure a shared TFTP server for a cluster.
 Use the undo tftp-server command to cancel the TFTP server of the cluster.
 By default, no TFTP server is configured.
 Note that this command can be executed on the management device only.

Examples

 # Configure a shared TFTP server on the management device as 1.0.0.9.
 <Sysname> system-view
 [Sysname] cluster
 [Sysname-cluster] ip-pool 10.1.1.1 24
 [Sysname-cluster] build aaa
 [aaa_0.Sysname-cluster] tftp-server 1.0.0.9

timer

Syntax

 timer interval-time
 undo timer

View

 Cluster view

Default Level

 2: System level

Parameters

 interval-time: Interval (in seconds) to send handshake packets. This argument ranges from 1 to 255.

Description

 Use the timer command to set the interval to send handshake packets.
Use the undo timer command to restore the default.

By default, the interval to send handshake packets is 10 seconds.

Note that this command can be executed on the management device only and is valid for all member devices in a cluster.

Examples

Configure the interval to send handshake packets as 3 seconds.
<Sysname> system-view
<Sysname> cluster
<Sysname-cluster> ip-pool 10.1.1.1 24
<Sysname-cluster> build aaa
<Sysname_0.Sysname-cluster> timer 3

topology accept

Syntax

topology accept { all [save-to (ftp-server | local-flash)] | mac-address mac-address | member-id member-number }

undo topology accept { all | mac-address mac-address | member-id member-number }

View

Cluster view

Default Level

2: System level

Parameters

all: Accepts the current cluster topology information as the standard topology information.

mac-address mac-address: Specifies a device by its MAC address. The device will be accepted to join the standard topology of the cluster.

member-id member-number: Specifies a device by its member number. The device will be accepted to join the standard topology of the cluster. The member-number argument is in the range 0 to 31.

save-to: Confirms the current topology as the standard topology, and backs up the standard topology on the FTP server or local flash in a file named “topology.top”.

Description

Use the topology accept command to confirm the current topology information and save it as the standard topology.

Use the undo topology accept to delete the standard topology information.

Note that:

- This command can be executed on the management device only.
- The file used to save standard topology on the FTP server or the local flash is named “topology.top”, which includes both the information of blacklist and whitelist. A blacklist contains the devices that are prohibited to be added to a cluster. A whitelist contains devices that can be added to a cluster.
Examples

```plaintext
# Take the current topology as the standard topology.
<Sysname> system-view
<Sysname> cluster
<Sysname-cluster> ip-pool 10.1.1.1 24
<Sysname-cluster> build aaa
<aaa_0.Sysname-cluster> topology accept all
```

topology restore-from

Syntax

```
topology restore-from { ftp-server | local-flash }
```

View

Cluster view

Default Level

2: System level

Parameters

- **ftp-server**: Restores the standard topology information from the FTP server.
- **local-flash**: Restores the standard topology information from the local flash.

Description

Use the `topology restore-from` command to restore the standard topology information from the FTP server or the local flash in case the cluster topology information is incorrect.

Note that:
- This command can be executed on the management device only.
- If the stored standard topology is not correct, the device cannot be aware of it. Therefore, you must ensure that the standard topology is correct.

Examples

```plaintext
# Restore the standard topology.
<Sysname> system-view
<Sysname> cluster
<Sysname-cluster> ip-pool 10.1.1.1 24
<Sysname-cluster> build aaa
<aaa_0.Sysname-cluster> topology restore-from local-flash
```

topology save-to

Syntax

```
topology save-to { ftp-server | local-flash }
```

View

Cluster view
Default Level
2: System level

Parameters

ftp-server: Saves the standard topology information to the FTP server.
local-flash: Saves the standard topology information to the local flash.

Description

Use the topology save-to command to save the standard topology information to the FTP server or the local flash.

Note that:

- The file used to save standard topology on the FTP server or the local flash is named "topology.top", which includes both the information of blacklist and whitelist. A blacklist contains the devices that are prohibited to be added to a cluster. A whitelist contains devices that can be added to a cluster.
- This command can be executed on the management device only.

Examples

Save the standard topology information to the local flash.
<Sysname> system-view
[Sysname] cluster
[Sysname-cluster] ip-pool 10.1.1.1 24
[Sysname-cluster] build aaa
[aaa_0.Sysname-cluster] topology save-to local-flash
Among Switch 4210G series switches, Switch 4210G 24-Port, Switch 4210G 48-Port, Switch 4210G PWR 24-Port, and Switch 4210G PWR 48-Port switches support IRF.

IRF Configuration Commands

display irf

Syntax

display irf

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the display irf command to display the information of the current Intelligent Resilient Framework (IRF), which has the device you are working on as its IRF member.

The command displays the information of IRF members, and the information of the devices that are joining in this IRF.

Examples

Display the information of the current IRF.

<Sysname> display irf

<table>
<thead>
<tr>
<th>Switch</th>
<th>Role</th>
<th>Priority</th>
<th>CPU-MAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Slave</td>
<td>13</td>
<td>000f-e2b8-1f84</td>
</tr>
<tr>
<td>2</td>
<td>Slave</td>
<td>1</td>
<td>000f-e220-2122</td>
</tr>
<tr>
<td>*3</td>
<td>Master</td>
<td>20</td>
<td>000f-e2b8-1a82</td>
</tr>
<tr>
<td>+4</td>
<td>SlaveWait</td>
<td>1</td>
<td>000f-e2c8-1b82</td>
</tr>
</tbody>
</table>

* indicates the device is the master.
+ indicates the device through which the user logs in.

The Bridge MAC of the IRF is : 000f-e2b8-1a61

Auto upgrade : yes

Mac persistent : 6 min

Table 21-1 display irf command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| Switch | Member ID.
 - The ID with * indicates that the device is the master;
 - The ID with + indicates that it is the device through which the user logs in to the IRF. |
| Role | The role of a member in the IRF, which may take the following values:
 - Slave
 - Master
 - SlaveWait
 - Loading |
| CPU-MAC | CPU MAC address of the device |
| Auto upgrade | Whether the auto upgrade of configuration files is enabled:
 - yes: Enabled
 - no: Disabled |
| Mac persistent | Whether the IRF bridge MAC address preservation is enabled:
 - yes: Enabled
 - no: Disabled |

display irf configuration

Syntax

`display irf configuration`

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the `display irf configuration` command to display the pre-configurations of IRF members in the current IRF.

The pre-configuration takes effect after the reboot of the device. The command displays the member ID, IRF port, and physical IRF port information.

Examples

Display the pre-configurations of all the IRF members in the current IRF.
<Sysname> display irf configuration

<table>
<thead>
<tr>
<th>MemberID</th>
<th>NewID</th>
<th>IRF-Port1</th>
<th>IRF-Port2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1,2</td>
<td>3,4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1,2</td>
<td>3</td>
</tr>
<tr>
<td>*3</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>+4</td>
<td>4</td>
<td>1</td>
<td>disable</td>
</tr>
</tbody>
</table>

* indicates the device is the master.
+ indicates the device through which the user logs in.

Table 21-2 display irf configuration command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MemberID</td>
<td>Member ID
• The ID with * indicates that the device is the master;
• The ID with + indicates that it is the device through which the users logs in to the IRF.</td>
</tr>
<tr>
<td>NewID</td>
<td>The member ID configured for a device after its reboot</td>
</tr>
<tr>
<td>IRF-Port1</td>
<td>The physical IRF port number corresponding to IRF port 1 of a device after its reboot. (If it displayed in the format of x, it indicates that IRF port 1 is bound to physical IRF port x; if it is displayed in the format of x,y, it indicates that IRF port 1 is aggregated by physical IRF ports x and y; if it is displayed as disable, it indicates that IRF port 1 is not enabled.)</td>
</tr>
<tr>
<td>IRF-Port2</td>
<td>The physical IRF port number corresponding to IRF port 2 of a device after its reboot. (If it displayed in the format of x, it indicates that IRF port 2 is bound to physical IRF port x; if it is displayed in the format of x,y, it indicates that IRF port 2 is aggregated by physical IRF ports x and y; if it is displayed as disable, it indicates that IRF port 2 is not enabled.)</td>
</tr>
</tbody>
</table>

display irf topology

Syntax

`display irf topology`

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the `display irf topology` command to display the topology information of the current IRF.

The command displays all the topology information learned by the current device.

Examples

Display the topology information of the current IRF.
<Sysname> display irf topology

Topology Info

<table>
<thead>
<tr>
<th>Switch</th>
<th>Link</th>
<th>member</th>
<th>neighbor</th>
<th>Link</th>
<th>member</th>
<th>neighbor</th>
<th>Belong To</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DOWN</td>
<td>1,2</td>
<td>--</td>
<td>UP</td>
<td>3,4</td>
<td>2</td>
<td>000f-cbb8-1a82</td>
</tr>
<tr>
<td>2</td>
<td>UP</td>
<td>1,2</td>
<td>1</td>
<td>UP</td>
<td>3</td>
<td>3</td>
<td>000f-cbb8-1a82</td>
</tr>
<tr>
<td>+3</td>
<td>UP</td>
<td>1</td>
<td>2</td>
<td>DIS</td>
<td>--</td>
<td>--</td>
<td>000f-cbb8-1a82</td>
</tr>
</tbody>
</table>

* indicates the device is the master.
+ indicates the device through which the user logs in.

The above information indicates following:

- On device 1, IRF port 1 is aggregated from physical IRF ports 1 and 2, and it is down; IRF port 2 is aggregated from physical IRF ports 3 and 4, and it is up.
- On device 2, IRF port 1 is aggregated from physical IRF ports 1 and 2, and it is up; IRF port 2 corresponds to physical IRF port 3, and it is up.
- On device 3, IRF port 1 corresponds to physical IRF port 1, and it is up; IRF is disabled on IRF port 2.
- IRF port 1 of device 1 does not connect with any other device; IRF port 2 of device 1 connects to IRF port 1 of device 2; IRF port 2 connects to IRF port 1 of device 3; IRF port 2 of device 3 does not connect with any other device.
- All the three devices belong to one IRF. The bridge MAC address of the master is 000f-cbb8-1a82.

Network topology view is as shown in Figure 21-1:

![Network topology view](image)

Table 21-3 display irf topology command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch</td>
<td>Member ID</td>
</tr>
<tr>
<td></td>
<td>- The ID with * indicates that the device is the master;</td>
</tr>
<tr>
<td></td>
<td>- The ID with + indicates that it is the device through which the users logs in to the IRF.</td>
</tr>
<tr>
<td>IRF-Port 1</td>
<td>Information of IRF port 1, including link (link state), member (corresponding physical port), and neighbor.</td>
</tr>
<tr>
<td>IRF-Port 2</td>
<td>Information of IRF port 2, including link, member, and neighbor.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>BelongTo</td>
<td>The IRF that the device belongs to, represented by the IRF CPU MAC address.</td>
</tr>
<tr>
<td>Link</td>
<td>Link state of the IRF port:</td>
</tr>
<tr>
<td></td>
<td>- UP</td>
</tr>
<tr>
<td></td>
<td>- DOWN</td>
</tr>
<tr>
<td></td>
<td>- ISOLATE: The corresponding physical IRF port is isolated because it cannot meet the requirement of the IRF. The reason may be that the physical IRF port connects to a non-Switch 4210G device, or the IRF port of the peer end is not connected according to the port serial numbers.</td>
</tr>
<tr>
<td></td>
<td>- TIMEOUT: The port does not receive any Hello packet from the peer end after the expected time, that is, the Hello packet sent to the port times out.</td>
</tr>
<tr>
<td></td>
<td>- DIS: The IRF port is not enabled.</td>
</tr>
<tr>
<td>member</td>
<td>The corresponding physical port(s) of the IRF port.</td>
</tr>
<tr>
<td></td>
<td>If the IRF port is disabled, -- will be displayed.</td>
</tr>
<tr>
<td>neighbor</td>
<td>The device ID that connects with this IRF port</td>
</tr>
<tr>
<td></td>
<td>If the IRF port does not connect with any device, -- will be displayed.</td>
</tr>
</tbody>
</table>

display switchover state

Syntax

`display switchover state [slot slot-id]`

View

Any view

Default Level

1: Monitor level

Parameters

`slot slot-id`: ID of the IRF member. With this argument, the command displays the master/slave switchover state of the specified IRF member. Without this argument, the command displays the master/slave switchover state of the IRF master.

Description

Use the `display switchover state` command to display the master/slave switchover states of IRF members.

An IRF functions like a logical distributed device with multiple standby switching and routing processing units (SRPUs). The master is like the active SRPU, and the slaves are like the standby SRPUs. An IRF system uses member ID to uniquely identify a member device, whereas a distributed device uses slot ID to uniquely identify a board. Therefore, in the displayed information of this command, a member device is also identified by the slot ID, which is equal to the member ID.

Examples

`# Display the master/slave switchover states of the master.`

21-5
display switchover state

Master HA State to Slot [1]: Slave is absent.
Master HA State to Slot [2]: Waiting batch backup request from slave.
Master HA State to Slot [3]: Realtime backup to slave.

The above information indicates the following:
- Slaves 1 is absent, which means that the device is not in use
- The master is waiting for the batch backup request from slave 2
- Slaves 3 is performing real time backup

Table 21-4 display switchover state command output description for the master

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master HA State to Slot slot-id</td>
<td>Indicates that this output information is generated by the master. Describes the master/slave switchover states between the master and the slave whose slot-id represents its member ID.</td>
</tr>
<tr>
<td>Data smooth</td>
<td>The master and the slave are smoothing data.</td>
</tr>
</tbody>
</table>

Display the master/slave switchover state of slave 3.

<Sysname> display switchover state slot 3
Slave HA State: Receiving realtime data.

The above information indicates that slave 3 is receiving real time backup data.

Table 21-5 display switchover state command output description for a slave

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slave HA State</td>
<td>Indicates that this output information is generated by a slave. Describes the master/slave switchover state of the slave.</td>
</tr>
<tr>
<td>Waiting</td>
<td>The slave is ready, and is waiting to enter the batch backup state.</td>
</tr>
</tbody>
</table>

irf auto-update enable

Syntax

```
irf auto-update enable
undo irf auto-update enable
```

View

System view

Default Level

3: Manage level

Parameters

None
Description

Use the `irf auto-update enable` command to enable the auto update of boot files in an IRF.

Use the `undo irf auto-update enable` command to disable this function.

This function is enabled by default.

Note the following:

- Before adding a device into an IRF, ensure that the device and the IRF master have the same software version.
- After loading the master’s boot file automatically, a slave configures the file as the boot file for the next boot and reboots automatically.
- Because system boot file occupies large memory space, to make the auto upgrade succeed, ensure that there is enough space on the storage media of the slave.
- If the downloaded boot file and the local file have duplicate filenames, the local file is overwritten. To avoid this, check the names of local files and make sure whether you need to save the one with the same filename or back it up before downloading the boot file.

Examples

```bash
# Enable auto upgrade of boot files in an IRF.
<Sysname> system-view
[Sysname] irf auto-update enable
```

irf link-delay

Syntax

```
irf link-delay interval
undo irf link-delay
```

View

System view

Default Level

3: Manage level

Parameters

`Interval`: Time interval in milliseconds for the link layer to report a link-down event of an IRF, in the range 200 to 2000.

Description

Use the `irf link-delay` command to set the delay time for the link layer to report a link-down state event of an IRF.

Use the `undo irf link-delay` command to restore the default.

This function is disabled by default.

Examples

```bash
# Set the delay time for the link layer to report a link-down event of the current IRF to 300 milliseconds.
<Sysname> system-view
```
irf mac-address persistent

Syntax

```
irf mac-address persistent { timer | always }
undo irf mac-address persistent
```

View

System view

Default Level

3: Manage level

Parameters

- **timer**: IRF bridge MAC address preservation mode, with this keyword, the IRF bridge MAC address will be preserved for 6 minutes after the master leaves.
- **always**: IRF bridge MAC address preservation mode, with this keyword, the IRF bridge MAC address will be preserved permanently.

Description

Use the `irf mac-address persistent` command to configure the preservation time of IRF bridge MAC address.

Use the `undo irf mac-address persistent` command to configure the IRF not to preserve the IRF bridge MAC address as soon as the master leaves.

By default, IRF bridge MAC address is preserved for 6 minutes.

- **Preserve for six minutes**: After the master leaves, the bridge MAC address will not change within six minutes. If the master does not come back after six minutes, the IRF system will use the bridge MAC address of the newly elected master as that of the IRF.
- **Preserve permanently**: No matter the master leaves the IRF or not, the IRF bridge MAC address remains unchanged.
- **Not preserved**: As soon as the master leaves, the system will use the bridge MAC address of the newly elected master as that of the IRF.

Examples

```
# Configure the IRF bridge MAC address to be preserved permanently.
<Sysname> system-view
<Sysname> irf mac-address persistent always
```

irf member irf-port

Syntax

```
irf member member-id irf-port irf-port-id port port-list
undo irf member member-id irf-port irf-port-id
```
View

System view

Default Level

3: Manage level

Parameters

member-id: ID of the IRF member, in the range 1 to 4. With this argument, you can configure the IRF ports of another IRF member on this device. You can view the member IDs of in IRF by using the display irf command.

irf-port-id: ID of an enabled IRF port, the value can be either 1 (the left port) or 2 (the right port).

port-list: Physical IRF port list. The port-list is in the format of \{ port \}&<1-4>, where

- port indicates the port ID. The physical IRF ports are numbered according to their physical locations on the rear panel of the Switch 4210G series. With the rear panel facing you, the physical IRF ports are numbered successively from left to right: ports on the interface module in slot 1 are numbered 1 and 2, and ports on the interface module in slot 2 are numbered 3 and 4.
- &<1-4> indicates that you can specify one to four ports at one time. When multiple ports are specified, they aggregate together to form an IRF port. On the Switch 4210G series, only the physical IRF ports that are on the same interface module can be aggregated together.

Note

For the correspondence between an IRF port and physical IRF port, refer to the related part in IRF Configuration.

Description

Use the irf member irf-port command to bind the physical IRF port(s) to an IRF port of a device, and enable IRF on the IRF port simultaneously.

Use the undo irf member irf-port command to disable IRF on an IRF port. If this IRF port is aggregated from multiple physical IRF ports, the aggregated physical ports are disaggregated.

Note the following:

- The above configuration takes effect after the reboot of the device.
- An IRF port should be enabled first before it can connect to other devices to form an IRF.

Examples

Bind physical IRF port 1 to IRF port 1, and enable IRF port 1 of the local device.

<Sysname> system-view
[Sysname] irf member 1 irf-port 1 port 1

Bind physical IRF ports 3 and 4 to IRF port 2 of member 3, and enable IRF on the IRF port.

<Sysname> system-view
[Sysname] irf member 3 irf-port 2 port 3 4
irf member priority

Syntax

```
irf member member-id priority priority
undo irf member member-id priority
```

View

System view

Default Level

3: Manage level

Parameters

- **member-id**: ID of the IRF member, in the range 1 to 4. With this argument, you can specify a priority for another IRF member on this device. You can view the member IDs and current priorities of IRF members by using the `display irf` command.
- **priority**: Priority value, in the range 1 to 32.

Description

Use the `irf member priority` command to specify a priority for an IRF member.

Use the `undo irf member priority` command to restore the default.

By default, the priority of an IRF member is 1.

The greater the priority value, the higher the priority. A member with a higher priority is more likely to be a master, and more likely to preserve its ID in a member ID collision.

Note the following:

- You can specify a priority for a member of the current IRF only.
- The setting of priority takes effect right after your configuration.

Examples

```
# Specify a priority for the local device.
<Sysname> display irf

Switch  Role Priority CPU-MAC
1       Slave 13  000f-e2b8-1f84
2       Slave 1   000f-e220-2122
*3       Master 20 000f-e2b8-1a82
+4       SlaveWait 1 000f-e2c8-1b82

* indicates the device is the master.
+ indicates the device through which the user logs in.

The Bridge MAC of the IRF is : 000f-e2b8-1a67
Auto upgrade                      : yes
Mac persistent                    : 6 min

The above information indicates that the member ID of the local device is 4, and you can specify a priority for the local device by providing its member ID.
```

<Sysname> system-view
irf member renumber

Syntax

```plaintext
irf member member-id renumber new-member-id
undo irf member member-id renumber
```

View

System view

Default Level

3: Manage level

Parameters

- `member-id`: ID of the IRF member, in the range 1 to 4. With this argument, you can modify a member ID of another IRF member on this device. You can view the member IDs of in an IRF by using the `display irf` command.

- `new-member-id`: New ID of the IRF member, in the range 1 to 4.

Description

Use the `irf member renumber` command to set a member ID for a device.

Use the `undo irf member renumber` command to cancel the configuration.

By default, the member ID of an IRF member is 1.

Note the following:

- The above setting takes effect after the reboot of the device.
- In an IRF, member IDs are not only used to identify devices, but also used to identify the port configurations on different member devices in the configuration file. Therefore, modifying a member ID may cause device configuration changes or even losses, so modify member ID with caution. For example, three members (of same device model) with the member IDs of 1, 2 and 3 are connected to an IRF port. Suppose that each member has several ports: change the member ID of device 2 to 3, change that of device 3 to 2, reboot both devices, and add them into the IRF again. Then device 2 will use the original port configurations of device 3, and device 3 will use those of device 2.
- When the newly added device and another member have duplicated member IDs, the existing member can preserve its ID, and the system will automatically assign the smallest unused member ID to the new member.

Examples

```plaintext
# Set the member ID of the local device (the current member ID is 1) to 3.
<Sysname> system-view
<Sysname> irf member 1 renumber 3
```
Warning: Renumbering the switch number may result in configuration change or loss.
Continue?[Y/N]:Y

irf switch-to

Syntax

```
irf switch-to member-id
```

View

User view

Default Level

3: Manage level

Parameters

member-id: ID of the IRF member. The *member-id* argument in this command cannot be the member ID of the master. You can view the member IDs of in an IRF by using the `display irf` command.

Description

Use the `irf switch-to` command to redirect to the specified slave device, so that you can access the slave device directly.

When you access an IRF, you actually log in to the master device. The console of the master is displayed as the operation interface of the access terminal. After you execute this command, you are redirected to the specified slave device, which is equal to log in to the slave directly. The operation interface of the access terminal switches from the console of the master to that of the slave, and the system enters the user view of the slave. You will see that the command prompt changes to the following format: `<Sysname-member ID>`, for example, `<Sysname-2>`.

After this command is executed, the instructions that you input at the terminal will be forwarded to the specified slave, without being processed by the local device. Currently, you can execute the following commands on a slave:

- `display`
- `quit`
- `return`
- `system-view`
- `debugging`
- `terminal debugging`
- `terminal trapping`
- `terminal logging`

The console of the master will not time out and will not output any information. You can return to the console of the master by pressing the `Ctrl+K` keys, or execute the `quit` or `return` command. The master is therefore reactivated and is ready for outputting information.

Examples

```
# Redirect to member 2.
<Sysname> irf switch-to 2
<Sysname-Slave#2>
```
Note

- The display commands in this document display information of active nodes only.
- For a centralized device, “local node” refers to a local device; for a distributed device, “local node” refers to the active main control board.

IPC Configuration Commands

display ipc channel

Syntax

display ipc channel { node node-id | self-node }

View

Any view

Default Level

1: Monitor level

Parameters

node node-id: Displays channel information of the specified node, where node-id represents the number of the specified node, in the range of 0 to 9.

self-node: Displays the channel information of the local node.

Description

Use the display ipc channel command to display the channel information of the specified node.

Examples

Display channel information of node 6.
<Sysname> display ipc channel node 6

<table>
<thead>
<tr>
<th>ChannelID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Prehistorical channel, NO.2</td>
</tr>
<tr>
<td>15</td>
<td>Prehistorical channel, NO.6</td>
</tr>
<tr>
<td>16</td>
<td>Prehistorical channel, NO.7</td>
</tr>
<tr>
<td>19</td>
<td>Prehistorical channel, NO.1</td>
</tr>
<tr>
<td>25</td>
<td>Prehistorical channel, NO.4</td>
</tr>
</tbody>
</table>
Prehistorical channel, NO.8
FIB4
Prehistorical channel, NO.3
Prehistorical channel, NO.11
Prehistorical channel, NO.9
IPC test channel
Prehistorical channel, NO.12
Prehistorical channel, NO.14
Prehistorical channel, NO.5
Prehistorical channel, NO.13
Prehistorical channel, NO.10

Table 22-1 display ipc channel command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChannelID</td>
<td>Channel number, which has been predefined and assigned by the system. One channel number corresponds to one module. The display ipc channel command displays the numbers of the current active modules.</td>
</tr>
<tr>
<td>Description</td>
<td>Description information, which is generated by the internal software of the device, is used to describe the functions of a channel. For example, “FIB4” indicates that the channel is used for Layer 3 fast forwarding; “Prehistorical channel, NO.2” indicates that no description is defined for the channel, and the channel is the second channel established.</td>
</tr>
</tbody>
</table>

display ipc link

Syntax

display ipc link { node node-id | self-node }

View

Any view

Default Level

1: Monitor level

Parameters

node node-id: Displays the link information of the specified node, where node-id represents the number of the specified node, in the range of 0 to 9.

self-node: Displays the link status information of the local node.

Description

Use the display ipc link command to display the link status information of the specified node.

Examples

Display link status information of the local node.

<Sysname> display ipc link self-node

Dst-NodeID LinkStatus

The above prompt information indicates that:

- A connection exists between the local node and node 1, and the connection is up;
- A connection exists between the local node and node 2, and the connection is down.

Table 22-2 display ipc link command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dst-NodeID</td>
<td>Number of the peer node</td>
</tr>
<tr>
<td>LinkStatus</td>
<td>Link status, which may take the following values:</td>
</tr>
<tr>
<td></td>
<td>UP: A connection is established.</td>
</tr>
<tr>
<td></td>
<td>DOWN: A connection is terminated.</td>
</tr>
</tbody>
</table>

display ipc multicast-group

Syntax

```
display ipc multicast-group { node node-id | self-node }
```

View

Any view

Default Level

1: Monitor level

Parameters

- **node node-id**: Displays the multicast group information of the specified node, where `node-id` represents the number of the specified node, in the range of 0 to 9.
- **self-node**: Displays the multicast group information of the local node.

Description

Use the `display ipc multicast-group` command to display the multicast group information of the specified node.

Examples

```
# Display the multicast group information of node 6.
<Sysname> display ipc multicast-group node 6
GroupID  Status  ChannelID
---------------------------
 8    INUSE      12
```
Table 22-3 display ipc group command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GroupID</td>
<td>Multicast group ID</td>
</tr>
<tr>
<td>Status</td>
<td>Link status, which may take the following values:</td>
</tr>
<tr>
<td></td>
<td>INUSE: The multicast group is in use.</td>
</tr>
<tr>
<td></td>
<td>DELETE: The multicast group is to be deleted.</td>
</tr>
<tr>
<td>ChannelID</td>
<td>Channel number</td>
</tr>
</tbody>
</table>

display ipc node

Syntax

display ipc node

View

Any view

Default Level

1: Monitor level

Parameters

None

Description

Use the display ipc node command to display node information.

Examples

Display node information of the device.
<Sysname> display ipc node
Self node ID: 6
Current active node ID: 2,3,6,8

Table 22-4 display ipc node command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self node ID</td>
<td>Number of the local node</td>
</tr>
<tr>
<td>Current active node ID</td>
<td>List of the current active nodes</td>
</tr>
</tbody>
</table>

display ipc packet

Syntax

display ipc packet { node node-id | self-node }

View

Any view
Default Level

1: Monitor level

Parameters

- **node node-id**: Displays the packet statistics information of the specified node, where *node-id* represents the number of the specified node, in the range of 0 to 9.
- **self-node**: Displays the packet statistics information of the local node.

Description

Use the **display ipc packet** command to display the packet statistics information of the specified node.

Examples

Display the packet statistics information of the local node.

```bash
<Sysname> display ipc packet self-node
```

<table>
<thead>
<tr>
<th>ChannelID</th>
<th>Sent-fragments</th>
<th>Sent-packets</th>
<th>Received-fragments</th>
<th>Received-packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>828</td>
<td>810</td>
<td>819</td>
<td>810</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>50</td>
<td>50</td>
<td>37</td>
<td>35</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 22-5 display ipc packet command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChannelID</td>
<td>Channel number</td>
</tr>
<tr>
<td>Sent-fragments</td>
<td>Number of fragments sent</td>
</tr>
<tr>
<td>Sent-packets</td>
<td>Number of packets sent (whether a packet is fragmented depends on the interface MTU. If the number of bytes the packet is larger than the MTU, the packet is fragmented; if smaller than or equal to the MTU, the packet is sent.)</td>
</tr>
<tr>
<td>Received-fragments</td>
<td>Number of fragments successfully received</td>
</tr>
<tr>
<td>Received-packets</td>
<td>Number of packets successfully received (if fragments are received on an interface, the system reassembles the fragments and sends a complete packet to the upper layer software.)</td>
</tr>
</tbody>
</table>

display ipc performance

Syntax

```bash
display ipc performance { node node-id | self-node } [ channel channel-id ]
```

View

Any view
Default Level

1: Monitor level

Parameters

node node-id: Displays the IPC performance statistics information of the specified node, where *node-id* represents the number of the specified node, in the range of 0 to 9.

self-node: Displays the IPC performance statistics information of the local node.

channel channel-id: Displays the IPC performance statistics information of the specified channel, where *channel-id* represents the channel number, in the range of 0 to 159.

Description

Use the `display ipc performance` command to display IPC performance statistics information.

If IPC performance statistics is enabled, the command displays the current IPC performance statistics; if IPC performance statistics is disabled, the command displays the IPC performance statistics at the time when IPC performance statistics is disabled.

Related commands: `ipc performance enable`.

Examples

Display IPC performance statistics information of node 6.

```bash
<Sysname> display ipc performance node 6
Peak: Peak rate (pps)
10Sec: Average rate in the last 10 seconds (pps)
1Min: Average rate in the last 1 minute (pps)
5Min: Average rate in the last 5 minutes (pps)
Total-Data: Total number of data (packets)

Statistics for packets sent successfully:
Peak 10Sec 1Min 5Min Total-Data
--------------------------------------------------------------------------------
1 1 1 0 80

Statistics for packets received successfully:
Peak 10Sec 1Min 5Min Total-Data
--------------------------------------------------------------------------------
1 1 1 0 82

Statistics for packets acknowledged:
Peak 10Sec 1Min 5Min Total-Data
--------------------------------------------------------------------------------
1 1 1 0 78
```

Table 22-6 display ipc performance command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak</td>
<td>Peak rate (average rate is counted every 10 seconds, the greatest value of which is taken as the peak rate), in pps</td>
</tr>
<tr>
<td>10Sec</td>
<td>Average rate in the past 10 seconds, in pps</td>
</tr>
<tr>
<td>1Min</td>
<td>Average rate in the past 1 minute, in pps</td>
</tr>
</tbody>
</table>
Table

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5Min</td>
<td>Average rate in the past 5 minutes, in pps</td>
</tr>
<tr>
<td>Total-Data</td>
<td>Total amount of data collected from the time when IPC performance statistics was enabled to the time when this command is executed</td>
</tr>
</tbody>
</table>

display ipc queue

Syntax

```plaintext
display ipc queue { node node-id | self-node }
```

View

Any view

Default Level

1: Monitor level

Parameters

- **node node-id**: Displays the sending queue information of the specified node, where node-id represents the number of the specified node, in the range of 0 to 9.
- **self-node**: Displays the sending queue information of the local node.

Description

Use the `display ipc queue` command to display the sending queue information of the specified node.

Examples

```plaintext
# Display the sending queue information of the local node.
<Sysname> display ipc queue self-node
```

```
QueueType  QueueID Dst-NodeID   Length  FullTimes   Packet
------------------------------------------------------------
UNICAST     0        0             4096     0            0
UNICAST     1        0             4096     0            0
UNICAST     2        0             4096     0            0
UNICAST     3        0             4096     0            0
UNICAST     0        1             4096     0            0
UNICAST     1        1             4096     0            0
UNICAST     2        1             4096     0            0
UNICAST     3        1             4096     0            0
MULTICAST   0        --            4096     0            0
MULTICAST   1        --            4096     0            0
MULTICAST   2        --            512      0            0
MULTICAST   3        --            512      0            0
MULTICAST   4        --            512      0            0
MULTICAST   5        --            512      0            0
MIXCAST     0        --            2048     0            0
MIXCAST     1        --            2048     0            0
```
Table 22-7 display ipc queue command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QueueType</td>
<td>Queue type, including:</td>
</tr>
<tr>
<td></td>
<td>UNICAST: unicast queue</td>
</tr>
<tr>
<td></td>
<td>MULTICAST: multicast (including broadcast) queue</td>
</tr>
<tr>
<td></td>
<td>MIXCAST: mixcast queue, which can accommodate unicasts, multicasts and broadcasts</td>
</tr>
<tr>
<td>QueueID</td>
<td>Queue number</td>
</tr>
<tr>
<td>Dst-NodeID</td>
<td>Peer node number. If no peer node exists, the field is displayed as “--”.</td>
</tr>
<tr>
<td>Length</td>
<td>Queue length (namely, number of packets that can be cached)</td>
</tr>
<tr>
<td>FullTimes</td>
<td>Times that the queue is full</td>
</tr>
<tr>
<td>Packet</td>
<td>Total number of packets in the queue</td>
</tr>
</tbody>
</table>

ipc performance enable

Syntax

```plaintext
ipc performance enable { node node-id | self-node } [ channel channel-id ]
undo ipc performance enable [ node node-id | self-node ] [ channel channel-id ]
```

View

User view

Default Level

1: Monitor level

Parameters

- **node node-id**: Enables IPC performance statistics of the specified node, where node-id represents the number of the specified node, in the range of 0 to 9.
- **self-node**: Enables IPC performance statistics of the local node.
- **channel channel-id**: Enables IPC performance statistics information of the specified channel, where channel-id represents the channel number, in the range of 0 to 159.

Description

Use the **ipc performance enable** command to enable IPC performance statistics. Use the **undo ipc performance** command to disable IPC performance statistics.

By default, IPC performance statistics is disabled.

When IPC performance statistics is disabled, the statistics data does not change. In this case, if you execute the **display ipc performance** command, the statistics data at the time when IPC performance statistics was disabled.

Examples

```plaintext
# Enable IPC performance statistics of node 6 on channel 18.
<Sysname> ipc performance enable node 6 channel 18
```
reset ipc performance

Syntax

 reset ipc performance [node node-id | self-node] [channel channel-id]

View

 User view

Default Level

 1: Monitor level

Parameters

 node node-id: Clears the IPC performance statistics information of the specified node, where node-id represents the number of the specified node, in the range of 0 to 9.

 self-node: Clears the IPC performance statistics information of the local node.

 channel channel-id: Clears the IPC performance statistics information of the specified channel, where channel-id represents the channel number, in the range of 0 to 159.

Description

 Use the reset ipc performance command to clear IPC performance statistics information.
 After this command is executed, the corresponding statistics information will be cleared.

Examples

 # Clear IPC performance statistics information of node 6 on channel 18.
 <Sysname> reset ipc performance node 6 channel 18
PoE Configuration Commands

apply poe-profile

Syntax

apply poe-profile { index index | name profile-name }
undo apply poe-profile { index index | name profile-name }

View

PoE interface view

Default Level

2: System level

Parameters

index index: Index number of the PoE configuration file, in the range 1 to 100.
name profile-name: Name of the PoE configuration file, a string of 1 to 15 characters.

Description

Use the apply poe-profile command to apply the PoE configuration file to the current PoE interface.
Use the undo apply poe-profile command to remove the application of the PoE configuration file to the current PoE interface.
Note that the index number, instead of the name, of the PoE configuration file is displayed when you execute the display this command.
Related commands: display poe-profile, apply poe-profile interface.

Examples

Apply the PoE configuration file named A20 to the PoE interface GigabitEthernet 1/0/1.
<Sysname> system-view
<Sysname-GigabitEthernet1/0/1] apply poe-profile name A20
[Sysname-GigabitEthernet1/0/1] display this

interface GigabitEthernet1/0/1
port link-mode route
apply poe-profile index 1
apply poe-profile interface

Syntax

apply poe-profile { index index | name profile-name } interface interface-range
undo apply poe-profile { index index | name profile-name } interface interface-range

View

System view

Default Level

2: System level

Parameters

index index: Index number of the PoE configuration file, in the range 1 to 100.
name profile-name: Name of the PoE configuration file, a string of 1 to 15 characters.
interface-range: Range of Ethernet interface numbers, indicating multiple Ethernet interfaces. The expression is interface-range = interface-type interface-number [to interface-type interface-number], where interface-type interface-number represents the interface type and interface number. The start interface number should be smaller than the end interface number. Ethernet interface numbers can be in any range. If any interface in the specified range does not support PoE, it is ignored when the PoE configuration file is applied.

Description

Use the apply poe-profile interface command to apply the PoE configuration file to one or more PoE interfaces.
Use the undo apply poe-profile interface command to remove the application of the PoE configuration file to the specified PoE interface(s).
Related commands: display poe-profile interface, apply poe-profile.

Examples

Apply the PoE configuration file named ABC to the PoE interface GigabitEthernet 1/0/1.
<Sysname> system-view
[Sysname] apply poe-profile name ABC interface gigabitethernet 1/0/1

Apply the indexed PoE configuration file to PoE interfaces GigabitEthernet 1/0/2 through GigabitEthernet 1/0/8.
<Sysname> system-view
[Sysname] apply poe-profile index 5 interface gigabitethernet 1/0/2 to gigabitethernet 1/0/8

display poe device

Syntax

display poe device

View

Any view
Default Level

1: Monitor level

Parameters

None

Description

Use the **display poe device** command to display the mapping between ID, module, and member ID of all the power sourcing equipments (PSEs).

Examples

```bash
# Display the mapping between ID, module, and member ID of each PSE.
<Sysname> display poe device
PSE ID  SlotNo  SubSNo  PortNum  MaxPower(W)  State  Model
5      4       0       24       370     on      LSP1POEA
6      5       0       16       370     on      LSP1POEA
```

Table 23-1 display poe device command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSE ID</td>
<td>ID of the PSE</td>
</tr>
<tr>
<td>SlotNo</td>
<td>Member ID number of the PSE</td>
</tr>
<tr>
<td>SubSNo</td>
<td>SubSlot number of the PSE</td>
</tr>
<tr>
<td>PortNum</td>
<td>Number of PoE interfaces on the PSE</td>
</tr>
<tr>
<td>MaxPower(W)</td>
<td>Maximum power of the PSE (W)</td>
</tr>
<tr>
<td>State</td>
<td>PSE state: on: The PSE is supplying power.</td>
</tr>
<tr>
<td></td>
<td>off: The PSE stops supplying power.</td>
</tr>
<tr>
<td></td>
<td>faulty: The PSE fails.</td>
</tr>
<tr>
<td>Model</td>
<td>PSE model</td>
</tr>
</tbody>
</table>

display poe interface

Syntax

```bash
display poe interface [ interface-type interface-number ]
```

View

Any view

Default Level

1: Monitor level

Parameters

interface-type interface-number: Specifies an interface by its type and number.
Description

Use the `display poe interface` command to display the power information of the specified interface.

If no interface is specified, the power information of all PoE interfaces is displayed.

Examples

```bash
# Display the power state of GigabitEthernet 1/0/1.
<Sysname> display poe interface gigabitethernet 1/0/1
Port Power Enabled          : enable
Port Power Priority         : critical
Port Operating Status       : on
Port IEEE Class             : 1
Port Detection Status       : delivering-power
Port Power Mode             : signal
Port Current Power          : 11592  mW
Port Average Power          : 11610  mW
Port Peak Power             : 11684  mW
Port Max Power              : 15400  mW
Port Current                : 244    mA
Port Voltage                : 51.7   V
Port PD Description         : IP Phone For Room 101
```

Table 23-2 `display poe interface ethernet` command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Power Enabled</td>
<td>PoE state: enabled/disabled</td>
</tr>
<tr>
<td></td>
<td>• enable: PoE is enabled.</td>
</tr>
<tr>
<td></td>
<td>• disable: PoE is disabled.</td>
</tr>
<tr>
<td>Port Power Priority</td>
<td>Power priority of the PoE interface:</td>
</tr>
<tr>
<td></td>
<td>• critical (highest)</td>
</tr>
<tr>
<td></td>
<td>• high</td>
</tr>
<tr>
<td></td>
<td>• low</td>
</tr>
<tr>
<td>Port Operating Status</td>
<td>Operating state of a PoE interface:</td>
</tr>
<tr>
<td></td>
<td>• off: PoE is disabled.</td>
</tr>
<tr>
<td></td>
<td>• on: Power is supplied for a PoE interface normally.</td>
</tr>
<tr>
<td></td>
<td>• power lack: The guaranteed remaining power of the PSE is not high enough to supply power for a critical PoE interface.</td>
</tr>
<tr>
<td></td>
<td>• powerdeny: The PSE refuses to supply power. The power required by the powered device (PD) is higher than the configured power.</td>
</tr>
<tr>
<td></td>
<td>• power-itsel: The external equipment is supplying power for itself.</td>
</tr>
<tr>
<td></td>
<td>• power-limit: The PSE is supplying a limited power. The power required by the PD is higher than the configured power and the PSE still supplies the configured power.</td>
</tr>
<tr>
<td>Port IEEE class</td>
<td>PD power class: 0, 1, 2, 3, 4, and -</td>
</tr>
<tr>
<td></td>
<td>• indicates not supported.</td>
</tr>
</tbody>
</table>
Field Description

Port Detection Status

- **disabled**: The PoE function is disabled.
- **searching**: The PoE interface is searching for the PD.
- **delivering-power**: The PoE interface is supplying power for the PD.
- **fault**: There is a fault defined in 802.3af.
- **test**: The PoE interface is under test.
- **other-fault**: There is a fault other than defined in 802.3af.
- **pd-disconnect**: The PD is disconnected.

Port detection status varies with devices.

Port Power Mode

- **signal**: Power is supplied over signal cables.
- **spare**: Power is supplied over spare cables.

Switch 4210G only support for signal mode.

Port Current Power

Current power of a PoE interface, including PD consumption power and transmission loss

The transmission loss usually does not exceed one watt. The specific loss varies with devices.

Port Average Power

Average power of a PoE interface

Port Peak Power

Peak power of a PoE interface

Port Max Power

Maximum power of a PoE interface

Port Current

Current of a PoE interface

Port Voltage

Voltage of a PoE interface

Port PD Description

Description of the PD connected to the PoE interface, which is used to identify the type and location of the PD.

--- Display the state of all PoE interfaces.

```bash
<Sysname> display poe interface
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Enable</th>
<th>Priority</th>
<th>CurPower (W)</th>
<th>Operating Status</th>
<th>IEEE class</th>
<th>Detection Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE1/0/1</td>
<td>enable</td>
<td>low</td>
<td>4.4</td>
<td>on</td>
<td>1</td>
<td>delivering-power</td>
</tr>
<tr>
<td>GE1/0/2</td>
<td>enable</td>
<td>critical</td>
<td>0</td>
<td>on</td>
<td>-</td>
<td>disabled</td>
</tr>
<tr>
<td>GE1/0/3</td>
<td>enable</td>
<td>low</td>
<td>0</td>
<td>on</td>
<td>-</td>
<td>disabled</td>
</tr>
<tr>
<td>GE1/0/4</td>
<td>enable</td>
<td>critical</td>
<td>0</td>
<td>on</td>
<td>-</td>
<td>searching</td>
</tr>
<tr>
<td>GE1/0/5</td>
<td>enable</td>
<td>low</td>
<td>4.0</td>
<td>on</td>
<td>2</td>
<td>delivering-power</td>
</tr>
<tr>
<td>GE1/0/6</td>
<td>enable</td>
<td>low</td>
<td>0</td>
<td>on</td>
<td>-</td>
<td>disabled</td>
</tr>
<tr>
<td>GE1/0/7</td>
<td>disable</td>
<td>low</td>
<td>0</td>
<td>off</td>
<td>-</td>
<td>fault</td>
</tr>
<tr>
<td>GE1/0/8</td>
<td>disable</td>
<td>low</td>
<td>0</td>
<td>off</td>
<td>-</td>
<td>disabled</td>
</tr>
<tr>
<td>GE1/0/9</td>
<td>disable</td>
<td>low</td>
<td>0</td>
<td>off</td>
<td>-</td>
<td>disabled</td>
</tr>
<tr>
<td>GE1/0/10</td>
<td>disable</td>
<td>low</td>
<td>0</td>
<td>off</td>
<td>-</td>
<td>disabled</td>
</tr>
<tr>
<td>GE1/0/11</td>
<td>disable</td>
<td>low</td>
<td>0</td>
<td>off</td>
<td>-</td>
<td>disabled</td>
</tr>
<tr>
<td>GE1/0/12</td>
<td>disable</td>
<td>low</td>
<td>0</td>
<td>off</td>
<td>-</td>
<td>disabled</td>
</tr>
</tbody>
</table>

--- 2 port(s) on, 8.4(W) consumed, 361.6(W) Remaining ---
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Shortened form of a PoE interface</td>
</tr>
<tr>
<td>Enable</td>
<td>PoE state: enabled/disabled
enable: PoE is enabled.
disable: PoE is disabled.</td>
</tr>
<tr>
<td>Priority</td>
<td>Power priority of a PoE interface:
critical (highest)
high
low</td>
</tr>
<tr>
<td>CurPower</td>
<td>Current power of a PoE interface</td>
</tr>
<tr>
<td>Operating Status</td>
<td>Operating state of a PoE interface:
off: PoE is disabled.
on: Power is supplied for a PoE interface normally.
power lack: The guaranteed remaining power of the PSE is not high enough to supply power for a critical PoE interface.
power-den: The PSE refuses to supply power. The power required by the powered device (PD) is higher than the configured power.
power-itself: The external equipment is supplying power for itself.
power-limit: The PSE is supplying a limited power. The power required by the PD is higher than the configured power and the PSE still supplies the configured power. Port operation status varies with devices.</td>
</tr>
<tr>
<td>IEEE class</td>
<td>PD power class defined by IEEE</td>
</tr>
<tr>
<td>Detection Status</td>
<td>Power detection state of a PoE interface:
disabled: The PoE function is disabled.
searching: The PoE interface is searching for the PD.
delivering-power: The PoE interface is supplying power for the PD.
fault: There is a fault defined in 802.3af.
test: The PoE interface is under test.
There is a fault other than defined in 802.3af.
pd-disconnect: The PD is disconnected. Power detection state varies with devices.</td>
</tr>
<tr>
<td>port(s) on</td>
<td>Number of PoE interfaces that are supplying power</td>
</tr>
<tr>
<td>consumed</td>
<td>Power consumed by the current PoE interface</td>
</tr>
<tr>
<td>Remaining</td>
<td>Total remaining power of the system</td>
</tr>
</tbody>
</table>

display poe interface power

Syntax

`display poe interface power [interface-type interface-number]`

View

Any view
Default Level

1: Monitor level

Parameters

interface-type interface-number: Specifies an interface by its type and number.

Description

Use the display poe interface power command to display the power information of a PoE interface(s).

If no interface is specified, the power information of all PoE interfaces will be displayed.

Examples

Display the power information of GigabitEthernet 1/0/1.
<Sysname> display poe interface power gigabitethernet 1/0/1

Display the power information of all PoE interfaces.
<Sysname> display poe interface power

--- 3 port(s) on, 23.8(W) consumed, 776.2(W) Remaining ---

Table 23-4 display poe interface power command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Shortened form of a PoE interface</td>
</tr>
<tr>
<td>CurPower</td>
<td>Current power of a PoE interface</td>
</tr>
<tr>
<td>PeakPower</td>
<td>Peak power of a PoE interface</td>
</tr>
<tr>
<td>MaxPower</td>
<td>Maximum power of a PoE interface</td>
</tr>
<tr>
<td>PD Description</td>
<td>Description of the PD connected with a PoE interface When the description contains more than 34 characters, the first 30 characters followed by four dots are displayed.</td>
</tr>
<tr>
<td>port(s) on</td>
<td>Number of PoE interfaces that are supplying power</td>
</tr>
<tr>
<td>consumed</td>
<td>Power currently consumed by all PoE interfaces</td>
</tr>
<tr>
<td>Remaining</td>
<td>Total remaining power of the system</td>
</tr>
</tbody>
</table>
display poe pse

Syntax

display poe pse [pse-id]

View

Any view

Default Level

1: Monitor level

Parameters

pse-id: PSE ID. You can use the display poe device command to view the mapping between PSE ID and member ID. If you enter a PSE ID, the information of the PSE is displayed. Otherwise, the information of all PSEs on the device is displayed.

Description

Use the display poe pse command to display the information of the specified PSE.

Examples

Display the information of PSE 6.

<Sysname> display poe pse 6

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSE ID</td>
<td>ID of the PSE</td>
</tr>
<tr>
<td>PSE Slot No</td>
<td>Member ID number of the PSE</td>
</tr>
<tr>
<td>PSE Model</td>
<td>Model of the PSE module</td>
</tr>
<tr>
<td>PSE Power Enabled</td>
<td></td>
</tr>
<tr>
<td>PSE Power Preempted</td>
<td></td>
</tr>
<tr>
<td>PSE Power Priority</td>
<td></td>
</tr>
<tr>
<td>PSE Current Power</td>
<td></td>
</tr>
<tr>
<td>PSE Average Power</td>
<td></td>
</tr>
<tr>
<td>PSE Peak Power</td>
<td></td>
</tr>
<tr>
<td>PSE Max Power</td>
<td></td>
</tr>
<tr>
<td>PSE Remaining Guaranteed</td>
<td></td>
</tr>
<tr>
<td>PSE CPLD Version</td>
<td></td>
</tr>
<tr>
<td>PSE Software Version</td>
<td></td>
</tr>
<tr>
<td>PSE Hardware Version</td>
<td></td>
</tr>
<tr>
<td>PSE Legacy Detection</td>
<td></td>
</tr>
<tr>
<td>PSE Utilization-threshold</td>
<td></td>
</tr>
<tr>
<td>PSE Pd-policy Mode</td>
<td></td>
</tr>
<tr>
<td>PSE PD Disconnect Detect Mode</td>
<td></td>
</tr>
</tbody>
</table>

Table 23-5 display poe pse command output description
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSE Power Enabled</td>
<td>PoE is enabled for the PSE</td>
</tr>
<tr>
<td>PSE Power Preempted</td>
<td>PSE power preempted state</td>
</tr>
<tr>
<td></td>
<td>• no: The power of the PSE is not preempted.</td>
</tr>
<tr>
<td></td>
<td>• yes: The power of the PSE is preempted so that it cannot supply power, although PoE is enabled for the PSE</td>
</tr>
<tr>
<td>PSE Power Priority</td>
<td>Power priority of the PSE</td>
</tr>
<tr>
<td>PSE Current Power</td>
<td>Current power of the PSE</td>
</tr>
<tr>
<td>PSE Average Power</td>
<td>Average power of the PSE</td>
</tr>
<tr>
<td>PSE Peak Power</td>
<td>Peak power of the PSE</td>
</tr>
<tr>
<td>PSE Max Power</td>
<td>Maximum power of the PSE</td>
</tr>
<tr>
<td>PSE Remaining Guaranteed</td>
<td>Guaranteed remaining power of the PSE = Maximum power of the PSE– the sum of the maximum power of the critical PoE interfaces of the PSE</td>
</tr>
<tr>
<td>PSE CPLD Version</td>
<td>PSE CPLD version</td>
</tr>
<tr>
<td>PSE Software Version</td>
<td>PSE software version number</td>
</tr>
<tr>
<td>PSE Hardware Version</td>
<td>PSE hardware version number</td>
</tr>
<tr>
<td>PSE Legacy Detection</td>
<td>Nonstandard PD detection by the PSE:</td>
</tr>
<tr>
<td></td>
<td>• enable: Enabled</td>
</tr>
<tr>
<td></td>
<td>• disable: Disabled</td>
</tr>
<tr>
<td>PSE Utilization-threshold</td>
<td>PSE power alarm threshold</td>
</tr>
<tr>
<td>PSE Pd-policy Mode</td>
<td>PD power management policy mode</td>
</tr>
<tr>
<td>PSE PD Disconnect Detect Mode</td>
<td>PD disconnection detection mode</td>
</tr>
</tbody>
</table>

display poe pse interface

Syntax

`display poe pse pse-id interface`

View

Any view

Default Level

1: Monitor level

Parameters

`pse pse-id`: Specifies a PSE ID. You can use the `display poe device` command to view the mapping between PSE ID and member ID.

Description

Use the `display poe pse interface` command to display the state of all PoE interfaces connected to the specified PSE.
Display the state of all PoE interfaces connected to PSE 1.

```bash
<Sysname> display poe pse 1 interface
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Enable</th>
<th>Priority</th>
<th>CurPower</th>
<th>Operating</th>
<th>IEEE</th>
<th>Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE1/0/1</td>
<td>enable</td>
<td>low</td>
<td>4.4</td>
<td>on</td>
<td>1</td>
<td>delivering-power</td>
</tr>
<tr>
<td>GE1/0/2</td>
<td>enable</td>
<td>critical</td>
<td>0</td>
<td>power-lack</td>
<td>-</td>
<td>disabled</td>
</tr>
<tr>
<td>GE1/0/3</td>
<td>enable</td>
<td>low</td>
<td>0</td>
<td>power-deny</td>
<td>-</td>
<td>disabled</td>
</tr>
<tr>
<td>GE1/0/4</td>
<td>enable</td>
<td>critical</td>
<td>0</td>
<td>on</td>
<td>-</td>
<td>searching</td>
</tr>
<tr>
<td>GE1/0/5</td>
<td>enable</td>
<td>low</td>
<td>4.0</td>
<td>power-limit</td>
<td>2</td>
<td>delivering-power</td>
</tr>
<tr>
<td>GE1/0/6</td>
<td>enable</td>
<td>low</td>
<td>0</td>
<td>power-itself</td>
<td>-</td>
<td>disabled</td>
</tr>
<tr>
<td>GE1/0/7</td>
<td>disable</td>
<td>low</td>
<td>0</td>
<td>off</td>
<td>-</td>
<td>fault</td>
</tr>
<tr>
<td>GE1/0/8</td>
<td>disable</td>
<td>low</td>
<td>0</td>
<td>off</td>
<td>-</td>
<td>disabled</td>
</tr>
<tr>
<td>GE1/0/9</td>
<td>disable</td>
<td>low</td>
<td>0</td>
<td>off</td>
<td>-</td>
<td>disabled</td>
</tr>
<tr>
<td>GE1/0/10</td>
<td>disable</td>
<td>low</td>
<td>0</td>
<td>off</td>
<td>-</td>
<td>disabled</td>
</tr>
<tr>
<td>GE1/0/11</td>
<td>disable</td>
<td>low</td>
<td>0</td>
<td>off</td>
<td>-</td>
<td>disabled</td>
</tr>
<tr>
<td>GE1/0/12</td>
<td>disable</td>
<td>low</td>
<td>0</td>
<td>off</td>
<td>-</td>
<td>disabled</td>
</tr>
</tbody>
</table>

--- 2 port(s) on, 8.4(W) consumed, 171.6(W) Remaining ---

Table 23-6 display poe pse interface command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Shortened form of a PoE interface</td>
</tr>
<tr>
<td>Enable</td>
<td>PoE enabled/disabled state. For the value, see Table 23-2.</td>
</tr>
<tr>
<td>Priority</td>
<td>Priority of a PoE interface. For the value, see Table 23-2.</td>
</tr>
<tr>
<td>CurPower</td>
<td>Current power of a PoE interface</td>
</tr>
<tr>
<td>Operating</td>
<td>Operating state of a PoE interface. For the value, see Table 23-2.</td>
</tr>
<tr>
<td>IEEE</td>
<td>PD power class</td>
</tr>
<tr>
<td>Detection</td>
<td>Power detection state of a PoE interface. For the value, see Table 23-2.</td>
</tr>
<tr>
<td>port(s) on</td>
<td>Number of PoE interfaces that are supplying power</td>
</tr>
<tr>
<td>consumed</td>
<td>Power consumed by PoE interfaces on the PSE</td>
</tr>
<tr>
<td>Remaining</td>
<td>Remaining power on the PSE</td>
</tr>
</tbody>
</table>

display poe pse interface power

Syntax

```bash
display poe pse pse-id interface power
```

View

Any view
Default Level

1: Monitor level

Parameters

pse pse-id: Specifies a PSE ID. You can use the `display poe device` command to view the mapping between PSE ID and member ID.

Description

Use the `display poe pse interface power` command to display the power information of PoE interfaces connected with the PSE.

Examples

```
# Display the power information of PoE interfaces connected with PSE 1.
<Sysname> display poe pse 1 interface power
```

```
<table>
<thead>
<tr>
<th>Interface</th>
<th>CurPower</th>
<th>PeakPower</th>
<th>MaxPower</th>
<th>PD Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE1/0/25</td>
<td>4.4</td>
<td>4.5</td>
<td>4.6</td>
<td>IP Phone on Room 309 for Peter Smith</td>
</tr>
<tr>
<td>GE1/0/26</td>
<td>4.4</td>
<td>4.5</td>
<td>15.4</td>
<td>IP Phone on Room 409 for Peter Pan</td>
</tr>
<tr>
<td>GE1/0/27</td>
<td>15.0</td>
<td>15.3</td>
<td>15.4</td>
<td>Acess Point on Room 509 for Peter</td>
</tr>
<tr>
<td>GE1/0/28</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>IP Phone on Room 609 for Peter John</td>
</tr>
<tr>
<td>GE1/0/29</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>IP Phone on Room 709 for Jack</td>
</tr>
<tr>
<td>GE1/0/30</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>IP Phone on Room 809 for Alien</td>
</tr>
</tbody>
</table>

--- 3 port(s) on, 23.8(W) consumed, 346.2(W) Remaining ---
```

Table 23-7 display poe pse interface power command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Shortened form of a PoE interface</td>
</tr>
<tr>
<td>CurPower</td>
<td>Current power of a PoE interface</td>
</tr>
<tr>
<td>PeakPower</td>
<td>Peak power of a PoE interface</td>
</tr>
<tr>
<td>MaxPower</td>
<td>Maximum power of a PoE interface</td>
</tr>
<tr>
<td>PD Description</td>
<td>Description of the PD connected with a PoE interface. When the description contains more than 34 characters, the first 30 characters followed by four dots are displayed.</td>
</tr>
<tr>
<td>port(s) on</td>
<td>Number of PoE interfaces that are supplying power</td>
</tr>
<tr>
<td>consumed</td>
<td>Power currently consumed by all PoE interfaces</td>
</tr>
<tr>
<td>Remaining</td>
<td>Remaining power on the PSE</td>
</tr>
</tbody>
</table>

display poe-profile

Syntax

```
display poe-profile [ index index | name profile-name ]
```
View

Any view

Default Level

1: Monitor level

Parameters

\textbf{index index}: Index number of the PoE configuration file, in the range 1 to 100.
\textbf{name profile-name}: Name of the PoE configuration file, a string of 1 to 15 characters.

Description

Use the \texttt{display poe-profile} command to display all information of the configurations and applications of the PoE configuration file.

If no argument is specified, all information of the configurations and applications of existing PoE configuration files is displayed.

Examples

\begin{verbatim}
Display all information of the configurations and applications of the current PoE configuration file.
<Sysname> display poe-profile
Poe-profile Index ApplyNum Interface Configuration
AA3456789012345 1 3 GE1/0/1 poe enable
 15400
 GE1/0/2 poe priority critical
 GE1/0/3

poe-profileAA 2 1 GE1/0/24 poe enable
 poe max-power 12300

poe-profileBB 3 0 poe enable
 poe priority critical
 poe max-power 15400

--- 3 poe-profile(s) created, 4 port(s) applied ---
\end{verbatim}

Table 23-8 display poe-profile command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poe-profile</td>
<td>Name of the PoE configuration file</td>
</tr>
<tr>
<td>Index</td>
<td>Index number of the PoE configuration file</td>
</tr>
<tr>
<td>ApplyNum</td>
<td>Number of PoE interfaces to which a PoE configuration file is applied</td>
</tr>
<tr>
<td>Interface</td>
<td>Shortened form of the PoE interface to which the PoE configuration is applied</td>
</tr>
<tr>
<td>Configuration</td>
<td>Configurations of the PoE configuration file</td>
</tr>
<tr>
<td>poe-profile(s) created</td>
<td>Number of PoE configuration files</td>
</tr>
<tr>
<td>port(s) applied</td>
<td>Sum of the number of PoE interfaces to which all PoE configuration files are respectively applied</td>
</tr>
</tbody>
</table>
Display all information of the configurations and applications of the PoE configuration file whose index number is 1.

```c
<Sysname> display poe-profile index 1
Poe-profile    Index  ApplyNum  Interface  Configuration
AA3456789012345 1     2          GE1/0/2       poe enable
                     GE1/0/24  poe priority critical
                     poe max-power 12300
--- 2 port(s) applied ---
```

Table 23-9 display poe-profile index command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poe-profile</td>
<td>Name of the PoE configuration file</td>
</tr>
<tr>
<td>Index</td>
<td>Index number of the PoE configuration file</td>
</tr>
<tr>
<td>ApplyNum</td>
<td>Number of PoE interfaces to which a PoE configuration file is applied</td>
</tr>
<tr>
<td>Interface</td>
<td>Shortened form of the PoE interface to which the PoE configuration is applied</td>
</tr>
<tr>
<td>Configuration</td>
<td>Configurations of the PoE configuration file</td>
</tr>
<tr>
<td>port(s) applied</td>
<td>Sum of the number of PoE interfaces to which all PoE configuration files are respectively applied</td>
</tr>
</tbody>
</table>

Display all information of the configurations and applications of the PoE configuration file named AA.

```c
<Sysname> display poe-profile name AA
Poe-profile    Index  ApplyNum  Interface  Configuration
AA             1     2          GE1/0/1       poe enable
                     GE1/0/2       poe priority critical
                     poe max-power 12300
--- 2 port(s) applied ---
```

Table 23-10 display poe-profile name command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poe-profile</td>
<td>Name of the PoE configuration file</td>
</tr>
<tr>
<td>Index</td>
<td>Index number of the PoE configuration file</td>
</tr>
<tr>
<td>ApplyNum</td>
<td>Number of PoE interfaces to which a PoE configuration file is applied</td>
</tr>
<tr>
<td>Interface</td>
<td>Shortened form of the PoE interface to which the PoE configuration is applied</td>
</tr>
<tr>
<td>Configuration</td>
<td>Configurations of the PoE configuration file</td>
</tr>
<tr>
<td>port(s) applied</td>
<td>Sum of the number of PoE interfaces to which all PoE configuration files are respectively applied</td>
</tr>
</tbody>
</table>
display poe-profile interface

Syntax

 display poe-profile interface interface-type interface-number

View

 Any view

Default Level

 1: Monitor level

Parameters

 interface-type interface-number: Specifies an interface by its type and number.

Description

 Use the display poe-profile interface command to display all information of the configurations and applications of the PoE configuration file that currently takes effect on the specified PoE interface.

Examples

 # Display all information of the configurations and applications of the current PoE configuration file applied to GigabitEthernet 1/0/1.

 <Sysname> display poe-profile interface gigabitethernet 1/0/1
 Poe-profile Index ApplyNum Interface Current Configuration
 AA3456789012345 1 2 GE1/0/2 poe enable
 poe priority critical

Table 23-11 display poe-profile interface command output description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poe-profile</td>
<td>Name of the PoE configuration file</td>
</tr>
<tr>
<td>Index</td>
<td>Index number of the PoE configuration file</td>
</tr>
<tr>
<td>ApplyNum</td>
<td>Number of PoE interfaces to which the PoE configuration file is applied</td>
</tr>
<tr>
<td>Interface</td>
<td>Shortened form of the PoE interface to which the PoE configuration is applied</td>
</tr>
<tr>
<td>Current Configuration</td>
<td>Configurations of the PoE configuration file that currently take effect on a PoE interface</td>
</tr>
</tbody>
</table>

Note

 Because not all the configurations of a PoE configuration file can be applied successfully, only the configurations that currently take effect on the interface are displayed.
poe disconnect

Syntax

 poe disconnect { ac | dc }
 undo poe disconnect

View

 System view

Default Level

 2: System level

Parameters

 ac: Specifies the PD disconnection detection mode as ac.
 dc: Specifies the PD disconnection detection mode as dc.

Description

 Use the poe disconnect command to configure a PD disconnection detection mode.
 Use the undo poe disconnect command to restore the default.
 The default PD disconnection detection mode varies with devices.
 Note that change to the PD disconnection detection mode may lead to power-off of some PDs.

Examples

 # Set the PD disconnection detection mode to dc.
 <Sysname> system-view
 [Sysname] poe disconnect dc

poe enable

Syntax

 poe enable
 undo poe enable

View

 PoE interface view, PoE-profile file view

Default Level

 2: System level

Parameters

 None

Description

 Use the poe enable command to enable PoE on a PoE interface.
 Use the undo poe enable command to disable PoE on a PoE interface.
By default, PoE is disabled on a PoE interface.

Caution

- If a PoE configuration file is already applied to a PoE interface, you need to remove the application of the file to the PoE interface before configuring the interface in PoE-profile view.
- If a PoE configuration file is applied to a PoE interface, you need to remove the application of the file to the PoE interface before configuring the interface in PoE interface view.

Examples

Enable PoE on a PoE interface.

```
<Sysname> system-view
<Sysname> interface gigabitethernet 1/0/1
<Sysname-GigabitEthernet1/0/1> poe enable
```

Enable PoE on a PoE interface through a PoE configuration file.

```
<Sysname> system-view
<Sysname> poe-profile abc
<Sysname-poe-profile-abc-1> poe enable
<Sysname-poe-profile-abc-1> quit
<Sysname> interface gigabitethernet 1/0/1
<Sysname-GigabitEthernet1/0/1> apply poe-profile name abc
```

poe legacy enable

Syntax

```
poe legacy enable pse pse-id
undo poe legacy enable pse pse-id
```

View

System view

Default Level

2: System level

Parameters

```
pse pse-id: Specifies a PSE ID.
```

Description

Use the **poe legacy enable** command to enable the PSE to detect nonstandard PDs.

Use the **undo poe legacy enable** command to disable the PSE from detecting nonstandard PDs.

By default, the PSE is disabled from detecting nonstandard PDs.
Examples

Enable PSE 2 to detect nonstandard PDs.
<Sysname> system-view
[Sysname] poe legacy enable pse 2

poe max-power

Syntax

poe max-power max-power
undo poe max-power

View

PoE interface view, PoE-profile file view

Default Level

2: System level

Parameters

max-power: Maximum power in milliwatts allocated to a PoE interface. The range of this argument varies with devices.

Description

Use the poe max-power command to configure the maximum power for a PoE interface.
Use the undo poe max-power command to restore the default.
By default, the maximum power of the PoE interface is 15,400 milliwatts.

Examples

Set the maximum power of GigabitEthernet 1/0/1 to 12,000 milliwatts.
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] poe max-power 12000

Set the maximum power of GigabitEthernet 1/0/1 to 12,000 milliwatts through a PoE configuration file.

<Sysname> system-view
[Sysname] poe-profile abc
[Sysname-poe-profile-abc-1] poe max-power 12000
[Sysname-poe-profile-abc-1] quit
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] apply poe-profile name abc

poe mode

Syntax

poe mode signal
undo poe mode
View

PoE interface view, PoE-profile file view

Default Level

2: System level

Parameters

signal: Specifies the PoE mode as signal (power over signal cables).

Description

Use the poe mode command to configure a PoE mode.

Use the undo poe mode command to restore the default.

By default, the PoE mode is signal (power over signal cables).

The PSE supplies power for a PoE interface in the following two modes: signal and spare.

- In the signal mode, lines in Category 3 and 5 twisted pair cables used for transmitting data are also used for supplying DC power.
- In the spare mode, lines in Category 3 and 5 twisted pair cables not in use are used for supplying DC power.
- Switch 4210G only support for signal mode.

Examples

Set the PoE mode to signal (power over signal cables).
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] poe mode signal

Set the PoE mode to signal (power over signal cables) through a PoE configuration file.
<Sysname> system-view
[Sysname] poe-profile abc
[Sysname-poe-profile-abc-1] poe mode signal
[Sysname-poe-profile-abc-1] quit
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] apply poe-profile name abc

poe pd-description

Syntax

poe pd-description string

undo poe pd-description

View

PoE interface view

Default Level

2: System level
Parameters

string: Description of the PD connected to a PoE interface, a string of 1 to 80 characters.

Description

Use the `poe pd-description` command to configure a description for the PD connected to a PoE interface.

Use the `undo poe pd-description` command to restore the default.

By default, no description is available for the PD connected to a PoE interface.

Examples

```plaintext
# Configure the description for the PD connected to GigabitEthernet 1/0/1 as IP Phone for Room 101.
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] poe pd-description IP Phone For Room 101
```

poe pd-policy priority

Syntax

- `poe pd-policy priority`
- `undo poe pd-policy priority`

View

System view

Default Level

2: System level

Parameters

None

Description

Use the `poe pd-policy priority` command to configure a PD power management priority policy.

Use the `undo poe pd-policy priority` command to remove the PD power management priority policy.

By default, no PD power management priority policy is configured.

Examples

```plaintext
# Configure a PD power management priority policy
<Sysname> system-view
[Sysname] poe pd-policy priority
```

poe priority

Syntax

- `poe priority { critical | high | low }
- `undo poe priority`
View

PoE interface view, PoE-profile file view

Default Level

2: System level

Parameters

critical: Sets the power priority of a PoE interface to critical. The PoE interface whose power priority level is critical works in guaranteed mode, that is, power is first supplied to the PD connected to this critical PoE interface.

high: Sets the power priority of a PoE interface to high.

low: Sets the power priority of a PoE interface to low.

Description

Use the poe priority command to configure a power priority level for a PoE interface.

Use the undo poe priority command to restore the default.

By default, the power priority of a PoE interface is low.

Note that:

- When the PoE power is insufficient, power is first supplied to PoE interfaces with a higher priority level.
- If a PoE configuration file is already applied to a PoE interface, you need to remove the application of the file to the PoE interface before configuring the interface in PoE-profile view.
- If a PoE configuration file is applied to a PoE interface, you need to remove the application of the file to the PoE interface before configuring the interface in PoE interface view.
- If two PoE interfaces have the same priority level, the PoE interface with a smaller ID has the higher priority level.

Examples

Set the power priority of GigabitEthernet 1/0/1 to critical.
<Sysname> system-view
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] poe priority critical

Set the power priority of GigabitEthernet 1/0/1 to critical through a PoE configuration file.
<Sysname> system-view
[Sysname] poe-profile abc
[Sysname-poe-profile-abc-1] poe priority critical
[Sysname-poe-profile-abc-1] quit
[Sysname] interface gigabitethernet 1/0/1
[Sysname-GigabitEthernet1/0/1] apply poe-profile name abc

poe update

Syntax

poe update { full | refresh } filename pse pse-id
View
System view

Default Level
2: System level

Parameters

full: Specifies to upgrade the PSE processing software in full mode when the software is unavailable.
refresh: Specifies to upgrade the PSE processing software in refresh mode when the software is available.
filename: Name of the upgrade file, a string of 1 to 64 characters. This file must be under the root directory of the file system of the device. The extension of the upgrade file varies with devices.
pse pse-id: Specifies a PSE ID.

Description

Use the poe update command to upgrade the PSE processing software online.

⚠️ Caution

- The full mode is used only in the case that anomalies occur when you use the refresh mode to upgrade the PSE processing software. Do not use the full mode in other circumstances.
- You can use the full mode to upgrade the PSE processing software to restore the PSE firmware when the the PSE processing software is unavailable (it means that none of the PoE commands are executed successfully).

Examples

Upgrade the processing software of PSE 2 online.

<Sysname> system-view
[Sysname] poe update refresh 0400_001.S19 pse 2
This command will refresh firmware on the specific PSE(s), Continue? [Y/N]:y
System is downloading firmware into the hardware. Please wait
..
..
..
..
Refresh firmware on the specific PSE(s) successfully!

poe utilization-threshold

Syntax

poe utilization-threshold utilization-threshold-value pse pse-id
undo poe utilization-threshold pse pse-id

View
System view
Default Level

2: System level

Parameters

utilization-threshold-value: Power alarm threshold in percentage, in the range 1 to 99.

pse pse-id: Specifies a PSE ID.

Description

Use the `poe utilization-threshold` command to configure a power alarm threshold for the PSE.

Use the `undo poe utilization-threshold` command to restore the default power alarm threshold of the PSE.

By default, the power alarm threshold for the PSE is 80%.

The system sends a Trap message when the percentage of power utilization exceeds the alarm threshold. If the percentage of the power utilization always keeps above the alarm threshold, the system does not send any Trap message. Instead, when the percentage of the power utilization drops below the alarm threshold, the system sends a Trap message again.

Examples

```
# Set the power alarm threshold of PSE 2 to 90%.
<Sysname> system-view
<Sysname> poe utilization-threshold 90 pse 2
```

poe-profile

Syntax

```
poe-profile profile-name [ index ]
undo poe-profile { index index | name profile-name }
```

View

System view

Default Level

2: System level

Parameters

profile-name: Name of a PoE configuration file, a string of 1 to 15 characters. A PoE configuration file name begins with a letter (a through z or A through Z) and must not contain reserved keywords such as undo, all, name, interface, user, poe, disable, max-power, mode, priority and enable.

index: Index number of a PoE configuration file, in the range 1 to 100.

Description

Use the `poe-profile profile-name` command to create a PoE configuration file and enter PoE-profile view.

Use the `undo poe-profile` command to delete the specified PoE configuration file.
If no index is specified, the system automatically assigns an index to the PoE configuration file, starting from 1.

Note that if a PoE configuration file is already applied to a PoE interface, you cannot delete it. To delete the file, you must first execute the `undo apply poe-profile` command to remove the application of the PoE configuration file to the PoE interface.

Examples

Create a PoE configuration file, name it `abc`, and specify the index number as 3.

```
<Sysname> system-view
[Sysname] poe-profile abc 3
```